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Abstract

In this article, we provide an overview of current neuroimaging methods for studying perivascular 

spaces (PVS) in humans using brain MRI. In recent years, an increasing number of studies 

highlighted the role of PVS in cerebrospinal/interstial fluid circulation and clearance of cerebral 

waste products and their association with neurological diseases. Novel strategies and techniques 

have been introduced to improve the quantification of PVS and to investigate their function and 

morphological features in physiological and pathological conditions. After a brief introduction 

on the anatomy and physiology of PVS, we examine the latest technological developments to 

quantitatively analyze the structure and function of PVS in humans with MRI. We describe the 

applications, advantages, and limitations of these methods, providing guidance and suggestions 

on the acquisition protocols and analysis techniques that can be applied to study PVS in vivo. 

Finally, we review the human neuroimaging studies on PVS across the normative lifespan and in 

the context of neurological disorders.
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1. Introduction

In the last decade, several studies have demonstrated that perivascular spaces (PVS) are 

critically involved in the circulation of cerebral fluid, and both functional and structural 

alterations to PVS have been found to be associated with multiple neurological diseases 

as well as other non-neurological conditions (Francis et al., 2019). Despite the recent 

advancements in PVS research, a full understanding of the physiological functions of PVS 

and their pathophysiological implications for clinical disorders remains elusive. Imaging 

PVS in pre-clinical models and clinical studies can be used not only to better understand 

the mechanisms underlying the cerebral fluid dynamics of perivascular flow and their 

alterations in diseases, but also to explore the potential use of PVS as a neuroimaging 

diagnostic biomarker and for therapeutic purposes. In fact, PVS can represent both a 

route for the delivery of therapeutic agents into the brain and a therapeutic target, since 

variations in the perivascular flow occur in several neurological disorders and are linked 

to neurodegeneration (Sweeney et al., 2018). For example, the development of cerebral 

edema after stroke, a detrimental complication whose severity is a critical prognostic factor 

and predicts the patients’ functional outcome (Liang et al., 2007; Stokum et al., 2016), 

has been shown to be dependent on an increase of the perivascular flow accompanied by 

PVS enlargement (Mestre et al., 2020). Additionally, pre-clinical studies have shown that 

PVS is a major component of the brain clearance system, whose impairment can lead 

to the accumulation of metabolic waste products, formation of amyloid-β (Aβ) plaques, 

protein aggregation, and subsequent cellular damage (Iliff et al., 2012; Mawuenyega et 

al., 2010; Xu et al., 2015). The results from these and other studies provide conceptual 

bases for the development of therapeutic strategies specifically targeting PVS and highlight 

the importance of neuroimaging as a fundamental tool for the investigation of PVS. In 

this review, we describe the main structural and functional characteristics of PVS that can 

be captured using neuroimaging techniques, and provide guidance and suggestions on the 

acquisition protocols and analysis techniques that can be applied to study PVS in vivo. 

Finally, we report and review recent neuroimaging studies investigating PVS under different 

physiological and pathological conditions.

2. Anatomy and function of PVS

PVS are fluid-filled spaces that surround cerebral blood vessels penetrating or leaving the 

brain parenchyma and are limited externally by the glia limitans, mesh of astrocyte endfeet 

covered by an outer basal lamina (Pollock et al., 1997). PVS were described for the first 

time by Durand-Fardel and Pestalozzi in the 1840s (Durand-Fardel, 1843; Woollam and 

Millen, 1955), but they are commonly called Virchow-Robin spaces from the names of 

the German pathologist Rudolf Virchow and the French anatomist Charles Philippe Robin, 

who described them in the 1850s (Robin, 1859; Virchow, 1851). PVS surround most of 

the perforating blood vessels in the brain, but on MRI they are most commonly visible 

at the level of the basal ganglia and the centrum semiovale (Osborn and Barisano, 2020). 

According to Zhang et al. (1990), PVS around superficial perforating arteries in the centrum 

semiovale have only one layer of pia mater and communicate with the subpial space, 

whereas in lenticulostriate arteries at the level of the basal ganglia PVS present two layers 

of leptomeningeal membranes and communicate with the subarachnoid space (Pollock et 
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al., 1997). Moreover, in contrast with periarterial spaces, the perivenous spaces lack the 

outer layer of leptomeninges (Pollock et al., 1997). The PVS are a key compartment at the 

interface between the blood vessels and the brain, and different types of cells interact with 

PVS, including endothelial cells, pericytes, astrocytes, neurons, and microglia (Troili et al., 

2020).

In 2012, the glymphatic system was first described as the system responsible for brain 

clearance of toxic and waste metabolites via cerebrospinal fluid (CSF)–interstitial fluid (ISF) 

exchange, drainage of fluids, as well as transport of other molecules, such as glucose and 

lipids, necessary for the correct cerebral functioning (Iliff et al., 2012). According to the 

glymphatic system model, the CSF flows from the subarachnoid space into the PVS driven 

by an arterial pulsation that pushes the fluid along the penetrating arteries diving into the 

brain parenchyma where CSF mixes with ISF (Iliff et al., 2013b; Mestre et al., 2018). The 

CSF-ISF containing solutes and waste products subsequently reaches the perivenous space 

and drains away from the cerebral parenchyma reentering the subarachnoid space or the 

ventricles (Iliff et al., 2012). Since PVS represent a critical component of the glymphatic 

system, it has been proposed that alterations in the glymphatic flow mechanism could lead to 

PVS enlargement. Recently, it was also reported that vasomotion, i.e., the slow constrictions 

and dilations of arterioles that is initiated spontaneously by the vascular smooth muscle cells 

and is independent of pulsatile blood flow (He et al., 2018; Mateo et al., 2017), constitute 

a driving force for the paravascular clearance (van Veluw et al., 2020). The mechanisms 

underlying the movement of the fluid from PVS to the parenchyma and vice versa remain 

however currently elusive. While the original glymphatic hypothesis proposed that there is 

a convective bulk flow linking paravascular and interstitial compartments and driving the 

clearance of interstitial solutes from the brain parenchyma (Iliff et al., 2012), other recent 

studies suggested that CSF-ISF exchange occurs by diffusion (Asgari et al., 2016; Holter et 

al., 2017; Jin et al., 2016).

Another brain clearance system model known as the “intramural periarterial drainage 

pathway” (IPAD) reports that the transport of ISF and solutes, but not cells, occur along the 

basement membranes of the capillaries and within the tunica media of arterioles and arteries 

in the opposite direction to the arterial blood flow, towards the cervical lymph nodes via 

major cerebral arteries in the neck (Bakker et al., 2016; Carare et al., 2008). For the IPAD 

system, vasomotion has been proposed to be the major motive force (Aldea et al., 2019). 

Since this fluid movement occurs at microscopic level along the arterial walls, it is currently 

unclear whether alterations in the IPAD system would correspond to an enlargement of 

MRI-visible PVS.

Additionally, it remains unclear how MRI-visible PVS relate to the clearance pathways 

external to the brain parenchyma, including: the arachnoid (or Pacchioni) granulations, 

which connects the subarachnoid space to the venous system; the meningeal lymphatics, 

lymphatic vessels located in the dura mater in proximity of the venous sinuses which drain 

to the extracranial deep cervical lymph nodes (Absinta et al., 2017; Aspelund et al., 2015); 

the perineural space along cranial and spinal nerves (Bradbury et al., 1981; Bradbury and 

Westrop, 1983; Kaminski et al., 2012a,b).

Barisano et al. Page 3

Neuroimage. Author manuscript; available in PMC 2022 August 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



3. Imaging PVS structure

Given the high sensitivity of MRI in detecting cerebral fluid structural and biophysical 

properties, it is an ideal neuroimaging modality to capture PVS characteristics. PVS 

on structural MRI appear as tubular, fluid-filled structures. The principal locations of 

MRI-visible PVS include the basal ganglia and the whole white matter, with the highest 

prominence typically found in the centrum semiovale (i.e., the part of white matter superior 

to the lateral ventricles and corpus callosum) and the highest concentration (i.e., PVS-to-

white-matter ratio) in the subinsular white matter (Barisano et al., 2021b). Other brain 

regions where PVS are visible on MRI include the hippocampus, midbrain, pons and the 

cerebellum (usually dentate nuclei and cerebellar white matter) (Osborn and Barisano, 

2020). While the composition of the PVS fluid is not completely known, PVS on MRI 

typically have a signal intensity similar to that of CSF, i.e., low on T1-weighted and high 

on T2-weighted images, suggesting that the relaxation properties of the fluid inside PVS and 

CSF are comparable.

It should be noted that the visibility of PVS on MRI depends on the presence of fluid inside 

PVS; in fact, structural MRI allows for the visualization of the fluid inside PVS rather 

than the PVS themselves, which would have a different MRI signal profile, challenging 

to detect, if they were empty. Importantly, recent histological studies in pericytedeficient 

mice and patients with cerebral amyloid angiopathy (CAA) have shown that enlarged 

PVS may contain not only fluid but also proteinaceous material, such as fibrin/fibrinogen 

(Montagne et al., 2018), extracellular matrix and hemosiderin deposits (Perosa et al., 2022). 

Nevertheless, the influence of these deposits on the signal and visibility of PVS on in vivo 
MRI remains elusive.

PVS on MRI appear as lines when they are parallel to the image acquisition plane, and 

as dots when they are perpendicular to the image acquisition plane. Normally, PVS cross-

sectional diameter on MRI is less than 2 mm (Rudie et al., 2018). As the blood vessels 

penetrate deeper in the cerebral parenchyma, the diameter of PVS decreases. The visibility 

of PVS on MRI is significantly affected by the magnetic field strength and the image 

resolution (Barisano et al., 2021a). In fact, while it might be difficult to visualize PVS 

with 1.5 Tesla MRI when they are not enlarged, higher magnetic field (≥ 3 Tesla) provides 

sufficient resolution and signal-to-noise ratio (SNR) to visualize PVS morphology virtually 

in all individuals, even in healthy adolescents and young adults (Barisano et al., 2021b; 

Piantino et al., 2020), where the MRI-visible PVS do not necessarily indicate an underlying 

pathology.

Despite histological studies that described PVS around both arteries and veins, some recent 

studies performed with 7 Tesla MRI suggest that the majority of MRI-visible PVS in the 

centrum semiovale are periarterial rather than perivenous (Bouvy et al., 2014; George et 

al., 2021; Jochems et al., 2020). The reason why perivenous spaces are less visible than 

periarterial spaces on MRI is currently unclear, but it might be related to the smaller size of 

perivenous spaces as well as differences in the amount and/or composition of the perivenous 

fluid. For example, perivenous space signal intensity might be similar to that of the adjacent 

cerebral parenchyma, making their visualization on MRI difficult. In CAA patients, the 
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enlargement of PVS was also found to occur more frequently around arterioles rather than 

venules (Perosa et al., 2022).

3.1. Current methods for analyzing MRI-visible PVS

3.1.1. Visual rating scales—Visual rating scales have been thus far the most used 

approach to investigate PVS on MRI. In the past three decades, several types of visual 

rating systems have been adopted (Adachi et al., 1998; Adams et al., 2013; Di Costanzo 

et al., 2001; Doubal et al., 2010a; Duperron et al., 2018; Groeschel et al., 2006; Heier 

et al., 1989; Patankar et al., 2005; Potter et al., 2015a; Rouhl et al., 2008; Zhu et al., 

2010a). Most of them classify PVS in different areas of the brain based on their count. For 

example, a commonly used system rates PVS in each region with the following scores: 0 

if PVS are not visible, 1 if 1–10 PVS are visible, 2 for 11–20 PVS, 3 for 21–40, and 4 

if > 40 are counted (Potter et al., 2015a). Typically, basal ganglia and centrum semiovale 

are independently scored. Sometimes other regions are assessed as well, including the 

mesencephalon, hippocampus, and the subinsular white matter. For each region, one or few 

slices (usually those including the highest number of PVS) are evaluated and PVS are scored 

separately on each side or hemisphere: the higher score among the two hemispheres is then 

utilized. Notably, PVS in basal ganglia are usually scored above the anterior commissurae, 

as PVS below it, in the anterior perforated substance, are not considered pathologic (Adachi 

et al., 1998; Groeschel et al., 2006; Heier et al., 1989; Jungreis et al., 1988; Kwee and Kwee, 

2007; Potter et al., 2015a). In fact, these PVS reflect the entry of the lenticulostriate arteries 

from the subarachnoid space of the Sylvian cistern into the brain parenchyma and are 

commonly found on 1.5 Tesla and even more on 3 Tesla MRI in healthy people, including 

young and adults.

In some cases, the scoring system takes into account the PVS size as well (Di Costanzo et 

al., 2001; Ding et al., 2017; Heier et al., 1989). One recent study, for example, scored PVS 

based on the presence or absence of PVS with cross-sectional diameter larger than 3 mm, 

which they called large PVS (Ding et al., 2017).

Visual rating scales present several advantages: they are relatively easy to learn and adopt, 

can be used both on T1-weighted and on T2-weighted images, do not require a 3D or 

isotropic acquisition, and can be performed directly on the images without the need of 

specialized workstation or computational tools.

While these scoring systems provide a qualitative estimate of the extent of PVS burden, 

manual counting is still required to assign a rating and lacks granularity, particularly in 

cases where the PVS count is close to the limit threshold differentiating two categories 

(e.g., 20 which differentiates the scores 2 and 3 in the 5-scale rating system described 

above). Additional limitations of the visual rating scales are low sensitivity (Ballerini et 

al., 2018; Sepehrband et al., 2019a), the inter- and intra-rater variability, and the limited 

number of PVS features that could be derived. Moreover, the assessment of small PVS 

with visual scales remain difficult, the application of the visual scales on large datasets is 

burdensome, and counting PVS can be time-consuming (Wang et al., 2016). To overcome 

some of these issues, recently an automatic classifier for the rating of PVS burden in the 

basal ganglia as low or high was described: this system uses a support vector machine 
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classifier on descriptors based on bag of visual words model, using keypoints obtained from 

a dense grid characterized with the scale-invariant feature transform (SIFT) characteristics 

(González-Castro et al., 2017). The achieved accuracy was approximately 80% (González-

Castro et al., 2017).

3.1.2. PVS segmentation and morphometry—Recent technological advancements 

have allowed for the development of a number of automatic and semiautomatic PVS 

segmentation and quantification strategies (Ballerini et al., 2018; Boespflug et al., 2018; 

Cai et al., 2015; González-Castro et al., 2017; Park et al., 2016; Ramirez et al., 2015; 

Sepehrband et al., 2019a; Wuerfel et al., 2008; Zong et al., 2016). To the best of 

our knowledge, Descombes et al. (2004) were the first to perform a computer-aided 

segmentation of PVS. Their approach was based on the marked point process framework, 

which couples the typical tubular shape of PVS with their localization and tendency to 

cluster, and was optimized via the Markov chain Monte Carlo method (Descombes et 

al., 2004). Uchiyama et al. (2008) used the white top-hat transformation to enhance the 

intensities of tubular structures and extract them via intensity thresholding. A similar 

approach has been adopted more recently by several groups who employed the Frangi filter 

(Frangi et al., 1998) for the detection of tubular structures on 2D and 3D images (Ballerini et 

al., 2018; Park et al., 2016; Sepehrband et al., 2019a; Zong et al., 2016).

Wuerfel and colleagues were the first to perform a clinical study where the PVS were 

segmented (Wuerfel et al., 2008). They used a threshold-based semiautomatic method, 

originally developed for the quantification of brain lesions (Makale et al., 2002), where 

connectivity and threshold values were adjusted based on manually determined PVS 

(Wuerfel et al., 2008). Similar threshold-based approaches were adopted by Ramirez et 

al. (2011), who segmented PVS via a modified lesion extraction algorithm employing 

T1-weighted, T2-weighted, and proton-density (PD) weighted images, and by Wang et al. 

(2016), who were able to segment PVS on one single slice in centrum semiovale and in a 

manually-traced ovoid region of the basal ganglia after performing a linear intensity adaptive 

adjustment in 3 stages (normalization, gamma correction, and linear mapping).

Once the PVS have been segmented, several metrics and morphological features of PVS can 

be computed from the segmentation masks (Fig. 1). The PVS volume is one of these metrics, 

and provides an estimate of the amount of fluid present in the PVS. Since the PVS volume 

in healthy individuals is strongly correlated with the brain size (Barisano et al., 2021b), it 

is recommended to correct for it when implementing statistical models aimed at comparing 

PVS volumes across different individuals. It is also possible to compute the volume fraction 

of PVS in each brain region, calculated by dividing the total volume of segmented PVS 

cluster voxels in the region by the total volume of the region (Barisano et al., 2021b; Zong et 

al., 2016).

The mean cross-sectional diameter is another important PVS feature that can be used 

to distinguish PVS from other lesions related to cerebral small vessel disease (CSVD) 

(Wardlaw et al., 2013). One approach to measure the mean cross-sectional diameter is the 

following (Zong et al., 2016). Each connected cluster of segmented voxels is defined as one 

PVS. Then, a thinning algorithm is applied to define the path of each cluster (Kerschnitzki et 
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al., 2013; Lee et al., 1994). The Euclidean distance among all pair of voxels within a cluster 

is measured, and then the longest pathway between any two voxels within the thinned cluster 

is considered as the PVS path. For each voxel on the PVS path, the shortest path is measured 

by counting the number of voxels in the original cluster that were closer to that voxel than to 

any other voxel on the PVS path (Fig. 1c). Then, the diameter for each voxel x on the PVS 

path is calculated as: Dx = 2 N × voxel size in millimiter 3
lπ  Fig. 1 where N is the number of 

voxels in the original PVS cluster associated with that voxel x on the PVS path, and l is the 

mean distance of the voxel x on the PVS path to its two neighbor voxels on the PVS path. 

Since the distance between the voxels on the PVS path does not change significantly, the 

main factor influencing the estimation of the mean cross-sectional diameter is the number of 

voxels associated to each voxel x. The last voxels on the PVS path are excluded from the 

diameter measurements since their diameters were artificially increased due to the thinning 

algorithm (Zong et al., 2016).

Another morphological characteristic that can be assessed in segmented PVS is the linearity, 

i.e., the resemblance of a specific PVS cluster to the tubular morphology. Boefsplug et 

al. recently presented an approach to assess PVS linearity. First, each segmented PVS 

cluster coordinate set (X) is subtracted by the mean of each cluster coordinate to localize 

the coordinates of PVS clusters and translate them to the origin. Then, singular value 

decomposition is used to define the central PVS cluster principal axis vector and the 

largest eigenvalue vector (V1) is calculated such that the cluster could be rotated around the 

principal axis V1 and the magnitude of perpendicular norm vectors from each cluster voxels 

coordinate to V1 (Xerr) is minimized, as in orthogonal regression. The coordinate of V1 that 

lays on the same norm vector is defined as X. The minimum Euclidean distance to the origin 

is measured for each cluster coordinate in X and in X, (Xdist and Xdist, respectively), and 

the Pearson correlation coefficient (r) between the two distance vectors Xdist and Xdist is 

measured. A coefficient r greater than 0.8 has been considered necessary for a PVS cluster 

to meet the linearity constraint (Boespflug et al., 2018). The closer the PVS voxels are to 

the principal axis vector, the higher the linearity of the PVS (Fig. 1d). This approach also 

allows to measure the maximum width of each PVS cluster, which is calculated as the sum 

of the largest norm, plus a norm whose vector has opposite direction in the same plane, 

plus the distance of corner-to-corner of the voxel (e.g., 1.7 mm for a 1 mm3 voxel). Based 

on the existing literature, 15 mm is considered the maximum width of a single MRI-visible 

perivascular space (Valdés Hernández et al., 2013).

Solidity is another morphological feature of PVS that can be derived from PVS 

segmentation masks: it corresponds to the shape complexity of PVS, where a low solidity 

tends to describe a more tortuous course and less compact shape, and is calculated as the 

ratio between the area/volume of the voxels of a single PVS and the area/volume of the 

smallest convex hull containing that single PVS (Fig. 1e).

The computation of PVS morphological features presents some limitations. Due to partial 

volume effects that result from low spatial resolution, the segmented PVS clusters may not 

provide accurate morphological feature estimates. In such cases, the use of a probabilistic 
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segmentation approach overcomes some of the issues associated with partial volume effects 

(Kim et al., 2005). Another solution is to dilate the segmented cluster by 1 voxel, which 

results in a relatively conservative estimate of the overall PVS and limits the utility of 

pixel-wise evaluation of the segmented PVS cluster (Ballerini et al., 2018). It should be 

noted that most of the structural metrics of PVS are technically overestimated and comprise 

both the actual perivascular space and the enclosed vessel. In fact, the vessel inside the 

PVS is usually not visible on MRI due to partial volume effects, noise, their similar signal 

intensities especially on T1-weighted images, and the limited resolution (Barisano et al., 

2021a; Bouvy et al., 2014). Imaging separately PVS and their enclosed vessel would grant a 

more precise estimate of PVS volume, which could be important for a better understanding 

of the physiology and functioning of PVS. The possibility to use time-of-flight angiography 

and susceptibility-weighted imaging at ultra-high field (UHF, ≥ 7 Tesla) to image the small 

penetrating arteries and veins (Barisano et al., 2019; Hendrikse et al., 2008; Kang et al., 

2009; von Morze et al., 2007), respectively, enables exploration of the spatial correlation 

between PVS and their enclosed vessels. In addition, normal physiological changes of PVS 

in the same subject, such as potential effects of time-of-day, sleep, and hydration, may result 

in changes on morphometric estimates of PVS (Barisano et al., 2021b; Berezuk et al., 2015; 

Dickson et al., 2005; Kempton et al., 2009; Trefler et al., 2016).

3.1.3. Deep learning for PVS segmentation—As in recent years the availability 

of large neuroimaging datasets and high-resolution images increased significantly, data-

driven methods like machine learning and deep learning have been frequently used for 

the PVS segmentation tasks. Ballerini et al. (2018) proposed a method to combine Frangi 

filter with PVS visual rating scales optimized by ordered logit model to segment PVS 

robustly. Zhang et al. (2017) utilized three types of vascular filter results with structured 

random forest to achieve the binary classification between the PVS and background. 

Convolutional neural network (CNN) is one of the commonly used neural network methods 

for image processing tasks. Lian et al. (2018) designed a multi-channel multi-scale CNN by 

recursively incorporating previous PVS segmentation maps as additional input channel to 

provide enriched contextual information for PVS segmentation. Sudre et al. (2018) extended 

the region-based CNN from 2D to 3D to achieve both the segmentation of extremely 

small objects and the classification of lacunes and enlarged PVS. An example of PVS 

segmented using Unet algorithm is shown in Fig. 2. A recent approach employed an 

unsupervised hybrid CNN model to enable PVS mapping in the absence of annotated data. 

This unsupervised method is composed of a Frangi filter as CNN with fixed gaussian kernels 

and Unet. The result of Frangi filter, which will be PVS saliency guidance, and the result 

of Unet are used as inputs of a conditional random field as the recurrent neural network 

to perform segmentation post-processing. This hybrid method increases PVS segmentation 

accuracy by increasing the true positive rate compared to filter-based methods and by 

decreasing the false positive rate compared to the CNN method (Lan and Sepehrband, 2021).

3.2. Limitations and how to overcome them

3.2.1. How to differentiate PVS from lesions—The identification and segmentation 

of PVS on structural MRI can be sometimes challenging, especially in the context of 

aging, CSVD, and other neurodegenerative conditions, as the presence of white matter 
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hyperintensities (WMH), lacunes, and cysts can hide or mimic PVS. Knowing the 

anatomical distribution, structure, and the normal radiological appearance of PVS is critical 

for this task. In fact, the most important characteristics to distinguish PVS from other type of 

lesions are the signal intensity, shape, and location/distribution.

WMH appear hyperintense on fluid-attenuated inversion recovery (FLAIR) sequences, 

while PVS appear hypointense on FLAIR when visible. However, on T1-weighted and 

T2-weighted images, PVS and WMH have a similar signal intensity profile and therefore 

other characteristics need to be considered in order to distinguish them when FLAIR is not 

available. Similar to PVS, WMH tend to be symmetrically distributed, but the location could 

be different. WMH are frequently found in the periventricular area and follow the shape of 

the borders of the lateral ventricles, while MRI-visible PVS are usually not found around 

the lateral ventricles. WMH in the deep white matter (dWMH) can be found in areas where 

also PVS are visible and may have various appearance and sizes. When the dWMH size is 

relatively big (more than 5 mm) and the shape is irregular and not rounded or tubular, it 

is easier to define it as dWMH rather than as PVS, but the task becomes difficult in case 

of rounded/tubular dWMH with small size. In these cases, one way to distinguish dWMH 

from PVS consists in evaluating their relationship with the cortical layer: usually PVS in 

the white matter originate from the lower border of the cortical layer and advance towards 

the lateral ventricles, following the course of the penetrating vessels, whereas dWMH are 

usually not in direct contact with the cortical layer. Unfortunately, in some cases, it will still 

not be possible to confidently distinguish WMH from PVS, especially when FLAIR is not 

available.

Lacunes are defined as round or ovoid, subcortical, fluid-filled cavity consistent with a 

previous acute small subcortical infarct or hemorrhage in the territory of one perforating 

arteriole (Wardlaw et al., 2013). Their location, signal intensity, and sometimes shape are 

similar to PVS. However, they are usually larger than PVS (typically between 3 mm and 

about 15 mm in diameter, but they can be bigger), tend to be asymmetrical, and the shape 

is often not tubular as in PVS. Moreover, they are more common in the upper two thirds 

of the basal ganglia, whereas basal ganglia PVS on MRI are more commonly found in the 

lower third and closer to the anterior commissure (Benjamin et al., 2018). FLAIR can also 

be helpful to distinguish PVS from lacunes, since the latter may have a hyperintense rim 

thought to be related to reactive gliosis and/or siderosis, which are not usually found around 

PVS (Benjamin et al., 2018).

Since both lacunes and WMH can be frequently found in older adults, acquiring FLAIR 

images is recommended when studying PVS in this type of population.

These neuroradiological features are summarized in Table 1.

Abbreviations: Basal ganglia: BG; Cerebrospinal fluid: CSF; White matter: WM.

Brain cysts are fluid-filled lesions in the brain that can be related to different types of 

pathology, including neoplasia or infections. When brain cysts contain CSF, they have signal 

intensity similar to PVS, and since in some cases their shape may also emulate PVS, 

they can be considered PVS by the automated segmentation tools. While arachnoid cysts, 
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a common type of CSF-filled brain cyst (Hall et al., 2019), are not usually segmented 

by automated software since they are typically located outside of the white matter, other 

types of cysts, such as those related to neurocysticercosis at the vesicular stage, may 

require manual deletion. Another type of cyst that could be mistaken for PVS on MRI 

are the hippocampal sulcus remnant cysts, also known as hippocampal cavities. These 

CSF-filled cysts, which can commonly be observed on MRI as incidental finding in the 

adult population, originate from an incomplete obliteration of the embryonic hippocampal 

fissure around which the hippocampal folding occurs (Bastos-Leite et al., 2006; Li et al., 

2006). Since the signal intensity (CSF-like) and shape (round/ovoid) resemble those of 

PVS on MRI, they could be erroneously considered MRI-visible PVS. Characteristics that 

help differentiate these cysts from PVS include their location and course: they are typically 

located on the lateral side of the hippocampus between the cornu ammonis and the dentate 

gyrus and are not related to the hippocampal microvasculature.

3.2.2. Increasing PVS contrast—Increasing PVS contrast represents a promising 

solution to improve the visualization and therefore the quantification of PVS on MRI. In 

the last few years, several approaches have been developed to overcome visibility limitation. 

A recently developed technique enhances the PVS contrast at postprocessing stage, based on 

combining T1-weighted and T2-weighted images both preprocessed and filtered with a non-

local mean filtering to remove high frequency spatial noise (Sepehrband et al., 2019a). This 

approach allows to visualize small PVS (< 1 mm of diameter) even in healthy populations 

(Barisano et al., 2021b). Hou et al. (2017) used the Haar transform of non-local cubes to 

amplify weak signal and remove noise by performing a block-matching 4D filtering before 

PVS segmentation. Alternatively, densely connected deep CNN have been shown to predict 

accurately the enhanced images without heuristic parameter tuning, and removing noise by 

considering contextual information derived from low-level to high-level features (Jung et 

al., 2019). When the FLAIR image is available, the identification and segmentation of PVS 

can be improved by excluding WMH and therefore reducing the amount of false positives 

PVS (Schwartz et al., 2019; Sepehrband et al., 2021). Sepehrband et al. (2021) examined 

PVS segmentation accuracy on 25 manually annotated MRI data, with and without FLAIR: 

they showed that specificity of PVS segmentation increases from around 65% to 90% when 

FLAIR data is utilized for removing the false positives in a cohort of individuals aged 65 and 

older, cognitively unimpaired or with mild cognitive impairment (MCI).

Another solution is to apply UHF technology (Barisano et al., 2021a). In particular, turbo 

spin echo sequences and 3-dimensional fast spin echo sequences have the advantage of 

isotropic spatial resolutions and short scan times (Zong et al., 2020) (Table 2).

Fig. 3 reports an example of PVS automated segmentation performed after increasing PVS 

contrast on T1-weighted and T2-weighted images acquired at UHF using a PTX coil (Nova 

8Tx/32Rx).
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4. Imaging PVS function

4.1. Imaging fluid flow dynamics

In addition to the structural properties of PVS, another important element that can 

be analyzed and imaged in vivo are PVS fluid flow dynamics, which is relevant for 

the investigation of the physiological and pathophysiological processes affecting the 

perivascular transport. While the mechanisms underlying the movement of the fluid in 

PVS are still not fully understood, recent studies have shown that arterial pulsations drive 

the fluid movement in PVS (Iliff et al., 2013b; Mestre et al., 2018). The direction of the 

net flow in PVS is the same as the blood flow and the velocity decreases towards the 

PVS walls and arterial bifurcations (Mestre et al., 2018). Other factors such as respiratory 

movement (Dreha-Kulaczewski et al., 2015; Sepehrband et al., 2021; Zong et al., 2020) and 

the sleep–wake cycle (Ramirez et al., 2015; Xie et al., 2013) may also contribute to the PVS 

fluid flow dynamics. Studies in animal models allow to investigate in vivo the fluid flow in 

PVS and the IPAD through techniques such as two-photon microscopy and particle tracking 

velocimetry. These approaches are unfeasible for human studies and the implementation of 

MRI-based tools that could potentially be used to explore the perivascular flow in humans is 

currently being investigated.

Phase-contrast MRI measures CSF and blood flow dynamics, as well as vascular pulsatility 

in the brain noninvasively and without the need of contrast injection (Sakhare et al., 2019). 

Recent studies have shown that higher vascular pulsatility in venous sinuses is associated 

with higher visibility of PVS in basal ganglia and lower CSF stroke volume in foramen 

magnum, suggesting that alterations in cerebrovascular pulsatility influence the movement 

and drainage of perivascular fluid (Blair et al., 2020; Shi et al., 2020). Currently, the most 

common anatomical location for quantifying CSF flow is the sylvian aqueduct at the level of 

the foramen magnum, but it is possible that in the future a similar approach could be used to 

measure the fluid flow directly in PVS.

Contrast-enhanced MRI with intrathecal administration of gadolinium-based contrast agents 

has been recently used to assess the glymphatic function and CSF flow in the rat and human 

brain. In rats, the MRI protocol employs a dynamic acquisition of 3D T1-weighted images 

acquired continuously for 4–6 h (1 image acquired approximately every 5 min) with 3 

baseline pre-contrast scans followed by the slow infusion of 80 μl of the paramagnetic agent 

delivered intrathecally (infusion rate of 1.6 μl per min, total infusion time of 50 min). The 

time courses of signal intensity changes in the paravascular and parenchymal compartments 

(segmented via a k-means cluster algorithm) are subsequently used to estimate the contrast 

agent clearance rate constant as an estimate of the glymphatic CSF-ISF exchange and solute 

clearance (Iliff et al., 2013a; Jiang et al., 2017). This approach was able to show a lower 

clearance rate in type-2 diabetes mellitus rats compared with non-diabetic rats (Jiang et al., 

2017).

In humans, recent studies adopted a semi-quantitative approach measuring the changes in 

T1-weighted signals after intrathecal administration of gadobutrol and MRI acquisitions at 

multiple timepoints, including pre-contrast and multiple post-contrast acquisitions in the 

following days. The glymphatic activity was estimated as the time required to clear the 
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tracer from several regions in the brain, where a delayed clearance has been interpreted as 

lower glymphatic activity (Ringstad et al., 2017; Watts et al., 2019). So far, this technique 

has been used mainly in the context of idiopathic normal pressure hydrocephalus and 

idiopathic intracranial hypertension (Eide et al., 2021a; Eide and Ringstad, 2018), and a 

more widespread use of it is limited by the need of using a gadolinium-based contrast agent 

and performing an intrathecal injection.

Dynamic positron emission tomography (PET) with radionuclide injected intravenously or 

intrathecally has also been used to investigate the main clearance and drainage pathways 

of PVS fluid (Cogswell et al., 2020; de Leon et al., 2017), although the limited anatomic 

resolution of PET scans does not currently enable the visualization of the details of the 

perivascular system.

4.2. Diffusion imaging of PVS

Diffusion MRI (dMRI) is a non-invasive imaging method that is sensitive to the 

displacement pattern of diffusing water molecules. dMRI uses magnetic field gradients 

applied in multiple directions to sample the local micro-environment in the brain and, due 

to the structural barriers imposed by cell membranes within different tissues, possesses the 

unique ability to encode orientational information and differentiate microstructural tissue 

features. dMRI techniques are traditionally used to model white matter structure, owing 

to the structural coherence offered by white matter bundles; however, dMRI methods 

can also be used to evaluate PVS fluid dynamics. PVS possess a microscopic tubular 

geometry that encompasses the extra-vascular space (Akashi et al., 2017; Bouvy et al., 2014) 

and water molecules of the ISF diffuse freely along the length of the PVS. Information 

about ISF diffusion within the PVS can provide insight into PVS microstructure, including 

pathological enlargement of the PVS, or function, such as disruption of glymphatic flow 

due to presence of debris. Diffusion also occurs between PVS and the extra-cellular space 

of the surrounding parenchyma and can provide information regarding the efficacy of 

glymphatic influx and efflux mechanisms. Therefore, dMRI represents an ideal candidate 

for the analysis of PVS structure and function due to its sensitivity to patterns of water 

diffusion behaviors without the use of invasive contrast enhancement. Here, we highlight 

recent efforts towards the characterization of PVS fluid dynamics with the use of diffusion-

weighted MRI utilizing single shell DTI acquisition, multi-compartment modeling, and 

novel acquisitions sensitized to water diffusion properties of PVS.

Diffusion tensor imaging (DTI) is the most commonly used dMRI model that quantifies the 

degree of anisotropic water diffusion within a voxel using an ellipsoid representation and 

generates indices sensitive to tissue microstructure, including fractional anisotropy (FA) and 

mean diffusivity (MD). DTI analysis along the perivascular space (DTI-ALPS) is a popular 

approach to infer diffusivity properties within PVS by leveraging the relative geometric 

organization of white matter tracts and vasculature (Taoka et al., 2017). DTI-ALPS isolates 

the contribution of PVS diffusivity by comparing the diffusion properties in the direction of 

medullary arterioles and veins to that in the direction of association and projection fibers 

perpendicular to the vasculature. Therefore, a given change in the diffusivity parallel to the 

PVS in both major fiber bundles, quantified as the ALPS index, likely reflects a significant 
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contribution of PVS fluid flow to the diffusion signal and may be considered a measure of 

PVS diffusivity. Compared to controls, previous DTI-ALPS studies have found decreased 

ALPS index along the medullary vessels in patients with Alzheimer’s disease (AD) (Steward 

et al., 2021; Taoka et al., 2017), idiopathic normal pressure hydrocephalus (Bae et al., 2021; 

Yokota et al., 2019), type 2 diabetes mellitus (Yang et al., 2020) and Parkinson’s disease 

(PD) (Chen et al., 2021; McKnight et al., 2021). These findings point towards a significant 

influence of water diffusion and impaired fluid flow dynamics along the PVS in patients 

with neurological conditions; however, it is difficult to disentangle the diffusion effects of 

PVS from those that arise from water molecule motion in white matter tracts parallel to the 

PVS. Furthermore, mono-exponential models, such as DTI, reflect diffusion properties of 

both the tissue and fluid, thus further obscuring the precise contribution of the PVS to the 

measured diffusion signal.

An approach that overcomes the issue of non-specificity in DTI interpretations is multi-

compartment modeling, which acquires diffusion-weighted images at multiple b-values, 

or gradient strengths, to probe separate tissue compartments characterized by different 

diffusion profiles. In comparison to the slow, hindered diffusion observed in the brain 

parenchyma, diffusivity within PVS is relatively fast in the direction parallel to the PVS, 

but is hindered by the barriers formed by the vessel walls and cerebral tissue. Therefore, 

multi-compartment models can be leveraged to quantify the characteristic diffusion profile 

of PVS. Indeed, several studies that utilize multi-compartment models have demonstrated 

how the presence of PVS in white matter can systematically bias the estimated DTI metrics. 

In separate studies using a bi-exponential model (Pierpaoli and Jones, 2004) to estimate 

the compartment diffusion signal contributions to DTI metrics, increases in MD and FA 

were driven by an increase in the CSF-like free water compartment, which may be due 

to homeostatic modulation of glymphatic CSF flow and the presence of enlarged PVS 

(Sepehrband et al., 2019c; Thomas et al., 2018). Furthermore, the influence of PVS presence 

on DTI estimates may have ramifications for the interpretation of findings. Significant 

differences in DTI metrics between cognitively unimpaired subjects and patients with 

MCI are rendered non-significant after considering the effects of the PVS signal fraction, 

suggesting diffusion alterations related to cognitive decline are due to alterations in PVS 

and not white matter integrity (Sepehrband et al., 2019b,c). Additional considerations 

for quantifying PVS diffusion properties with multi-compartment approaches include the 

manner in which the PVS fluid compartment is estimated. Thomas et al. (2018) models 

diffusion within the PVS as fast and isotropic, due to similarities with the CSF free water 

signal. However, Sepehrband et al. (2019c) found diffusivity within the PVS compartment, 

while greater than that of white matter, is anisotropic. Perivascular water diffusion is likely 

anisotropic because it is confined by tissue parenchyma and vessel walls, forming hindered 

fluid pathways that are aligned with white matter tracts (Doucette et al., 2019) and previous 

histological studies demonstrate vascular anisotropy (Cavaglia et al., 2001; Duvernoy et al., 

1981). In addition, the “free water” model assumes a fixed diffusivity of 3 mm/mm3 for the 

fluid compartment, however, PVS fluid diffusivity is most likely not constant and could vary 

based on the macromolecule concentration in the fluid.

Multi-compartment models also provide a powerful tool to evaluate perivascular CSF-ISF 

fluid exchange with the brain parenchyma. Utilizing neurite orientation dispersion and 
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density imaging (NODDI) (Zhang et al., 2012), authors found significantly greater free 

water in PVS and significantly reduced free water in the brain parenchyma adjacent to PVS 

compared to white matter regions with no MRI-visible PVS in healthy adults, but not in 

CSVD patients (Jiaerken et al., 2021). The reduced free water in the brain parenchyma may 

reflect the efficient elimination of ISF adjacent to the PVS, thus resulting in a smaller 

free water fraction compared to non-adjacent white matter regions. To understand the 

cellular mechanisms that give rise to dysfunctional CSF/ISF fluid exchange in the PVS, 

Debaker and colleagues explored how water diffusivity is altered following inhibition of 

aquaporin 4 (AQP4) (Debaker et al., 2020), Ca2+-dependent water channels that are located 

on the perivascular endfeet of astrocytes and facilitate the solute flux from PVS into the 

parenchyma (Iliff et al., 2012). AQP4 inhibition was accompanied by a significant reduction 

in the shifted water diffusion coefficient (sADC) and signature index (S-index), diffusion 

markers sensitive to hindrance effects in both Gaussian and non-Gaussian diffusion (Iima 

and Le Bihan, 2015; Pérès et al., 2018), which is consistent with an increase in parenchymal 

ISF. Currently, however, it remains unclear whether these metrics may be used to assess 

glymphatic function.

Several acquisition and modeling decisions should be considered for the quantification of 

diffusion characteristics in PVS (Table 3). Diffusion-weighted images acquired with a low b-

value provides increased sensitivity to CSF dynamics and fast diffusion in PVS (Taoka et al., 

2019). High b-values, on the other hand, are sensitized to non-gaussian diffusion behaviors 

that are dominant in restricted compartments of the intracellular space and provide reduced 

SNR to free water compartments (Assaf et al., 2004; Novikov et al., 2019; Sepehrband et al., 

2017). However, diffusion signals acquired with low b-value are susceptible to physiological 

pulsations and perfusion effects, which can in turn affect PVS diffusivity (Harrison et al., 

2018; Iliff et al., 2013b; Le Bihan, 1990; Le Bihan et al., 1988). For example, a recent 

study utilizing a low b-value and ultra-long echo time diffusion acquisition found diffusivity 

within the PVS was 300% greater during cerebral arterial pulsations relative to diastole, 

suggestive of the prominent role of vessel pulsatility on PVS fluid movement (Harrison 

et al., 2018). Additionally, intra-voxel incoherent motion (IVIM) of blood perfusion in the 

capillary networks can contribute to dMRI signal attenuation at low b-values because the 

pseudo diffusion coefficient of blood is larger than the water diffusion coefficient. Recently, 

methods have been developed to distinguish the diffusion signal contributions of water 

and blood. IVIM imaging is one such example that uses data collected at low b-values 

to model perfusion-related signals due to microvasculature and diffusion-related signals 

in parenchymal microstructure as separate compartments (Wong et al., 2017). Recently, 

this method has been extended using the non-negative least squares (NNLS) approach to 

model the intermediate diffusion volume fraction believed to reflect dilated PVS (Wong et 

al., 2020). Further studies are needed to better understand the robustness of these novel 

techniques in separating the perfusion-related signals to dMRI signal.

Other biological factors that can influence PVS diffusivity that should be considered 

in future analyses include vascular and axonal geometry (Doucette et al., 2019), PVS 

convective flow (Holter et al., 2017), and presence of pathological fluid-filled tissue in 

white matter, including cerebral microbleeds and lacunar infarcts (Bouvy et al., 2020). 

Furthermore, clinically feasible dMRI has reduced spatial resolution compared to structural 
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MRI. Because the mean cross-sectional diameter of PVS is less than 2 mm, dMRI images 

of PVS are particularly susceptible to partial volume effects and necessitates the use of 

multi-modal approaches to spatially localize PVS. Lastly, the functional significance of 

perivascular flow with dMRI is not well defined, as dMRI measures cannot accurately 

detect glymphatic failure and it is unclear how perivascular diffusivity is influenced by 

pathology. Therefore, dMRI methods should be used in combination with other structural 

and functional imaging techniques to obtain a comprehensive understanding of fluid flow 

dynamics within the PVS.

5. Neuroimaging PVS in humans

5.1. MRI-visible PVS across the normative lifespan

Over the past decade, technological advancements in MR imaging have facilitated the 

study of PVS structure in health and disease. While previously considered a marker of 

neurological disease, the gain in SNR and/or spatial resolution achieved with novel MRI 

sequences and higher magnetic field scanners allowed the detection of a higher number of 

PVS compared with older studies. MRI-visible PVS are nowadays easily detectable also in 

healthy individuals and they do not necessarily indicate a pathological enlargement. Several 

neuroimaging studies have demonstrated that a greater number of PVS are observed in the 

elderly (Laveskog et al., 2018; Zhu et al., 2011) and increases with advancing age (Barisano 

et al., 2021b; Francis et al., 2019; Gutierrez et al., 2013; Huang et al., 2021; Laveskog et al., 

2018; Ramirez et al., 2015; Yakushiji et al., 2014; Zhu et al., 2010b, 2011) (Fig. 4).

MRI-visible PVS are detectable in considerable numbers in young adults (Barisano et al., 

2021b) and were also observed in a much larger proportion of adolescents (Piantino et 

al., 2020) than previously described (Groeschel et al., 2006; Rollins et al., 1993), which 

may be attributed to improvements to the spatial resolution afforded with clinical MRI. 

A recent study sought to characterize the trajectory of PVS morphology from childhood 

through advancing age and found PVS increases nonlinearly with age across the lifespan. 

Furthermore, age-related changes to PVS morphological features in the white matter and 

basal ganglia follow different time courses, which suggests normative PVS trajectories are 

structure-specific (Lynch et al., 2020). In general, white matter regions with high PVS 

burden in childhood, such as cingulate regions, tend to change minimally over the lifespan, 

while regions with low PVS burden in childhood, including temporal white matter, undergo 

rapid enlargement. Together, these findings may indicate a preferential vulnerability of some 

brain regions to pathological PVS enlargement with age.

The relative distribution of MRI-visible PVS across the lifespan does not appear to change, 

with the highest PVS burden observed in frontal and parietal lobes in adolescents (Piantino 

et al., 2020), young adults (Barisano et al., 2021b), and aging (Laveskog et al., 2018). 

Additionally, the distribution of PVS between the hemispheres in adolescents (Piantino 

et al., 2020) and the elderly (Laveskog et al., 2018) is generally symmetric, although 

asymmetries in certain brain regions are possible (Barisano et al., 2021b). There is high 

inter-individual variability regarding the amount of MRI-visible PVS in the normative brain, 

which may be partly explained by sex, body mass index (BMI), systolic blood pressure, time 

of day and genetic factors (Barisano et al., 2021b; Zhu et al., 2010b). PVS burden is also 
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significantly associated with larger intracranial volume (Barisano et al., 2021b; Huang et al., 

2021). It has been suggested that larger craniums requires larger vasculature to supply blood 

to the brain, which would result in more and/or bigger MRI-visible PVS (van der Zwan et 

al., 1993); however, it is also possible that larger brain volumes can simply accommodate 

more PVS.

Recently, several groups looked at the association between personal lifestyle and MRI-

visible PVS. For example, some studies found that sleep quality and sleep efficiency are 

associated with higher MRI-visible PVS burden (Aribisala et al., 2020; Berezuk et al., 

2015; Del Brutto et al., 2019), which was also found associated with sleep disorders, such 

as obstructive sleep apnea (Song et al., 2017). The clinical implications of these findings 

are currently not known, but it is interesting to consider them in the context of other 

sleep-related results. For example, recent studies showed decrease in the clearance of a 

gadolinium-based contrast agent administered intrathecally in individuals with chronic poor 

sleep quality (Eide et al., 2022a) and even after a single night of total sleep deprivation 

(Eide et al., 2021b). Moreover, an increase in Aβ in PET imaging and higher Aβ in lumbar 

CSF were observed after one night of sleep deprivation or deep sleep interruption (Ju et 

al., 2017; Shokri-Kojori et al., 2018). The circadian dynamic nature of PVS has also been 

suggested by a recent study showing that the visibility of PVS on MRI is influenced by 

the time of day, where a higher amount of MRI-visible PVS was measured at later time of 

day (Barisano et al., 2021b). These observations point towards a critical role of sleep for an 

efficient glymphatic activity, which can result in morphological alterations of MRI-visible 

PVS.

Recently, BMI has also been found associated with PVS volume in healthy young adults, 

and this association was different based on the sex of the individuals (Barisano et al., 

2021b). Similarly, Ozato et al. (2021) showed that visceral fat was associated with MRI-

visible PVS and white matter lesions. The mechanistic link between BMI and PVS is not 

known, but it is possibly related to higher intracranial pressure (Barisano et al., 2021b), as 

linear positive relationship exists between CSF pressure and BMI (Berdahl et al., 2012), 

and/or to a reduced vascular contractility and vascular dysfunction, which is often found 

in obese people (Stapleton et al., 2008). That intracranial pressure might influence the 

burden of MRI-visible PVS has also been argued by a recent study in astronauts and 

cosmonauts showing enlargement of MRI-visible PVS after long-duration spaceflight on the 

International Space Station (Barisano et al., 2022), as prolonged spaceflight is associated 

with some radiological and clinical findings suggestive of high intracranial pressure, 

including pituitary gland deformity (Kramer et al., 2020), ventricular enlargement (Barisano 

et al., 2022; Jillings et al., 2020; Koppelmans et al., 2016; Kramer et al., 2020; Roberts et 

al., 2017; Van Ombergen et al., 2018, 2019), optic disk edema and posterior flattening of 

the optic globe (Mader et al., 2011). Further studies should investigate whether intracranial 

pressure affects the visibility of PVS on MRI and the flow of the PVS fluid, as it will 

provide a better understanding of the cerebrospinal fluid dynamics and clearance systems 

with important clinical implications for a number of neurological disorders.
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5.2. MRI-visible PVS in disease populations

MRI-visible PVS burden is associated with several neurological conditions, including 

neurodegenerative, neurovascular, and neuroinflammatory diseases. Below, we discuss 

accumulating evidence from MRI studies that sought to understand the influence of PVS 

burden on neurological disorders and their associated symptoms. Despite the substantial 

variation in segmentation approaches, methodologies, and populations, converging evidence 

suggests the influence of PVS enlargement on neurological diseases differs across 

anatomical structures. For example, amyloidopathies and neuroinflammatory conditions 

are most strongly associated with PVS enlargement in the subcortical white matter, while 

neurovascular disease and neurodegenerative disorders such as PD predominantly affect 

PVS structure in the basal ganglia. These differences may suggest the pathophysiological 

mechanisms that give rise to PVS enlargement may differ according to their spatial location.

5.2.1. Vasculopathies—Enlarged PVS are traditionally considered MRI biomarkers of 

CSVD, that encompasses arteriole and venule vasculopathies that commonly accompany 

stroke or cognitive decline and has a high comorbidity with other neurodegenerative diseases 

(Wardlaw et al., 2013). The prevalence of severe MRI-visible PVS, especially in the basal 

ganglia, is significantly associated with lacunes, WMH load and progression, and cerebral 

microbleeds (Charidimou et al., 2013; Ding et al., 2017; Doubal et al., 2010b; Laveskog et 

al., 2018; Potter et al., 2015b). Several studies showed that hypertension is also associated 

with MRI-visible PVS preferentially in the basal ganglia, but not white matter (Dubost et 

al., 2019; Francis et al., 2019; Gutierrez et al., 2013, 2017; Martinez-Ramirez et al., 2013; 

Yakushiji et al., 2014; Zhu et al., 2010b).

That PVS enlargement in the BG, but not white matter, is associated with CSVD and 

hypertension may be attributed to structural and functional vascular differences. However, 

future studies should seek out the precise pathophysiological mechanisms that contribute to 

the unique vulnerability of PVS in the basal ganglia to CSVD.

5.2.2. Amyloidopathies and other proteinopathies—There is broad evidence 

to support amyloidopathies, which encompass a variety of neurodegenerative disorders 

characterized by atypical deposition of Aβ in the brain, are preferentially associated with 

PVS enlargement in the subcortical white matter. AD is significantly associated with higher 

MRI-visible PVS volume (Cai et al., 2015; Ramirez et al., 2015), count (Roher et al., 

2003), and visually-rated severity (Banerjee et al., 2017; Chen et al., 2011) in the subcortical 

white matter. In a study that utilized an automated segmentation strategy, patients with 

MCI had a higher PVS volume fraction compared to cognitively unimpaired controls in 

the centrum semiovale of the white matter, but only in females, and a lower PVS volume 

fraction in the anterosuperior medial temporal lobe (Sepehrband et al., 2021). Furthermore, 

MRI-visible PVS burden increases with age in normal aging adults and patients with MCI, 

but not in patients with AD (Chen et al., 2011), which suggests PVS alterations associated 

with dementia arise prior to the clinical onset of symptoms. Nevertheless, the association 

between MRI-visible PVS and cognitive decline remains unclear. In fact, several studies did 

not find significant associations between MRI-visible PVS burden and cognition (Hilal et 

al., 2018; Hurford et al., 2014; Yao et al., 2014). Further investigation of the relationship 
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between MRI-visible PVS and cognitive function is warranted to better understand the 

clinical significance and implications of the PVS burden on MRI.

CAA is a neurodegenerative CSVD characterized by Aβ deposition in cerebral arteries. 

Previous studies have demonstrated that, like AD, CAA is characterized by a significantly 

greater burden of PVS in white matter compared to controls (Charidimou et al., 2014; van 

Veluw et al., 2016). Strictly lobar microbleeds, which are more characteristic of CAA than 

vascular arteriopathy, are significantly associated with higher PVS severity in the white 

matter, but not the basal ganglia (Charidimou et al., 2017; Martinez-Ramirez et al., 2013).

A major undertaking of the glymphatic system is clearance of toxic metabolic waste 

from the brain, including Aβ. Therefore, Aβ deposition observed in amyloidopathies may 

be related, at least in part, to inefficient glymphatic drainage reflected by pathological 

enlargement of the PVS (Tarasoff-Conway et al., 2015). However, evidence of the 

relationship between Aβ deposition and PVS pathology in AD and CAA are less clear. 

In one study using a visual rating scale, PVS severity was not associated with PET-PiB 

(Banerjee et al., 2017). In another study, lower PVS volume fraction in the medial temporal 

lobe of MCI patients was not associated with amyloid-PET uptake, but was independently 

associated with Tau-PET uptake, a separate pathological feature of AD (Sepehrband et al., 

2021). In a histological study, the frequency and severity of enlarged PVS was positively 

associated with cortical Aβ (Roher et al., 2003).

In patients with CAA, whole-cortex PET-PiB binding was positively associated with PVS 

burden in the white matter (Charidimou et al., 2015). Combined postmortem MRI and 

histological studies further demonstrated that PVS dilation was associated with cortical 

CAA severity (van Veluw et al., 2016) and vascular Aβ accumulation in the overlying 

cortex (Perosa et al., 2022), and was not significantly associated with the presence of 

parenchymal Aβ plaques (van Veluw et al., 2016). These findings suggest that vascular 

rather than parenchymal Aβ deposition might lead to PVS enlargement. Future studies 

should aim to further investigate the relationship between Aβ and PVS to better understand 

the perivascular clearance mechanisms and whether a failure of Aβ clearance along the 

vessel represents a cause or a consequence of the Aβ deposition, has any direct clinical 

implications, and could be repaired or prevented.

There is abundant evidence from histological and neuroimaging case studies that show 

pathological PVS dilation in the basal ganglia of patients with PD, particularly within the 

putamen and pallidum (Conforti et al., 2018; Duker and Espay, 2007; Fénelon et al., 1995; 

Lee et al., 2015; Mancardi et al., 1988; Mehta et al., 2013). Additionally, a recent study 

found that PVS in certain regions of the subcortical white matter is also associated with PD 

diagnosis (Donahue et al., 2021).

Several studies have demonstrated a relationship between PVS burden and symptom severity 

in patients with PD, including cognitive impairment (Lee et al., 2015; Park et al., 2019; 

Shibata et al., 2019) and motor symptoms (Laitinen et al., 2000; Mestre et al., 2014; Wan 

et al., 2019). However, there is limited evidence that suggests PVS enlargement is related to 

the pathophysiological mechanisms of PD. In one study utilizing PET, PVS severity in the 
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basal ganglia was not significantly associated with dopamine transporter reuptake in patients 

with PD (Lee et al., 2015). Together, these results suggest enlarged PVS in the basal ganglia 

of patients with PD may play a more significant role in cognitive impairment instead of the 

etiological mechanisms of the disease.

5.2.3. Neuroinflammatory disease—Histopathological studies have shown that PVS 

are sites of inflammatory infiltrates in CSVD (Durand-Fardel, 1842). In a critical step 

for the evolution of inflammatory disease, perivascular macrophages regulate the entry of 

inflammatory cells, which can damage the extracellular matrix, degrade the integrity of 

the blood-brain barrier, and lead to neuronal death and demyelination (Wong et al., 2013). 

Multiple sclerosis (MS) is a neuroinflammatory disease of unknown etiology characterized 

by demyelinating white matter lesions. Previous studies have shown that patients with MS 

have significantly increased PVS burden in white matter compared to controls (Achiron 

and Faibel, 2002; Conforti et al., 2014; Etemadifar et al., 2011; Ge et al., 2005; Kilsdonk 

et al., 2015; Wuerfel et al., 2008). However, there is some disagreement regarding the 

morphological PVS features that characterize MS. In one study, patients with MS had 

significantly higher PVS volume, but not number, compared to controls that was not 

explained by brain atrophy (Wuerfel et al., 2008). However, in a study using UHF MRI, 

authors found that the number of PVS, but not the total volume, was significantly greater 

in patients with MS, particularly in supratentorial regions (Kilsdonk et al., 2015). These 

differences could be partially explained by the MR field strength: at 1.5 T, it is possible 

that partial volume effect and reduced SNR may have obscured smaller PVS that are 

more readily observed at 7 T. Additionally, Kilsdonk et al. (2015) explored PVS burden in 

different regions, while Wuerfel et al. (2008) considered the totality of PVS in the basal 

ganglia and white matter together. The association between PVS morphology and MS may 

therefore depend on the topographical distribution of PVS in the brain. Indeed, others 

have found significantly higher MRI-visible PVS count in localized white matter regions 

in patients with MS, including high convexity areas (Etemadifar et al., 2011), anterior 

perforating substance, and atypical anatomical regions (Conforti et al., 2018).

It is unclear if the presence of PVS coincides with MS lesions or disease severity. Previous 

studies have shown that PVS burden was not associated with conversion to moderate-severe 

disability in relapsing-remitting MS (Cavallari et al., 2018) or accrual of white matter lesions 

(Cavallari et al., 2018; Kilsdonk et al., 2015); however, one study found that MRI-visible 

PVS tend to be spatially aligned with MS lesions (Ge et al., 2005). Additionally, global brain 

atrophy does not appear to be correlated with PVS burden in patients with MS (Cavallari et 

al., 2018; Conforti et al., 2014; Wuerfel et al., 2008).

Table 4 summarizes the main results of this section.

MRI-visible PVS burden and PVS enlargement are associated with several other conditions, 

including systemic lupus erythematosus (Miyata et al., 2017), amyotrophic lateral sclerosis 

(Månberg et al., 2021), myotonic dystrophy (Di Costanzo et al., 2001), traumatic brain 

injury (Duncan et al., 2018; Inglese et al., 2005; Opel et al., 2019), autism spectrum 

disorders (Taber et al., 2004) and pediatric idiopathic generalized epilepsy (Liu et al., 

2020). Together, these findings suggest that higher MRI-visible PVS may be a non-specific 
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indicator of impaired brain health. However, there is limited evidence across neurological 

conditions that PVS enlargement is associated with the molecular mechanisms that 

characterize disease pathology and may therefore represent a secondary consequence of 

neurological dysfunction.

The vast majority of neuroimaging studies discussed quantify PVS burden using severity 

scores based on a visual rating scale (Achiron and Faibel, 2002; Banerjee et al., 2017; 

Charidimou et al., 2013, 2014, 2015, 2017; Chen et al., 2011; Di Costanzo et al., 2001; 

Laveskog et al., 2018; Martinez-Ramirez et al., 2013; Miyata et al., 2017; Opel et al., 2019; 

Park et al., 2019; Potter et al., 2015b; Shibata et al., 2019; van Veluw et al., 2016; Zhang 

et al., 2016) or manual counts on a subset of the data (Ding et al., 2017; Doubal et al., 

2010b; Kilsdonk et al., 2015; Wan et al., 2019). Therefore, future studies should aim to 

further investigate these findings using segmentation techniques with the ability to probe 

morphological characteristics in different brain regions (Donahue et al., 2021; Ramirez et 

al., 2015; Sepehrband et al., 2021).
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dWMH White matter hyperintensities in the deep white matter

FA Fractional anisotropy

FLAIR Fluid-attenuated inversion recovery

ISF Interstitial fluid

IPAD Intramural periarterial drainage pathway

IVIM Intra-voxel incoherent motion

MCI Mild cognitive impairment

MD Mean diffusivity

MS Multiple sclerosis

PD Parkinson’s disease

PET Positron emission tomography

PVS Perivascular spaces

UHF Ultra-high field

WMH White matter hyperintensities
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Fig. 1. 
Examples of morphological characteristics computed on two MRI-visible PVS with different 

shapes: curved (PVS1) and straight (PVS2) (top and bottom rows, respectively). (a) MRI 

scans acquired from a healthy 25-year-old female subject at 7T with the protocol in Table 2. 

Masks (cyan) of the PVS examples were overlaid on the right images. (b) 3D representation 

of the PVS voxels (cyan cubes with black dots). (c) 3D representation of the PVS path 

(red line), i.e., the longest line connecting any two PVS voxels (cubes with black dots), 

and the voxels of the PVS path (cubes with red asterisks), computed to measure the mean 

cross-sectional diameter similar to Zong et al. (2016). The PVS voxels overlapping with the 

voxels of the corresponding PVS path are indicated by the cubes with both a red asterisk 

and a black dot. The overlap is higher in PVS2 than PVS1. Each PVS voxel is associated 

to the nearest voxel on the PVS path (cubes with the same color) and they are used to 

calculate the cross-sectional diameter. The voxels on the PVS path not associated to any 

PVS voxel are indicated by white cubes with red asterisks, while the last voxels on the PVS 

path are indicated by white cubes with both red asterisks and black dots. The cross-sectional 

diameter in each colored voxel on the PVS path (non-white cubes with red asterisks) is 

computed as per formula 1, where N is the number of PVS voxels associated to that voxel 

on the PVS path (i.e., PVS voxels with the same color as the corresponding voxel on the 

PVS path) and 1 is the mean distance between that voxel on the PVS path and its two 

neighbors voxels on the PVS path. (d) 3D representation of the PVS linearity, calculated 

similar to Boespflug et al. (2018): the blue line is the best fit line computed with singular 

value decomposition and the red lines are the norms connecting the center of each PVS 

voxel to the best fit line. The longer the norms are (i.e., the more the centers of the PVS 

voxels are distant from the best fit line), the less linear the PVS is. In this example, PVS1 

is less linear than PVS2. (e) 3D representation of solidity based on the convex hull (red 

polygon) and its vertices (red dots on the voxels). The convex hull in PVS1 includes a large 

region with no PVS voxels, whereas in PVS2 the convex hull includes mostly PVS voxels. 

Solidity of PVS1 is therefore lower compared with PVS2.
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Fig. 2. 
PVS map segmented by Unet algorithm. First row is the T2-weighted modality of one 

subject with sagittal, coronal, and axial view. Second row is the PVS map (cyan) overlaid on 

T2-weighted modality from the same subject. PVS map was generated using deep learning 

model Unet which was trained by supervised learning manner with manually annotated PVS 

map.
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Fig. 3. 
Example of enhanced PVS contrast (EPC) post-processing technique (Sepehrband et al., 

2019a) applied on T1-weighted and T2-weighted images acquired from a healthy 25-year-

old female subject at 7T MRI with the protocol in Table 2. The T1-weighted, T2-weighted, 

and EPC images are shown on the left column and the PVS mask was overlaid in the 

center (green). The image on the right is the corresponding 3D map of the PVS masks. The 

orientation of the 3D map is reported on the top right corner.
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Fig. 4. 
Examples showing the higher number and total volume of MRI-visible perivascular spaces 

(PVS) in healthy participants with different ages. The participant on the top is a 23-year-old 

male, while the participant on the bottom is a 73-year-old female. The MRI scans are shown 

on the left column and the PVS masks were overlaid in the center (green). The images on the 

right are the corresponding 3D maps of the PVS masks. The orientation of the 3D maps is 

reported on the top right corner.
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