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Studies have shown that a wide range of factors including drugs, chemicals, microbes,
and other environmental agents can induce pre-clinical autoimmunity. However, only a
few have been confidently linked to autoimmune diseases. Among these are exposures to
inhaled particulates that are known to be associated with autoimmune diseases such as
lupus and rheumatoid arthritis. In this article, the potential of particle, fiber, and
nanomaterial exposures to induce autoimmunity is discussed. It is hypothesized that
inhalation of particulate material known to be associated with human autoimmune
diseases, such as cigarette smoke and crystalline silica, results in a complex interplay
of a number of pathological processes, including, toxicity, oxidative stress, cell and tissue
damage, chronic inflammation, post-translational modification of self-antigens, and the
formation of lymphoid follicles that provide a milieu for the accumulation of autoreactive B
and T cells necessary for the development and persistence of autoimmune responses,
leading to disease. Although experimental studies show nanomaterials are capable of
inducing several of the above features, there is no evidence that this matures to
autoimmune disease. The procession of events hypothesized here provides a
foundation from which to pursue experimental studies to determine the potential of
other environmental exposures to induce autoimmunity and autoimmune disease.
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INTRODUCTION

Numerous drugs, chemicals, microbes, and other environmental factors have been identified as
possible causes of pre-clinical autoimmunity (1). However, very few have been confidently
associated with human autoimmune diseases (2). Among these are respirable particulates such as
cigarette smoke and silica dust (2) which have been linked to systemic lupus erythematosus (SLE),
rheumatoid arthritis (RA), and systemic sclerosis (SSc) (2, 3). Asbestos, a fibrous silicate mineral,
has also been associated with autoimmunity, although linkage to specific autoimmune diseases is
less well established (2, 4). In contrast, a role for nanomaterial [materials with at least one dimension
between 1 and 100 nanometers (5, 6)] exposure as a causative agent in human autoimmunity
remains to be established.

In reviewing the etiopathogenesis of environment-induced autoimmunity, we (7) proposed that
the toxic insult of an environmental exposure initiates a multi-step process characterized by tissue
org December 2020 | Volume 11 | Article 5871361
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Pollard Particle Exposure and Autoimmunity
damage, and the release of nucleic acids and other damage
associated molecular patterns (DAMPs) including self- and
modified self-antigens, which induces an innate inflammatory
response, leading to adaptive immunity involving the
presentation of self- and modified self-antigens to non-tolerant
lymphocytes. Included within this process is the engagement of
Toll-like receptors (TLRs) and other innate sensors, the
production of inflammatory mediators, the expansion of
autoreactive B and T effector cell populations, and the
production of autoantibodies. These events often occur at the
site of exposure, where they can lead to the development of
tertiary lymphoid structures (TLSs), and/or germinal centers in
secondary lymphoid organs draining the site of exposure. In
either case the expansion of autoreactive lymphocytes and their
migration to target tissues, such as the kidney in SLE or the joints
in RA, results in autoimmune disease (7).

To include an additional perspective to the above hypothesis,
this article compares the current state of knowledge regarding
the response of the immune system to selected particle, fiber, and
nanomaterial exposures. Specific particulate and fibrous
materials are discussed because of their known role in pre-
clinical autoimmunity and autoimmune diseases (2). This is
contrasted with the immunological responses to nanomaterials,
particularly engineered nanoparticles (ENPs), where evidence for
induction of autoimmunity is less convincing.
PARTICULATE MATERIAL

Cigarette Smoke
Cigarette smoke is a complex mixture of particulate-phase and
chemical compounds (8, 9), and is a significant risk factor for
chronic obstructive pulmonary disease (COPD) (10). Smoking is
also a significant risk factor for RA (11), and has been linked to
other autoimmune diseases including SLE, multiple sclerosis,
and Crohn’s disease (2). The linkage of smoking and RA is
strongest for seropositive disease particularly patients with anti-
citrullinated protein antibody (ACPA) (2) which is itself strongly
linked to the HLA shared epitope (12). The association between
smoking, RA, and the HLA-linked ACPA response identifies an
important gene-environment interaction for autoimmune
diseases (13).

The particulate material of cigarette smoke consists of
partially combusted plant material between >0.25 to <1 um in
size (8, 9, 14). The chronic inflammation resulting from cigarette
smoke exposure is thought to be due to this particulate material
and gas-phase chemicals but may also involve bacterial and
fungal contaminants of tobacco (15). Cigarette smoke also
contains reactive oxygen species (ROS), that may contribute to
post-translational modification of proteins and other markers of
oxidative stress (16). Tissue damage from inhaled smoke leads to
activation of lung epithelial cells and alveolar macrophages (AM)
via interaction between DAMPs and pattern recognition
receptors (PRRs) such as TLRs (16). This initiates an innate
immune response, characterized by inflammasome formation
and the production of IL-1b, IL-18, and other proinflammatory
mediators including IL-6 and TNF-a (16). The resulting
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infiltration of neutrophils and monocytes further exacerbates
oxidative stress and inflammation. Additional processes, such as
neutrophil death, mediated by NETosis, also leads to cell and
tissue damage (17).

The innate inflammatory response progresses to adaptive
immunity consisting of T helper cell responses, including
Th1 and Th17 (18, 19), and B cells that can form lymphoid
aggregates in the lung (10). These structures are similar to TLSs
found in target organs of autoimmune diseases where they are
argued to provide a microenvironment for the survival of
autoreactive lymphocytes (20, 21). The presence of plasma cells
in lung TLSs (21) suggests that the lungs are a source of
autoantibodies, and this is supported by the presence of
autoantibodies in bronchoalveolar lavage (BAL) fluid (21, 22).
Moreover, autoantibodies to modified self-antigens have been
described in COPD (21, 23, 24) including autoantibodies known
to be important in seropositive RA [rheumatoid factor (RF) and
ACPA] (11, 25). These events may occur years before clinical
diagnosis of RA (26). It has been hypothesized that localized
chronic inflammatory processes in the lungs following smoke
exposure are important in the pre-clinical phase of not only
diseases such as COPD but also autoimmune diseases such as RA
(25, 27). Importantly, experimental studies have shown that TLSs
and autoantibodies persist after ceasing smoking and are
dependent upon IL-1 receptor 1 (28).

While COPD and RA are comorbidities, their pathological
relationship remains under investigation (26, 29). Development
of COPD in RA patients (29) is consistent with the known
pulmonary involvement in RA (25, 30). Conversely, a recent
study identified COPD as a risk factor for RA with the strongest
association between COPD and seropositive RA in older smokers
(31). Interestingly, individuals who were ACPA positive before
RA diagnosis were at increased risk of developing COPD (32).
This suggests a linkage between appearance of ACPA and
susceptibility to respiratory disease. ACPA may also be an
outcome of inhalation of other forms of particulate matter, and
may identify inhalant exposures that increase the risk of RA or
other autoimmune diseases (33).

Silica Dust
Exposure to crystalline silica as a result of the breakdown of
quartz (e.g. mining, sandblasting, quarrying, ceramics), or during
the fabrication of artificial stone (34, 35), can lead to silicosis
(36), COPD (36), lung cancer (37), and autoimmune diseases
including SLE, RA, SSc, and antineutrophil cytoplasmic antibody
(ANCA)-related vasculitis (2, 35, 38). The occurrence of COPD
in silica-exposed individuals may also reflect coincident cigarette
smoke exposure (39). Significantly, when silica exposure and
smoking occur together it results in a synergistic interaction
which, for example, greatly increases the risk of ACPA-positive
RA in Asian (40) and Caucasian (41) populations. Silica dust
exposure is most often via occupational inhalation with
deposition of respirable particles [<10mm (42)] in the alveoli of
the lungs leading to chronic inflammation and development of
fibrotic nodules (36). Although the mechanistic aspects of the
pathogenic process of silicosis have not been completely
defined, a number of important checkpoints have been
December 2020 | Volume 11 | Article 587136
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identified (36, 43, 44). The cumulative dose and physicochemical
properties of silica dust are important in inflammatory and
fibrogenic responses (43, 45). Inhaled respirable silica particles
can be deposited throughout the lung including the distal airways
and alveoli leading to direct cytotoxicity (46). Silica particles also
interact with endogenous molecules leading to the formation of a
surface corona (43). Subsequent phagocytosis by AM leads to
lysosomal damage resulting in activation of inflammatory and
cell death pathways. A significant contributor to these processes
is oxidative stress due to ROS originating from both silica
particles and lung cells (47). The chronic persistence of silica
particles in the lung results in fibrosis, silicosis (43, 48), and
development of silica-induced autoimmunity (49).

An important observation in the initiation of pulmonary
inflammation following crystalline silica inhalation is the
release of IL-1a from AM following silica induced cellular
damage (50). Release of IL-1a from dying cells is known as an
important mediator of sterile inflammation (51) following
interaction between IL-1a released from crystal damaged cells
and IL-1 receptor on surrounding macrophages (48, 50). Silica-
induced cell death also results in the release of numerous types of
DAMPs that are recognized by TLRs and other PRR on the cell
surface as well as within cytoplasmic components such as
endosomes. These interactions lead to intracellular signaling,
activation of transcription factors such as NF-kB and AP-1, and
the expression of inflammatory cytokines such as IL-1b, IL-6,
TNF-a, and interferons (IFNs) (48). Phagocytosis of silica
particles via scavenger receptors such as MARCO (SR-A6) and
SR-A1 leads to lysosomal destabilization and release of proteases
including cathepsins that contribute to the activation of the
NLRP3 inflammasome and cleavage of IL-1b and IL-18 into
their bioactive forms (52–54). Generation of ROS, either from
the surface of silica crystals or phagocytosis and lysosomal/
mitochondrial damage, also contributes to these events (45,
47). The end result is an inflammatory response consisting of
neutrophils, monocytes and lymphocytes that exhibits acute and
chronic phases which have differing molecular and cellular
features (35). The failure to clear silica particles from the lungs
exacerbates this chronic inflammatory process leading to
fibroblast proliferation and collagen production resulting in
fibrosis and silicosis (35, 36, 44).

Epidemiological studies have found associations between
occupational silica exposure and SLE, SSc, and ANCA-related
vasculitis (2, 55, 56). More recently, exposure to silica-containing
dust from artificial stone during fabrication of countertops has
been linked to both silicosis and autoimmune disease (34, 57).
Pre-clinical features of autoimmunity, such as autoantibodies, as
well as autoimmune diseases can occur in the absence of silicosis
(35, 55) suggesting that events prior to fibrosis are important for
silica-induced autoimmunity. The fibrosis following particulate
exposure, including silica, may be the result of exaggerated and
persistent immunosuppression due to TGF-b and IL-10, rather
than chronic inflammation (58).

A significant outcome of the chronic pulmonary
inflammation induced by crystalline silica, in animal models,
is the formation of TLS (59). These structures comprise
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accumulations of B and T cells as well as follicular dendritic
cells (FDC) and plasma cells (59–61). The presence of
immunoglobulin including autoantibodies in the BALF of
silica-exposed mice (60, 61) suggests that the lung is a site
of autoantibody production. A variety of autoantibody
specificities are found in both humans (62) and experimental
models (59, 60, 63) after silica exposure. These include anti-
DNA, -SS-A/Ro, -SS-B/La, -Scl70, -Sm, and -RNP. ACPA have
also been described in RA patients exposed to silica (40). A
possible mechanism for citrullination may involve silica-induced
increases in peptidylargininedeiminase (PAD) activity (64). This
is consistent with the formation of neutrophil extracellular traps
(NETs) during NETosis induced by silica (65) which requires PAD
mediated protein citrullination (66). Although autoantibody
responses in silica exposed patients with autoimmune diseases
are often consistent with those of idiopathic autoimmune diseases,
it is unclear if they play a pathogenic role. As with smoking, it is
also unclear how expression of silica-induced autoreactivity in the
lung results in pathogenesis in organs such as the kidney in SLE or
the joints in RA.
FIBROUS MATERIAL

Asbestos
Asbestos describes six naturally occurring fibrous silicate minerals
categorized into two groups, serpentine (chrysotile) and amphibole
(crocidolite, amosite, tremolite, anthophyllite, actinolite) (67).While
there are significant differences in chemical composition and
crystalline structure, serpentine fibers are more curvilinear and
softer than the needle-like, brittle amphibole fibers (67).
Occupational exposures, primarily from mining, construction, and
automotive industries, can result in asbestosis and malignancy (68).
The properties of asbestos fibers that cause toxicity and pathology,
especially inflammation, are uncertain (69), consequently very little
is known about the fiber properties necessary for autoimmunity.
Short fibers (<5 um), although abundant in the lungs (70), are
considered unlikely to cause malignancy (71), but it is unclear if this
applies to autoimmunity.

Evidence from both human and experimental animal studies
suggest that amphibole asbestos exposure can lead to autoimmunity
(4, 72). Several different cohorts including Libby, Montana (73),
Wittenoom, Western Australia (74), and Biancavilla, Sicily (75),
have linked autoantibodies, including ANA, to asbestos exposure.
Studies of the communities of Libby and Troy in Montana have
found that almost 14% have been diagnosed with an autoimmune
disease other than diabetes (76, 77) and mortality to autoimmune
diseases is higher than expected (78). However, a causal role for
asbestos exposure in autoimmune disease has not been established
due to study limitations (4), and other confounders, including the
possibility of concurrent silica and asbestos exposures (2), and
smoking history (79).

Asbestos inhalation results in chronic pulmonary
inflammation (48), mediated in part by NLRP3 inflammasome
activation, and expression of IL-1b and other inflammatory
cytokines (80, 81). This is facilitated by asbestos fiber-induced
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damage to lung epithelial cells, phagocytosis of asbestos particles
by macrophages, lysosomal destabilization, subsequent cellular
stress and damage leading to production of ROS and oxidative
injury, culminating in a fibrogenic response including release of
TGF-b, TNF-a, and IL-1b, that promotes collagen deposition
and fibrosis (82, 83). Pulmonary inflammation can include
increases in AMs and neutrophils, as well as CD4+ T cells that
spontaneously release IFN-g, identified as diffuse lymphocytic-
macrophage alveolitis (84).

Autoimmune diseases associated with Libby Asbestiform
Amphibole (LAA) exposure include SLE, SSc, and RA
(76, 78). ANA are common and include autoantibodies against
dsDNA, SS-A/Ro52, Scl70, Sm, and RNP (76). Anti-mesothelial
cell antibodies, and ANA, have been linked to pleural
abnormalities (85). Autoantibodies against cyclic citrullinated
peptide (CCP) and RF are not elevated (86) even though there is
evidence of increased PAD2/4 and citrullination in the lung
following asbestos exposure (87). ANA have also been found in
subjects exposed to asbestos without systemic autoimmune
diseases (75). This may be an indicator of pre-clinical
autoimmunity, similar to the appearance of ACPA prior to
COPD or RA (11, 25), as appearance of autoantibodies can
precede diagnosis of autoimmune disease (88, 89). Whether
autoantibodies can be linked to TLS in the lung in asbestosis,
as has been observed for cigarette smoke and crystalline silica
exposures, remains to be investigated.
NANOMATERIALS

Nanomaterials constitute two major groups, ambient ultrafine
particles (UFPs) and ENPs (5, 6, 90). Numerous nanomaterial
approaches are being developed to modulate immune responses
(91, 92). This includes nanocarriers for drugs, vaccines, antigens
and adjuvants (91–93) as therapies for chronic inflammation
(91), infection (92), and autoimmunity (91, 92, 94) including
specific tolerance approaches for treating autoimmunity
(94, 95). The safety of these nanomedicines is dependent
upon their ability to avoid toxicity and immune recognition
Frontiers in Immunology | www.frontiersin.org 4
(96, 97) which may result in adverse toxicological (98) and
immunological outcomes (99). Although UPFs and ENPs
display a range of physicochemical properties (6), inhalation is
a common route of exposure (90, 100) and can lead to tissue
damage, protein corona, oxidative stress, inflammasome
activation, proinflammatory mediators, and inflammation (5, 6,
99, 101), as well as pathological outcomes including fibrosis (58,
102). However, a role for NPs, particularly ENPs, in the
causation of pre-clinical human autoimmunity or autoimmune
diseases has not been established.

Nanodiamond NPs induce lysosomal damage and
NETosis (103) but this leads to resolution of inflammation
(103, 104) presumably by sequestration of the offending
particles (105). There is evidence for this as NET-related
proteins were found in BAL fluid in the acute phase response
to TiO2 NPs but disappeared over time, and were not associated
with histopathological changes (106). Alternatively, solubility or
clearance by phagocytes may lead to resolution of NP induced
inflammation (103, 107). Nonetheless, nanoparticles appear
capable of inducing post-translational protein modification and
autoantibodies. Several nanoparticles including, SiO2 NPs,
cadmium NPs, ultrafine carbon black, and single-wall carbon
nanotubes (SWCNT), elicited in vitro and/or in vivo increases in
PAD activity and/or protein citrullination (64, 87, 108), and
nickel nanowires stimulated anti-cyclic citrullinated (anti-CCP3)
autoantibodies in female C57BL/6 mice (87). However,
histological images do not show evidence of pulmonary TLSs
following SWCNT exposure (109) or at sites of protein
citrullination (64). Thus, although ENPs appear capable of
inducing features of experimental pre-clinical autoimmunity
(Table 1), studies have yet to show that this can mature to
autoimmune disease.
DISCUSSION

Particulate exposures are among the initiating events most
closely linked to human autoimmune diseases (2, 3), with the
lungs as a major site of pathological and immunological events
TABLE 1 | Comparison of hypothesized steps leading to autoimmune disease following exposure to inhaled materials.

Features of Exposure Silica dust Cigarette smoke Asbestos Nanomaterial

Exposure site Lung Lung Lung Lung
Inflammatory response components ROS

Inflammasome
IL-1a, IL-1b, IL-18, IL-6, TNF-a

Interferons
NETosis

ROS
Inflammasome

IL-1b, IL-18, IL-6,
TNF-a
NETosis

ROS
Inflammasome

IL-1b, TGF-b, TNF-a, IFN-g

ROS
Inflammasome

NETosis

Self-protein citrullination Yes Yes Yes Yes
Tertiary lymphoid structure in lung Yes Yes Alveolitis ND
Autoantibodies ACPA, DNA, SS-A/Ro, SS-B/La, Scl70,

Sm, RNP
RF, ACPA DNA, SS-A/R052, Scl70, Sm, RNP

Mesothelial cell
ACPAX

Autoimmune diseases associated with
exposure

SLE, SSc, RA, ANCA-related vasculitis Seropositive RA
SLE, MS

Rheumatological symptoms of SLE,
SSc, RA

ND
December 2020 | Volume 11 |
Comparison of the hypothesized steps, as described in the text, leading to autoimmune disease following exposure to different inhaled materials. Silica dust and cigarette exposures are
linked to the autoimmune diseases indicated. Exposure to asbestos is linked to features of autoimmunity, although evidence to support causation of human autoimmune disease is
insufficient. There is no evidence that nanomaterial exposure leads to human autoimmune disease. X, evidence from experimental study only. ND, not determined.
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leading to clinical disease (26, 27, 33, 110). Such exposures can be
protracted and involve particulates resistant to degradation, both
of which contributes to the chronic pulmonary inflammation
associated with these exposures (48, 79). A complex interplay
between pathological processes, including, cellular toxicity,
oxidative stress, tissue damage, persistent inflammation, post-
translational modification of self-antigens, and the formation of
TLSs, promote the generation of autoantibodies that contribute
to development of autoimmunity. An unresolved issue is how
expression of particulate-induced autoreactivity in the lung
results in disease specific pathogenesis in distant organs (e.g.
kidney in SLE or joints in RA). However, a recent hypothesis
suggests that activated B cells act on preinflamamtory
mesenchymal (PRIME) cells which then migrate to the joint in
RA (111). The role of pulmonary mesenchymal cells in
inflammation (112) supports the possibility of their interaction
with B cells in lung TLSs.

Fibrous (asbestos) and non-fibrous (cigarette smoke,
crystalline silica) fine (PM2.5) particulates have been linked to
pre-clinical autoimmunity and autoimmune diseases (2, 76).
However, there is little information to support a role for
ultrafine (PM0.1) particulate matter in human autoimmune
disease. This may reflect a difference in size which allows NPs
to be cleared from the lung more readily. However, other aspects
of pulmonary inflammation including the chronicity and/or
resolution of the response, and the apparent absence of TLS,
are likely to limit the severity of the adaptive autoimmune
response and subsequent development of pathology in target
organs other than the lung.

The pathological processes discussed above provide a
foundation from which to determine the potential of other
Frontiers in Immunology | www.frontiersin.org 5
particles and fibers to induce autoimmunity. Such studies will
provide a better understanding of the physical and chemical
properties of particulate matter that lead to the induction and
propagation of autoimmune diseases.
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