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MicroRNA‑17‑5p induces drug resistance 
and invasion of ovarian carcinoma cells 
by targeting PTEN signaling
Ying Fang1,2, Changyan Xu3 and Yan Fu1*

Abstract 

Background:  The miR-17-5p was overexpressed in ovarian cancer cells, and those cells were treated with paclitaxel. 
The proliferation of ovarian cancer cells was assessed by MTT assay. The Caspase-Glo3/7 and TUNEL assay were used 
to examine the effect of miR-17-5p on paclitaxel-induced apoptosis in ovarian cancer cells. The migration and inva-
sion of ovarian cancer cells were analyzed by BD matrigel assays. Western blot was performed to evaluate the expres-
sion of apoptotic proteins and epithelial-mesenchymal transition markers in ovarian cancer cells.

Results:  The survival rate of ovarian cancer cells was increased after overexpression of miR-17-5p. The apoptosis 
decreased in miR-17-5p overexpressed ovarian cancer cells. Altered miR-17-5p expression affected migration and 
invasion of ovarian cancer cells. The overexpression of miR-17-5p altered the expression of EMT markers. miR-17-5p 
activates AKT by downregulation of PTEN in ovarian cancer cells.

Conclusion:  Our results indicate that miR-17-5p might serve as potential molecular therapeutic target.
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Background
Ovarian cancer accounts for about 3 % of cancers among 
women in USA. It is estimated that about 21,290 women 
will receive a new diagnosis of ovarian cancer and about 
14,180 women will die from ovarian cancer in 2015, even 
though the rate at which women are diagnosed with ovar-
ian cancer has been slowly falling over the past 20 years. 
Only 20 % of ovarian cancers are found at an early stage 
and more than 90 % of patients live longer than 5 years if 
ovarian cancer can be found at early stage [1]. The most 
often used tests to screen for ovarian cancer are trans-
vaginal ultrasound and the CA-125 blood test. However, 
the sensitivity and specificity of transvaginal ultrasound 
and the CA-125 blood test are poor [2, 3]. Chemotherapy 
is the primary mode of treatment for patients with ovar-
ian cancer. However, the treatment failure is high due to 
resistance [4]. Therefore, it is important to investigate the 

molecular mechanisms and identify valuable predictive 
markers in ovarian cancer.

MicroRNAs (miRNAs) are a family of small non-cod-
ing RNAs that are 20–22 nucleotides in length. Studies 
have demonstrated that miRNAs regulate the expression 
of target genes at the post-transcriptional level and play 
important roles in the tissue-specific protein expres-
sion. An increasing number of studies have reported that 
miRNAs play important roles in tumorigenesis, progres-
sion, diagnosis and prognosis of ovarian cancer [5]. The 
expression level of miRNAs is different in ovarian cancer 
as demonstrated by miRNA expression profiling studies 
[6, 7]. For example, miR-200c and miR-31 play impor-
tant roles in ovarian cancer metastasis [8]. Recent stud-
ies have reported that miRNAs can be used as prognostic 
biomarkers in ovarian cancer [9, 10]. Also, it has been 
reported that some serum miRNAs could serve as bio-
markers in ovarian cancer [11].

In the present study, we aimed to examine the role of 
miR-17-5p in ovarian cancer. We found that overexpres-
sion of miR-17-5p induces drug resistance, migration and 
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invasion of ovarian cancer cells. Importantly, miR-17-5p 
enhanced Epithelial-Mesenchymal Transition (EMT) of 
ovarian cancer cells by targeting PTEN signaling. Our 
findings indicate that miR-17-5p might serve as a poten-
tial biomarker to predict the treatment and be targeted 
for novel therapeutic strategies.

Results
Overexpression of miR‑17‑5p induces drug resistance 
of ovarian cancer cells
To examine the function of miR-17-5p on proliferation of 
ovarian cancer cells after paclitaxel treatment, miR-17-5p 
was overexpressed in ovarian cancer cells with Lipo-
fectamine 2000 and the cell survival rate was measured 
by MTT assay. As shown in Fig.  1a, d, the miR-17-5p 

expression level was significantly increased in both 
OVCAR-3 and SKOV-3 cells after transfection. The sur-
vival rate of OVCAR-3 and SKOV-3 cells was increased 
after overexpression of miR-17-5p when ovarian cancer 
cells were treated with paclitaxel, compared to the nega-
tive control group (Fig. 1b, d, p = 0.0025). The IC50 was 
6.1 ±  1.1  µmol L−1 in control group, and the IC50 was 
8.2 ± 0.8 µmol L−1 in miR-17-5p mimic group.

miR‑17‑5p decreases apoptosis of ovarian cancer cells
OVCAR-3 and SKOV-3 cells were used to examine the 
effect of miR-17-5p on chemotherapy-induced apoptosis 
by treating with different doses of paclitaxel after over-
expression of miR-17-5p. We found that the miR-17-5p 
reduced the sensitivity of ovarian cancer cells to the 
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Fig. 1  miR-17-5P decreased the chemo-sensitivity of ovarian cancer cells. a The miR-17-5p expression level was examined by qRT-PCR after trans-
fection in OVCAR-3 cells. b The proliferation of OVCAR-3 cells after paclitaxel treatment (6 µmol L−1) for 8 days. c The miR-17-5p expression level 
was examined by qRT-PCR after transfection in SKOV-3 cells. d The proliferation of SKOV-3 cells after paclitaxel treatment (6 µmol L−1) for 8 days. All 
experiments were performed three times in triplicate
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effects of paclitaxel by inhibiting the caspase 3/7 activi-
ties (Fig. 2a, b). The TUNEL assay also showed that the 
number of apoptotic cells in miR-17-5p overexpressed 
ovarian cancer cells was less than that in control group 

(Fig. 2c, d). We further analyzed the expression of apop-
totic related proteins by western blot after paclitaxel 
treatment. As shown in Fig.  2e, f, the overexpression 
of miR-17-5p inhibited the ability of chemotherapy to 

0

5000

10000

15000

20000

25000

30000

35000

0 3 6 12

ctrl
miR-17-5p mimic

Fl
uo

re
sc

en
ce

 (R
FU

)

a

c

d e f

b

Paclitaxel µmol L–1

TU
N

EL
H

oe
ch

st
 3

33
42

ctrl miR-17-5P ctrl miR-17-5P

OVCAR-3 SKOV-3

0

15

30

45

60

75 ctrl
miR-17-5p

TU
N

EL
-p

os
iti

ve
 

C
el

ls
/T

ot
al

 c
el

ls
 (%

)

BAX

GAPDH           

Bcl2

ctrl miR-17-5p

0

5000

10000

15000

20000

0 3 6 12Paclitaxel µmol L–1

ctrl
miR-17-5p mimic

Fl
uo

re
sc

en
ce

 (R
FU

)

ctrl miR-17-5p

BAX

GAPDH           

Bcl2

p=0.0091

p=0.0011

p=0.0009

p=0.0102

p=0.0049

p=0.0109

p=0.0150

p=0.0065

OVCAR-3 SKOV-3

Fig. 2  miR-17-5p inhibits apoptosis in ovarian cancer cells after paclitaxel treatment. a, b The caspase 3/7 activity was decreased in OVCAR-3 and 
SKOV-3 cells transfected with miR-17-5p after paclitaxel treatment. c The TUNEL positive cells after OVCAR-3 and SKOV-3 cells were treated with 
paclitaxel. d The quantification of the percentage of TUNEL-positive cells. e The apoptotic proteins level in OVCAR-3 cells transfected with miR-17-5p 
mimic after paclitaxel treatment. f The apoptotic proteins level in SKOV-3 cells transfected with miR-17-5p mimic after paclitaxel treatment. All 
experiments were performed three times in triplicate
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increase BAX expression, while the Bcl-2 expression was 
increased in miR-17-5p overexpressed ovarian cancer 
cells.

miR‑17‑5p promotes migration and invasion in ovarian 
cancer cells
We further assessed the effect of miR-17-5p on migration 
and invasion of ovarian cancer cells with BD transwell 
migration and matrigel invasion assays. We found that 
migration and invasion of OVCAR-3 cells (Fig. 3a–d) and 
SKOV-3 cells (Fig.  4a–d) were enhanced after transfec-
tion with miR-17-5p mimic. In contrast, the migration 
and invasion of OVCAR-3 cells (Fig. 3e–h) and SKOV-3 
cells (Fig.  4e–h) were decreased with anti-miR-17-5p 
inhibitor treatment.

miR‑17‑5p affects the expression of EMT markers 
and activates AKT in ovarian cancer cells
The expression of EMT markers was further examined 
by western blot after ovarian cancer cells were trans-
fected with either miR-17-5p mimic or anti-miR-17-5p 
inhibitor. We found that the level of E-cadherin expres-
sion was significantly decreased, and the expression of 
N-cadherin, Snail and Vimentin were increased in both 
OVCAR-3 and SKOV-3 cells after overexpression of miR-
17-5p (Fig. 5a). In contrast, increased E-cadherin expres-
sion and decreased N-cadherin, Snail and Vimentin were 
observed in OVCAR-3 and SKOV-3 cells transfected 
with anti-miR-17-5p inhibitor (Fig.  5a). Interestingly, 
we further found that the expression of p-AKT was 
increased, and the PTEN expression level was decreased 
in OVCAR-3 (Fig.  6a) and SKOV-3 cells (Fig.  6b) after 
transfection with miR-17-5p mimc. The transfection with 
anti-miR-17-5p inhibitor decreased p-AKT protein level 
and increased PTEN expression in OVCAR-3 (Fig.  6a) 
and SKOV-3 cells (Fig. 6b).

Discussion
Growing evidence has demonstrated that miRNA expres-
sion correlates with tissue type, differentiation, aggres-
sion, response to therapy and prognosis [12, 13]. Studies 
have shown that miRNA act as oncogenes or tumor sup-
pressors in variety types of tumors [14, 15]. Li et al. has 
reported that miR-17-5p regulates cell cycle and apopto-
sis in ovarian cancer tissues and serum of ovarian cancer 
patients [16]. miR-17-5p has been found to be expressed 
differentially in the serum of cancer tissue compared with 
that of non-cancerous tissues [17]. Studies have found 
that miR-17-5p is a key regulator of the G1/S phase cell 
cycle transition [18]. In our study, we demonstrated that 
the overexpression of miR-17-5p promoted the prolifera-
tion of ovarian cancer cells treated with paclitaxel. These 
results indicate that miR-17-5p induces drug resistance 

of ovarian cancer cells. By analysis of caspase 3/7 activ-
ity and TUNEL assay, we found that the overexpression 
of miR-17-5p decreases the paclitaxel-induced apoptosis 
of ovarian cancer cells. Meanwhile, the increased Bcl-2 
and decreased BAX expression levels in miR-17-5p over-
expressed ovarian cancer cells confirm that miR-17-5p 
decreases the paclitaxel-induced apoptosis of ovarian 
cancer cells. These results indicate that miR-17-5p might 
play an important role in conferring chemosensitivity to 
ovarian cancer cells.

Chemotherapy drugs are most effective when given 
in combination. Paclitaxel is often combined with other 
chemotherapy drugs, such as cisplatin. Therefore, further 
study is required to examine the function of miR-17-5p 
in combination of chemotherapy treatment. Ovarian 
cancer has a higher incidence of distant metastasis [19]. 
Once metastasis occurs, it becomes an incurable disease 
with limited survival time [20]. Metastasis is a complex, 
multistep process by which tumor cells disseminate from 
their primary site and form secondary tumors at a distant 
site [21]. Epithelial–mesenchymal transition (EMT) has 
been shown to play a critical role in promoting metas-
tasis. EMT is a biological process that allows epithelial 
cells to lose their epithelial characteristics and acquire 
a mesenchymal phenotype [22]. EMT plays a critical 
role in ovarian cancer metastasis. Many miRNAs, such 
as miR-7 [23], miRNA-150 [24], miR-200c [25], modu-
late the EMT and metastasis of ovarian cancer cells. We 
showed that miR-17-5p increased migration and invasion 
in both OVCAR-3 and SKOV-3 cells after forced expres-
sion of miR-17-5p. In contrast, the migration and inva-
sion of ovarian cancer cells were decreased when ovarian 
cancer cells were treated with anti-miR-17-5p inhibitor. 
Moreover, we found that the expression level of EMT 
biomarkers was changed in ovarian cancer cells following 
aberrant expression of miR-17-5p. These results indicate 
that miR-17-5p plays important role in ovarian cancer 
progression.

PTEN is a tumor suppressor gene with decreased activ-
ity reported in many human cancers [26, 27]. The loss 
and mutation of PTEN lead to hyperactive PI3K signal-
ing, which is an important intracellular signaling path-
way that regulate many cellular processes, including cell 
survival, cell proliferation, and cell growth. Studies have 
found that miR-26a acts as a direct regulator of PTEN 
expression in high-grade glioma [28]. Some miRNAs 
suppress PTEN expression by directly interacting with its 
3′ UTR in prostate epithelial and cancer cells [29]. In the 
present study, we reported that the expression of PTEN 
was decreased and the expression of pAKT was increased 
in ovarian cancer cells. Our results indicate that miR-
17-5p affects drug-resistance, apoptosis and invasion 
by regulating PTEN/Akt signaling pathway in ovarian 
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cancer.However, no miR-17-5p target site in PTEN was 
identified. Amplified in breast cancer 1 (AIB1) ampli-
fication and overexpression have been seen in breast 
and ovarian cancer cell lines. AIB1 is a steroid receptor 
coactivator that mediates the transcriptional activities of 
nuclear receptors and other transcription factors. Hos-
sain et al. has shown that miR-17-5p regulates breast can-
cer cell proliferation by targeting AIB1 [30]. PTEN can 
suppress AIB1 through decreasing protein stability [31]. 
In our study, miR-17-5p affects the PTEN expression in 
OVCAR-3 cells and SKOV3 cells. Further study should 
be done to examine the interaction between PTEN and 
AIB1 in these ovarian cancer cell lines.

Conclusion
miR-17-5p plays important role in the regulation of tum-
origenesis and malignant progression in ovarian cancer. 
miR-17-5p could be a potential molecular target in ovar-
ian cancer treatment in the future.

Methods
Cell lines and cell culture
The human nasopharyngeal carcinoma cell lines, 
OVCAR-3 and SKOV-3, obtained from American Type 

E-cadherin

N-cadherin

Snail

GAPDH

N-cadherin

Snail

GAPDH

E-cadherin

a

b

Fig. 5  miR-17-5p regulates EMT markers expression in ovarian cancer 
cells. a The EMT markers level in OVCAR-3 cell after transfection with 
miR-17-5p mimic or anti-miR-17-5p inhibitor. b The EMT markers level 
in SKOV-3 cells after transfection with miR-17-5p mimic or anti-miR-
17-5p inhibitor

PTEN

AKT

p-AKT

GAPDH

PTEN

AKT

p-AKT

GAPDH

a

b

Fig. 6  miR-17-5p activates AKT expression by regulating PTEN in 
ovarian cancer cells. a The expression of AKT and PTEN in OVCAR-3 
cells after transfection with miR-17-5p mimic or anti-miR-17-5p 
inhibitor. b The expression of PTEN and AKT in SKOV-3 cells after 
transfection with miR-17-5p mimic or anti-miR-17-5p inhibitor



Page 8 of 10Fang et al. J of Biol Res-Thessaloniki  (2015) 22:12 

Culture Collection were cultured in RPMI1640 medium 
(Invitrogen, USA) supplemented with 10  % heat-inac-
tivated fetal bovine serum and 100 U ml−1 of penicillin 
and 100 μg ml−1 of streptomycin (Sigma, USA). The cells 
were cultured at 37  °C in a humidified incubator in an 
atmosphere of 5 % CO2-95 % air. All cells were passaged 
when they reached approximately 80 % confluency.

Transfection miR-17-5p mimics and anti-miR-17-5p 
inhibitor (single-stranded, modified RNA molecule) 
were purchased from GenePharma (Shanghai, China). 
When OVCAR-3 and SKOV-3 cells reached 70 % conflu-
ency, they were transfected with miR-17-5p or anti-miR-
17-5p inhibitor using Lipofectamine 2000 (Invitrogen, 
USA) according to the manufacturer’s instructions. The 
miRNA-Lipofectamine 2000 complex was made in 
serum-free OPTI-MEM medium. The scrambled oligo-
nucleotide was used as a negative control.

Real‑time RT‑PCR quantification of miR‑17‑5p
To examine the miR-17-5p expression after transfection, 
total RNA was extracted with mirVanamiRNA Isola-
tion kit (Ambion, USA) according to the manufacturer’s 
instruction. cDNA was synthesized from the isolated 
RNA with Taqman MicroRNA Reverse Transcription kit 
(Thermofisher Scientific, USA). The PCR condition used 
was: 95  °C for 6 min, followed by 35 cycles of 95  °C for 
35 s, 60 °C for 30 s and 72 °C for 30 s, and a dissociation 
stage. PCR was performed using the TaqMan Fast Uni-
versal PCR Master Mix (Thermofisher Scientific, USA) 
and CFX Connect Real-Time PCR Detection System 
(Bio-Rad, USA). The endogenous reference gene GAPDH 
was used for RNA quantification. The PCR primers 
sequences used were: 5′-GTCTCCTCTGACTTCAACA-
GCG-3′ and 5′-ACCACCCTGTTGCTGTAGCCAA-3′ 
(GAPDH).

The effect of miR‑17‑5p on cell proliferation 
after chemotherapy reagent treatment
To evaluate the effect of miR-17-5p on cell prolifera-
tion after chemotherapy reagent treatment, the MTT 
(3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium 
Bromide) assay was performed as described previously 
[32]. Briefly, OVCAR-3 and SKOV-3 cells, transfected 
with either scrambled oligonucleotide or miR-17-5p 
mimic, were seeded in triplicate to 96-well plates at the 
density of 2 ×  104 cells well−1. After overnight growth, 
culture medium containing paclitaxel (6  µmol L−1) 
(Sigma, USA) was added. On every each other day, MTT 
solution (20 μl, 5 mg ml−1) was added to each well, and 
the plates were incubated in the dark for 4  h at 37  °C, 
followed by removal of the culture medium and addi-
tion of 100  μl of dimethyl sulphoxide (DMSO). The 
absorbance was measured at 490 nm, with 650 nm as the 

reference wave length. All experiments were carried out 
in triplicates.

Caspase 3/7 activity
OVCAR-3 and SKOV-3 cells, transfected with either 
scrambled oligonucleotide or miR-17-5p mimic, were 
seeded in 24-well plates at a density of 1  ×  105 cells 
well−1. After overnight incubation in an atmosphere 
of 5 % CO2-95 % air, the supernatant was replaced with 
culture medium containing different concentrations of 
paclitaxel (3, 6 and 12  µmol L−1). The cells were grown 
for 48 h, then Caspase-Glo reagent (Promega, USA) was 
added to each well and incubated at room temperature 
for 8 h with gentle shaking. The caspase 3/7 activity was 
measured using 1 min lag time and 0.5 s well−1 read time 
with luminometer (Thermofisher Scientific, USA). The 
experiments were performed in triplicate.

TUNEL assay
After overexpression of miR-17-5p, OVCAR-3 and 
SKOV-3 cells were seeded in 96-well plates at density 
of 1 ×  104 cells well−1. After overnight incubation, the 
supernatant was replaced with culture medium con-
taining paclitaxel (12  µmol L−1). The cells were grown 
for another 48 h, then the TUNEL assay was performed 
using Click-iT® TUNEL Alexa Fluor® Imaging Kit (Inv-
itrogen, USA) in accordance with the manufacturer’s 
protocol. In brief, after the cells were fixed with 4 % para-
formaldehyde in PBS at room temperature for 20  min 
and permeabilized with Triton X-100 (0.25 % in PBS) for 
another 20  min, the cells were washed twice and incu-
bated with terminal deoxynucleotidyltransferase reaction 
buffer for 10 min at room temperature. The TUNEL reac-
tion mixture containing terminal deoxynucleotidyltrans-
ferase was added and the samples were incubated in a 
humidified chamber at 37  °C for 60 min. Then, samples 
were washed three times with 3 % BSA in PBS for 2 min 
each and then incubated with Click-iT reaction mixture 
(containing Alexa 488 azide) for 30 min at room temper-
ature. After washed with 3 % BSA in PBS, the cell nuclei 
were counter stained with Hoechst 33342 (Thermofisher 
Scientific, USA) for 15  min at room temperature. The 
TUNEL-positive cells were counted in eight different, 
random fields for each well.

Matrigel invasion assays
The cell invasion was examined by Matrigel invasion 
assays according to the manufacturer’s instruction (Pro-
mega, USA). Briefly, OVCAR-3 and SKOV-3 cells at 
density of 3 × 104 per well, transfected with either miR-
17-5p mimic or anti-miR-17-5p inhibitor, were placed 
to the upper BD Biocoat Matrigel Invasion Chamber 
(BD Bioscience, US) in 0.5  ml DMEM with 0.1  % BSA. 
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The DMEM medium containing 5  % FBS was added to 
the lower chamber. The cells were incubated for 18  h, 
and then the non-invaded cells were removed with a cot-
ton swab. The invaded cells were stained by Diff Quik 
stain (Thermofisher Scientific, USA) and counted under 
microscopy. The percentage of invasion was expressed as 
the ratio of invading cells over cell number normalized 
on day 2 of the growth curve.

Western blot assay
The transfected OVCAR-3 and SKOV-3 cells were lysed 
with ice-cold RIPA buffer (Beyotiem, China). Then the 
samples were mixed with ×6 loading buffer, boiled at 
100  °C for 5  min, transferred on ice and loaded to an 
SDS-PAGE gel. Proteins were separated by SDS-PAGE 
and transferred to PVDF membranes (Sigma, USA). Then 
the membranes were incubated in 5 % non fat dry milk 
in Tris-buffered saline Tween-20 buffer (TBST: 10 mmol 
L−1 Tris-Base, 150  mmol L−1 NaCl, 0.05  % Tween-20; 
pH 7.4) for 1  h at room temperature to block nonspe-
cific antibody binding sites. After washing with TBST 
buffer, membranes were incubated overnight at 4  °C 
with primary antibodies (E-cadherin, N-cadherin, Snail, 
Vimentin, Bcl-2, Bax, AKT and PTEN: Cell Signaling 
Technology, USA) in TBST with gentle agitation. After 
washed with TBST at room temperature, the membranes 
were incubated with the horseradish peroxidase-con-
jugated secondary antibody for 1  h at room tempera-
ture. The immune blot signals were visualized using the 
EasySeeWeatern Blot Kit (Transgen, China). The protein 
bands were detected by densitometric scanning (Tanon-
1600 gel image system, Shanghai, China).

Statistical analysis
All of results were shown as mean ± SD. Statistical analy-
ses were performed by Student’s t test. Briefly, the experi-
mental results from control groups and experimental 
groups were entered in SPSS program (version 11.0, IBM. 
USA), the p values were calculated. Differences are con-
sidered statistically significant at p < 0.05.
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