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Human pre-valvular endocardial cells derived from
pluripotent stem cells recapitulate cardiac
pathophysiological valvulogenesis
Tui Neri1,2,13, Emilye Hiriart1,13, Patrick P. van Vliet3,4,5,6, Emilie Faure1, Russell A. Norris7, Batoul Farhat1,5,6,

Bernd Jagla8, Julie Lefrancois1, Yukiko Sugi7, Thomas Moore-Morris1,5,6, Stéphane Zaffran 1,

Randolph S. Faustino9, Alexander C. Zambon10, Jean-Pierre Desvignes1, David Salgado 1, Robert A. Levine11,

Jose Luis de la Pompa 12, André Terzic9, Sylvia M. Evans3, Roger Markwald7 & Michel Pucéat 1,5,6

Genetically modified mice have advanced our understanding of valve development and dis-

ease. Yet, human pathophysiological valvulogenesis remains poorly understood. Here we

report that, by combining single cell sequencing and in vivo approaches, a population of

human pre-valvular endocardial cells (HPVCs) can be derived from pluripotent stem cells.

HPVCs express gene patterns conforming to the E9.0 mouse atrio-ventricular canal (AVC)

endocardium signature. HPVCs treated with BMP2, cultured on mouse AVC cushions, or

transplanted into the AVC of embryonic mouse hearts, undergo endothelial-to-mesenchymal

transition and express markers of valve interstitial cells of different valvular layers, demon-

strating cell specificity. Extending this model to patient-specific induced pluripotent stem

cells recapitulates features of mitral valve prolapse and identified dysregulation of the SHH

pathway. Concurrently increased ECM secretion can be rescued by SHH inhibition, thus

providing a putative therapeutic target. In summary, we report a human cell model of val-

vulogenesis that faithfully recapitulates valve disease in a dish.
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Congenital heart diseases are major causes of global mor-
tality in children including in Europe and the United
States1,2. Cardiac valves are affected in up to one third of

these life-threatening conditions3. Moreover, in adults, the pre-
valence of valvular diseases dramatically increases with age
reaching 13% of the elderly at 75 years of age or older4,5. Proper
functioning of the valves is essential to ensure efficient blood
pumping by the heart. The atrio-ventricular (AV) valves in
humans feature two to three leaflets, which regulate the direction
of blood flow through the mitral and tricuspid sides of the left and
right ventricles, respectively. The semilunar valves direct the flow
from the right (pulmonary valve) or the left (aortic valve)
chamber. Despite significant progress in the field, there is still
limited understanding of valve disease pathobiology.

Mitral valve prolapse (MVP) is among the most common
conditions and affects 1 in 40 individuals6. Syndromic MVPs are
observed in rare and genetically well-characterized connective
tissue syndromes such as Marfan syndrome, Loeys–Dietz syn-
drome, or Ehlers–Danlos syndrome. Common non-syndromic
MVP is a progressive disease originating from a compromised
development of embryonic valves although functional con-
sequences are apparent in middle-aged patients. Genetics studies
have identified mutations in selected genes (Filamin A7, LMCD1,
tensin8 and Dachsous9) with the disease manifesting by dysre-
gulation of extracellular matrix (ECM) proteins in valve leaflets
that precipitates myxomatous degeneration or fibroelastic defi-
ciency. Ultimately, valve leakage is the cause of mitral regur-
gitation10. This requires surgical valve repair or replacement at an
advanced stage of the disease as no preventive or curative phar-
macological alternative is available.

Valve formation is a complex process that begins at embryonic
stages HH16 in the chicken, E9.5 in the mouse, and at about
30 days in the human fetus. Intercellular signaling events
occurring in the atrioventricular canal (AVC) and the outflow
tract (OFT) initiate endocardial-to-mesenchymal transition
(endoMT), whereby endocardial cells delaminate and invest the
forming cushions. Later in cardiogenesis, this process encom-
passes interactions between different mesenchymal cell popula-
tions, morphogenesis, fusion of cushions, and ECM secretion,
leading to the formation of mature and fully functional valves11.

The endocardium, as the origin of valvular tissue, is formed by
endothelial cells that are distinct from the traditional Flk1+

hemoangioblasts12. Two paradigms have been proposed to
account for segregation of endocardial and myocardial lineages.
First, studies in avian embryos13–15 suggest that endocardial cells
originate in the anterior lateral mesoderm. In line with this
concept, Nkx2.5 deletion in the mouse disrupts endocardial
cushions16. Second, both endocardial and myocardial cells might
share a common multipotent progenitor in the cardiac crescent.
Isl1Cre -labeled cells as well as the Mef2c-(AHF)Cre-labeled
counterparts give rise to both endocardial and myocardial
cells17–19, thus suggesting that the endocardium also originates at
least partially from the second or anterior heart field (AHF)
associated with the formation of the right ventricle and OFT,
albeit that an exclusive AHF origin has been challenged. Instead, a
contribution of endothelial cells derived from MesP1+ cells to the
formation of the endocardium was proposed19.

Genetically modified mouse models have provided important
clues as to the cell lineages and signaling pathways that contribute
to valve formation20–22. However, these murine transgenic
models are limited in their potential to reveal mechanisms
underlying complex processes, as aspects of signaling interaction,
cell metabolism, epigenetics, and mechano-transduction are dif-
ficult to mechanistically separate in vivo and might not be
identical in human valve development. In fact, cell lineages that
contribute to the valves in humans have been elusive and have

only been inferred from knockout mouse models recapitulating
part of the human pathophenotype. A human specific cell model
of valvulogenesis that could be extended to cells derived from
individual patients would definitively advance the understanding
of developmental mechanisms driving valvulogenesis in health
and disease.

Pluripotent stem cells have been reported to recapitulate early
developmental processes including cardiac myogenesis22 but
differentiation of these pluripotent cells towards valvular specific
cells has not yet been reported. Here, leveraging embryology data
across species, we report that human pluripotent stem cells are
able to recapitulate the developmental process of valvulogenesis.
We use a population of human pluripotent stem cell-derived
MESP1+ sorted cardiovascular progenitors23 and direct their fate
concomitantly towards the first/second heart field and endothelial
cell lineages. We report that these cells collectively or at the single
cell level express a set of salient genes that mark pre-EMT (E9.0)
mouse AVC. These cells undergo EMT in both notch-dependent
and independent manners and express specific valve proteins
when treated with BMP2, when seeded onto collagen hydrogels,
or when grafted in vivo in mouse embryos. Furthermore, using
patient-specific induced pluripotent stem (iPS) cells harboring a
mutation in Dachsous6 and in turn propensity to mitral valve
prolapse9, we recapitulate cell features of the valvulopathy, and
identify a molecular mechanism of the disease that points to a
therapeutic target. Human pluripotent stem cell (hPSC)-derived
endocardial cells thus represent a representative model for human
valvulogenesis enabling future studies on mechanisms in human
valve pathogenesis.

Results
hPSCs differentiate into endocardial cells. We developed here a
protocol to differentiate human ES (hES) or induced pluripotent
stem (hiPS) cells into genuine valvular cells. Undifferentiated
pluripotent stem cells were first differentiated into MesP1+ car-
diovascular progenitors using Wnt3a (100 ng/ml) the first day,
then Wnt3a and BMP2 (10 ng/ml) and then BMP2 alone the
third day; MESP1+ cells23 were then sorted using the BMP2-
induced SSEA-1 cell membrane antigen and plated on mouse
embryonic fibroblasts (MEF) in fibronectin-coated plates. To
segregate myocardial and endocardial cell lineages from the
SSEA1+MESP1+ cell population, cells were treated with VEGF
(30 ng/ml), an inducer of endothelial cell fate. We further added
FGF2 (2 ng/ml) and FGF8 (10 ng/ml) for 6 days. FGF8 was used
to trigger mesodermal cell fate toward endocardial cells at the
expense of myocardial cells24. Cells were then phenotyped using
real-time RT-PCR, immunofluorescence and high content ima-
ging. Figure 1a shows that VEGF/FGF2/FGF8-treated cells sorted
with anti-CD31-conjugated beads intensely expressed TBX2,
TBX20, GATA5, MSX1, SMAD6, PITX2, HES1, NFATc, ADORA
and GALANIN, when compared to the level of expression of these
genes in the SSEA1+-sorted MESP1+ cell population. A global
transcriptomic analysis of the human VEGF/FGF2/FGF8-treated
and CD31-sorted endocardial cells (named Human PreValvular
Cells or HPVCs) versus MESP1+ cells revealed enrichment of
TGFβ1, TGFβ2, MSX1, THROMBOSPONDIN, PITX2, ERBB4,
ADAM19, and CAV1 in HPVCs, similar to the endocardial
expression signature in the mouse AVC endocardium25,26.
PDGFRα, LMCD1 and its target GATA6, were enriched in cardiac
cushions at the level of mRNA27 as were endothelial genes KDR,
FLT1, FLI1, TIE2, NFATc (Fig. 1b; Supplementary Fig. 3, tran-
scriptomic data GEO dataset). Conversely, MESP1, and cardiac
chamber specific genes TBX5, MEF2c, NPPA, MLC2v were not
expressed in HPVCs (see transcriptomes). Comparisons of HPVC
transcriptomes with H1 and H9 ESC-derived mesenchymal cells

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-09459-5

2 NATURE COMMUNICATIONS |         (2019) 10:1929 | https://doi.org/10.1038/s41467-019-09459-5 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


or bone marrow derived mesenchymal cells as well as with E9.0
AVC cells indicated HPVCs clustered with E9.0 AVCs and to a
lesser extent to previously reported AVCs28 and displayed little
correlation with human ESC-derived or mesenchymal stem cells
(Fig. 1b). The HPVC transcriptome further showed the presence
of genes specific to AVC (TBX2) and endocardium (MSX1) as
well as genes involved in Notch signaling (JAG1, HEY1) or in
endocardial cushion mesenchymal transition (TGFβ, SMAD6)
(Fig. 1b).

Immunofluorescence and high content imaging confirmed that
HPVCs featured morphology of endothelial cells and showed
expression of endothelial CD31 and KDR in 95% of cells (out of
850 scored cells in 2 separate experiments), VE-cadherin (Fig. 1c),
as well as AVC and endocardial cells (GATA5, TBX3, TBX20,
NFATc and MSX1) protein markers (Fig. 1d).

To estimate the cell heterogeneity of HPVCs, a single cell-
sequencing approach was used. SSEA1+MESP1+ sorted cells
were plated on fibronectin-coated dishes and induced with
VEGF/FGF8/FGF2 to an endocardial cell phenotype. Cells were

then further sorted using an anti-CD31 antibody and used for
single cell-sequencing. We performed a two-step data analysis to
cluster cells by principal component analysis. Figure 1e revealed
the endocardial phenotype of ~3000 HPVCs at a single cell level.
Although the cells were CD31-sorted, the cell population was
heterogeneous. Five main cell clusters were identified as
expressing a specific gene pattern depending upon their stage in
the early process of EMT (Fig. 1e).

One third of cells (1105) (cluster1) were CDH5+ including
endoglin (ENG+) cells (849), PECAM1+ cells (729), KLF2+ cells
(161) as well as NOTCH4+ (1005) cells, pointing to an
endothelial and endocardial cell population. These cells also
highly expressed SOX17, SOX18, KDR and ETS indicative of the
endocardial phenotype (Supplementary Data 1). TWIST1+ cells
clustered as a mirror of ENG+ cells although some cells were
ENG+TWIST1+ . 90% of TWIST1+ cells were negative for
SNAI1 but still positive for ETS1, an endothelial gene confirming
the early EMT stage of these cells. THSD1 as well as HEY1, AVC
endocardial genes were both enriched in the CDH5+ cell
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Fig. 1 Gene and protein expression profiles of human valve progenitors. SSEA-1+-sorted human MESP1+ cells were treated with 10 ng/ml FGF8, 2 ng/ml
FGF2 and 30 ng/ml VEGF for 6 days. a RNA was then collected and cDNAs of FGF8/VEGF-treated cells (HPVCs) were run in Real-Time PCR (mean ± SEM
of 9 separate cell differentiation experiments). Data are normalized to 1 as the level of gene expression in SSEA1+MESP1+ cells. (**significantly different
from 1; p≤ 0.01). Boxes and whiskers (min to max) show the values lower than the 2.5th percentile and greater than the 97.5th percentile as circles.
b cRNAs (n= 3 separate cell differentiation experiments) were used for microarrays and normalized vs. MESP1+ cells from the same respective cell
sorting. Heatmaps of transcriptomes of HPVCs, E9AVC (our data), AVC GDS3663 and MSCs (GDS1288). A few AVC-specific genes are highlighted in the
inset. c Bright field image (top) and co-immunostaining of VEGF/FGF8/FGF2-treated SSEA-1+/MESP1+ derived colonies with anti-CD31 and anti-Flk1
(KDR) or anti-VE-cadherin antibodies. Data are representative of 5 separate cell differentiation experiments. d Immunostaining of VEGF/FGF8-treated
SSEA-1+/MESP1+ derived colonies with anti-Sox9, -Msx1, -Nfatc1,-Tbx3, -Tbx20 and -GATA5 antibodies (green) and DAPI (blue). The data are
representative of 5 experiments. The scale bar indicates 50 μm. e HPVCs were further sorted using anti-CD31 conjugated beads and used in single-cell
RNA sequencing. t-distributed stochastic neighbor embedding (t-SNE) 2D cell map 10X genomics (n= 2440 cells) (upper panel). Highlight of cell
populations expressing genes marking endothelial, hemogenic and early EMT cells (lower panel) and heatmap of graph-based Log2 fold changes in gene
expression of cell cluster compared to all other cells (lower right panel). Source data are provided as a Source Data file
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population (Fig. 1e) while GATA5, TBX2, TBX3, MSX1 were
found expressed in both endocardial and TWIST1+ cells
(Supplementary Data 1).

Interestingly, a cluster of cells (180 cells within cluster1)
expressed high level of ETS1, EGFL7, HOPX and SCL/TAL1
suggesting the presence of a hemogenic endocardial cell
population29 (Fig. 1e). This cluster was dissociated from the
small cell cluster 6 enriched in cells expressing SOX18, LATEXIN,
FICOLIN3, HOXP1, CARBONIC-ANYDRASE, CD40, CD55,
CX37,other markers of hematopoietic cells. Cluster 2 included
highly proliferative cells expressing genes involved in cell mitosis
such as GTSE1, CENPF, AURKA, BIRC5 and TPX2. Cluster 3
included cells expressing genes of the TGFβ signaling pathway
(BAMBI, TGFβ1) and PDGFRα. Cluster 4 was enriched in
WNT2B cells but did not express any other genes not expressed in
other clusters. Cluster 5 included cells more advanced in the EMT
process expressing among others APOE, high level of LUM,
POSTN, and ACTA2.

Thus, human ESC-derived HPVCs faithfully reflected the
phenotype of endocardial cells before and at the onset of EMT
within the AVC and showed robust correlation of gene
expression with E9.0 AVC cells rather than with any other
mesenchymal stem cell type.

HPVCs undergo EMT and depend on Notch signaling in vitro.
To test the potential of hPSC-derived HPVCs to undergo EMT, a
key process executed by endocardial cells to form cardiac cush-
ions in vivo, HPVCs were further treated with BMP2 (200 ng/ml)
for 48 h. Gene expression was monitored by real-time RT-PCR.
When compared to non-stimulated cells, the level of expression
of MSX1, SMAD6, SOX9, SLUG, CADHERIN 11, N-CADHERIN
AND PERIOSTIN was significantly increased while E-CADHERIN
was decreased (Fig. 2a).

Single cell-sequencing analysis was also performed after BMP2
treatment. Clustering within 5 tight groups revealed that most
cells (2598) expressed TGLN, a myofibroblast marker enriched in
the ventricularis layer of the valve30. Cells initiated specification
into fibrosa, spongiosa or ventricularis layers of the valve. The
COL1A1 cell cluster (cluster 3) was enriched in most collagen
genes (COL1A1, COL1A2, COL4A1, COL6A2, COL3A1) as well as
in genes enriched in fibrosa such as BGN. Cluster 2 was enriched
in genes TDGF1, CD9, VCAN, and ALDH2 found in the
spongiosa. Cluster 1 included endothelial cells still expressing
CDH5 and PECAM1 (Fig. 2b; Supplementary Data 1).

Notch has a crucial function in the process of EMT in cardiac
cushions31,32. We thus tested the role of the Notch pathway in
BMP2-induced EMT of HPVCs. BMP2-induced expression of
SLUG and PERIOSTIN was inhibited by 1 μM DAPT (N-[N-(3,
5-Difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester)
(Supplementary Fig. 4a), a γ-secretase inhibitor that blocks
Notch pathway activation, indicating that expression of these two
markers is Notch-dependent. Activation of the Notch pathway
following transfection of Notch intracellular domain NICD
strongly turned on the expression of PERIOSTIN as well as of
SLUG and MSX1 (Supplementary Fig. 4b), suggesting that as
reported in vivo31,32. Notch regulates EMT via SNAIL and SLUG
activation. Thus, HPVCs respond to similar cues and use
equivalent signaling pathways to undergo EMT in vitro as mouse
endocardial cells in vivo.

Valvular interstitial cells (VICs) give rise to tenocytes and
osteo/chondrogenic cells33,34. We thus tested the tendinous/
chondrogenic potential of HPVCs. We applied for 2 weeks a
chondrogenic medium33 to HPVCs aggregated in pellets, and
found turned-on expression of SCLERAXIS and COLLAGEN1
genes (Fig. 2c) as well as SOX9 and CALCITONIN proteins,

suggesting a broad valve differentiation repertoire of HPVCs
(Fig. 2d).

WNT stimulation of HPVCs upregulates KLF2 and EMT
genes. To test whether HPVCs could be at least in principle used
in mechanostranduction experiments, we tested whether KLF2, a
gene involved in the transcriptional response of hemodynamic
forces35 and expressed in a subset of endocardial HPVCs (Sup-
plementary Fig. 5a), could be upregulated by Wnt stimulation.
Freshly sorted CD31+HPVCs were stimulated with 100 ng
Wnt3a (expressed in HPVCs in the scRNAseq data) and 10 ng
spondin3 for 24 h in ECGM medium. Supplementary Fig. 5b
shows that cells turned on AXIN2, an index of Wnt response,
and concomitantly strongly upregulated KLF2. Wnt also turned
on SLUG, MSX1, and SMAD6, suggesting that cells underwent
EMT.

HPVCs undergo EMT in ex vivo models. To further test the
differentiation properties of HPVCs, we used collagen hydrogels
to induce EMT. Cells were aggregated in hanging drops for 18 h
generating spheroid bodies cultured on collagen gels. SSEA1-/
MESP1- cells remained at the surface of the gel and proliferated.
In contrast, HPVCs invaded the gel and acquired an elongated
mesenchymal morphology (Fig. 3a). After 72–96 h, gels were
fixed and cells immunostained to test expression of post-EMT
markers. Figure 3b shows that human cells expressed FILAMIN
A, PERIOSTIN, VERSICAN, AGGRECAN and smooth muscle
actin (SMA).

Next, we utilized three-dimensional collagen substrate or heart
explants36 to test the behavior of HPVCs ex vivo. AVC regions of
E9.5 mouse embryos were dissected and placed on a collagen
hydrogel (Fig. 3c top inset). HPVCs were added to AVC explants
for two days, fixed, and stained with anti-SOX9, -FILAMIN A or
anti–PERIOSTIN antibody. Figure 3c shows that human cells
identified by an anti-human LAMIN A/C antibody and in contact
with endocardial cells of the mouse embryonic explant underwent
EMT and expressed SOX9, FILAMIN A and PERIOSTIN. Thus,
HPVCs are capable of recapitulating the EMT process in response
to myocardial factors, likely BMP2 in an ex-vivo setting.

HPVCs undergo EMT in vivo in mouse embryos. To investigate
the potential of differentiation of HPVCs in vivo, we tested
whether these cells could further differentiate into valvular
fibroblasts when placed in the embryonic environment at a
stage of development prior to endoMT. To track HPVCs that
have undergone Endo-MT in vivo in mouse embryos, a HUES
cell line expressing GFP under the transcriptional control of the
Sox9 promoter was engineered. Sox9 was chosen as it is enriched
in valves when the cushion endocardial cells were just at the
beginning of the EMT process. HPVCs derived from the
Sox9GFP HUES clone were injected into the AVC wall with
injections mapped by fluorescent dye (Fig. 4a). Four to six hours
after cell injection, embryonic hearts were dissected and cultured
at the liquid-air interface in a matrigel coated insert for 48 h in
DMEM plus 50% FCS. Hearts cultured under these conditions
maintained their shape and beating activity for 72 h (Fig. 4b).
Examination of sections of paraffin-embedded cell-injected
hearts revealed activation of the Sox9 reporter in transplanted
hESCs-derived HPVCs. Specificity of the enhancer/promoter was
validated by a counterstain of GFP+ cells using an anti-SOX9
antibody. HPVCs stained by the anti-human LAMIN A/C anti-
body remained in the AVC region (Fig. 4b).

Alternatively, HPVCs derived from the Sox9GFP HUES clone
were injected into the AVC of E9.5 embryos and embryos
cultured in their yolk sac for 24–48 h. Hearts were allowed to
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calcitonin antibodies. Data are representative of 3 experiments. The scale bar indicates 50 μm. Source data are provided as a Source Data file
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develop in culture (Fig. 4c). The HPVCs injected in the chamber
or ventricular wall or in an extra-cardiac environment (brain)
survived poorly and did not express GFP, SOX9, PERIOSTIN,
FILAMIN or COLLAGEN (Fig. 4c). Immunostaining of Sox9GFP
cells revealed that cells implanted in the AVC expressed
PERIOSTIN, FILAMIN A AND COLLAGEN I (Fig. 4d). At
high magnification, Sox9GFP cells were surrounded by extra-
cellular matrix proteins PERIOSTIN and COLLAGEN. FILAMIN
A (FLNA), which functions as a scaffolding protein and couples
cell cytoskeleton to extracellular matrix, was also located at the
periphery of the cells (Fig. 4d, right panel). Sox9GFP HUES cell-
derived HPVCs injected in the E9.5 AVC were also found in the
AVC both in the superior and inferior atrio-ventricular cushions
and expressed PERIOSTIN following 36 h culture of whole
embryos (Fig. 4e).

Patient-specific iPS cells recapitulate MVP. To test the patho-
logical relevance of HPVCs and derived valvular cells, we used a
patient-specific iPS cell model. iPS cells were derived from valv-
ular interstitial cells (VICs) isolated from the explanted mitral
valve of a patient harboring a mutation in Dachsous gene
(DCHS1) a likely cause for mitral valve prolapse9. In contrast to

primary VIC culture, which is limited by the number of passages,
iPS cells provide a means to recapitulate the stepwise determi-
nation of distinct endocardial, valve endothelial, and valve
interstitial cell phenotypes. HiPS cells allow replication of sepa-
rate differentiation experiments both with HPVCs/VECs and
VICs. Patient-derived hiPs cells expressed OCT4, SOX2 and
NANOG (Fig. 5a). DNA sequencing confirmed that the patient-
specific DCHS1 mutation c-6988C>T was conserved (Fig. 5b) and
digital PCR of copy number variants of main recurrent
abnormalities loci found in pluripotent stem cells (http://www.
stemgenomics.com/) revealed that genomic integrity was con-
served. Using directed differentiation protocols, cells were capable
of differentiation into the three germ layers following treatment
with specific morphogens as shown by expression of SOX17, and
FOXA2 (endoderm), BRACHYURY (T) and MIXL1, (mesoderm),
and NESTIN and PAX6 (ectoderm) (Fig. 5c).

Dachsous is involved in planar cell polarity signaling and in
turn cilia formation37 and is required for lymphatic valve
formation38 Valve endothelial cells and their human counterpart
(i.e. hiPS cell-derived HPVCs) expressed endocardial genes
TBX2, TBX20, PITX2, GATA5, SMAD6 and MSX1 (Supple-
mentary Fig. 6), but expressed few cilia as recently reported in
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mouse39 potentially due to the high shear stress in the region of
cardiac cushions as proposed in zebrafish40. EMT was thus induced
by BMP2 treatment of HPVCs and cilia were scored in
VIMENTIN+VICs (Fig. 5d). 450 HPVCs derived VICs stained
with anti-acetylated -α-tubulin revealed that 56% of wild type (wt)
cells while only 12% of DACHS1 c.5988 C>T cells featured cilia.
The identity of cilia was confirmed by counterstaining with an
anti−γ-tubulin antibody (insets Fig. 5d). Furthermore, cilia of
mutated cells were twice as short as the ones of wild type cells
(Fig. 5d).

Mitral valve prolapse as a consequence of DCHS1 c.6988 C>T
mutation leads to a myxomatous degeneration and an increase in
proteoglycan and collagen I expression compared to wild type
healthy valve6. Wild-type and DCHS1 c.6988 C>T HPVCs derived
interstitial cells were thus stained with the HYALURONAN-
binding protein to visualize HYALURONANand an anti-
COLLAGEN I antibody. Figure 5f revealed that mutated cells
secrete three times as much COLLAGEN I (22.7 ± 3 % of cell
field, n= 5 experiments, 540 scored cells) than wild type cells
(7.4 ± 1.2 %) and six times as much HYALURONAN (36 ± 6%, of

cell field n= 5 experiments, 645 scored cells) than wild-type cells
(5.7 ± 1.5 %). They also featured 7 times as much PERIOSTIN
(28 ± 4%, n= 5 experiments, 530 scored cells) than wild type cells
(4 ± 0.8%).

SHH signaling is altered in DCHS1 c.6988 C>T HPVC-derived
VICs. Sonic hedgehog (SHH) is a signaling pathway of primary
cilia. SHH regulates expression of HYALURONAN41, and play
key roles in ECM remodeling in development. SHH receptor
Patched1 is located on or at the basal bodies of cilia and relocates
to the entire cell membrane when bound by its ligand where it
gets activated even without ligand42. We reasoned that DCHS1
c.6988 C>T valvular cells with short or no cilia may feature a
constitutive activation of SHH pathway, following a lack of Pat-
ched1 on cilia. We first looked at the location of PATCHED1 in
wt and DCHS1 c.6988 C>T cells. Figure 6a shows that Patched1
was clustered and aggregated at the cilia basal body in wt cells
while it was spread as clusters all over the cell membrane in non-
ciliated DCHS1 c.6988 C>T cells.
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We thus treated DCHS1 c.6988 C>T cells with cyclopamine, a
hedgehog pathway inhibitor, together with BMP2 at the onset of
EMT. The drug prevented in a significant manner (p ≤ 0.01)
secretion of excess collagen I (from 25 ± 3 down to 2 ± 0.3% cell
field, n= 3, 520 scored cells) HYALURONAN (from 30 ± 2.1
down to 1.65 ± 0.5% cell field, n= 3, 480 scored cells), or
PERIOSTIN (from 20 ± 1.7 down to 1.5 ± 0.2% cell field, n= 3,
515 scored cells) in DCHS1 c.6988 C>T cells (Fig. 6b). We next
tested whether SHH added to wt cells could mimic DCHS1
c.6988 C>T phenotype. Addition of 100 ng/ml SHH for 48 h on

wt cells treated with BMP2 increased in a significant manner (p ≤
0.01) the expression of COLLAGEN I (from 6.8 ± 1 up to 16.7 ±
2.1% of cell field, n= 3, 340 scored cells), HYALURONAN (from
10 ± 1.2 up to 17.1 ± 1.9% of cell field, n= 3, 380 scored cells) and
PERIOSTIN (from 4 ± 0.7 up to 31.2 ± 2.7% of cell field, n= 3,
490 scored cells) (Fig. 6c). In contrast to wild type cells (Fig. 7),
single cell sequencing of DCHS1 c.6988 C>T post-EMT cells
revealed that cells were dramatically heterogeneous as illustrated
by the t-SNE graph (Fig. 7a) and the heatmap of cell cluster
(Fig. 7c). A principal component analysis of WT vs DCHS1
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c.6988 C>T single VIC transcriptome revealed a distinct pattern
of gene expression (Fig. 7b). Differences between WT and DCHS1
c.6988 C>T cells could not be attributed to a differential cell cycle
as most cells of the two populations were in the G1 stage (inset
Fig. 7b).

Patient-derived VICs could not acquire a typical VIC identity.
All expressed high levels of TAGLN, COLLAGEN I (COL1A1),
VERSICAN (VCAN) and PERIOSTIN (Fig. 7). Some genes
enriched in a specific valve layer such as TDGF1 (fibrosa) were
not expressed at all in DCHS1 mutated cells or like CD9, APOE,
BGN (fibrosa) or ACADM (spongiosa) spread all over cell
clusters. A small cluster (cluster 6) of cells was made up by
endothelial cells highly expressing PECAM1, CDH5, ENG,
SOX17, SOX18, DLL4, CD34 and KDR (Fig. 7c) (Supplementary
Data 1).

A comparison between WT and DCHS1 mutated cells
confirmed that the latter overexpressed ECM proteins of the
fibrosa or spongiosa (VCAN, COL1A1, PSTN, APOE, TAGLN,
BGN, ACADM) as shown by the heatmap and violin plots
(Supplementary Fig. 7).

Interestingly GLIs 2 and 3 were also overexpressed (9.3 ± 1.1
fold in 3 real-time RT_ PCR experiments and in single cell data
sets of DCHS1 c.6988 C>T vs wt cells (see Supplementary Fig. 8
and Supplementary Data 1). Furthermore, BRD2 and PRTM1,
two positive regulators of SHH43 were highly upregulated and
more broadly expressed in DCHS1 c.6988 C>T vs wt valvular cells
(Supplementary Fig. 8).

Interestingly GLIs 2 and 3 were also overexpressed (9.3 ± 1.1
fold in 3 real-time RT_ PCR experiments) and in single cell data
sets of DCHS1 c.6988 C>T vs. wt cells (see Supplementary Data 1
and Supplementary Fig. 8).

Furthermore, BRD2 and PRTM1, two positive regulators of
SHH43 were highly upregulated and more broadly expressed in
DCHS1 c.6988 C>T vs wt valvular cells (Supplementary Fig. 8).

Discussion
The present study documents the propensity of pluripotent stem
cell-derived MESP1+ cardiovascular progenitors to give rise to
bona fide HPVCs, which in turn provide a reliable source for
functional signal-responsive valvular cytotypes, namely valvular
interstitial cells and tendinous/chondrogenic cells. Establishment
of pluripotent stem cell-derived HPVCs offers a powerful pro-
totype platform of human early valvulogenesis addressing a major
gap in this field. The ensuing application of patient-specific hiPS
cell-derived valvular cells to model valvulopathy exemplifies a
genuine model of nonsyndromic mitral valve prolapse, under-
scoring the biological validity and clinical utility of this proof-of-
concept study.

To map the gene expression signature for the HUES-cell-
derived valvular progenitor cell population (HPVC), we per-
formed gene expression profiling on one of the regions of the
heart where the valves form. We used E9.0 embryos to determine
the transcriptomic identity of AVC prior to EMT, which occurs
between E9.5 and E11. We show here that HPVCs derived from
pluripotent stem cells accurately reflect the in vivo E9.0 AVC
profile. The gene profile of AVC was compared to the adjacent
primary chamber myocardium and endocardium, thus restricting
the cell gene signature to the endocardium of the AVC. While the
primary ventricle may feature to some extent a different gene
profile than the AVC myocardium, our primary ventricle gene
array did not show expression of CKM, a gene not expressed in
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AVC myocardium in contrast to mature chamber myocardium44

pointing to a still immature myocardium. Gene expression arrays
of this cardiac-restricted region (i.e., using Tbx3 GFP sorted cells
from E10.5 mouse embryos) so far available in the literature were
done at a later stage of development, thus during EMT, and
included both endocardium and myocardium45. An attempt to
carry out a transcriptome of E9.5 AVC was reported previously28.
However, a careful analysis of these data revealed that the AVC
transcriptome was contaminated by high expression of chamber
specific genes such as TnT, or Gja1 (see GEO data set GDS3663)
and key AVC specific genes such as Tbx2 were missing (see GEO
dataset GDS3663 and Fig. 1d). This could explain why this pre-
viously reported gene signature did not cluster tightly with those
of our dissected AVC and HPVCs (Fig. 1e). One study using a
SAGE protocol reported a gene expression profile of mouse
cardiac AVC at a slightly later stage (E9.5) of development45. The
comparison of our microarray data with that of the Tbx3-GFP-
sorted cells44 and the SAGE data45 further revealed the expression
of common and major genes in AVC vs. cardiac chambers. These
include Tbx2, Tbx3, Tbx20, Msx, and Id2. Interestingly, four of
these genes (TBX3, TBX2, TBX20, and MSX) were highly
expressed in the HPVCs (Fig. 2). However, our array identified
additional endocardial-specific genes, like GATA5, or NFATC46

as well as genes restricted to AVC such as TGFβ2, and HEY132,
which were also expressed in the HPVCs, including at a single cell
level (Fig. 1). Genes suggestive of the cardiac cushions such as
Smad6, Twist, endocardial Msx, a serotonin receptor variant

(Slc6a4)47 were also found enriched in AVC endocardium vs
chambers. Furthermore, we uncovered genes highly enriched in
the AVC that were not previously reported to play a role in AVC
identity or more specifically in cushion formation were. These
include caveolin (Cav1), specifically expressed in the endo-
cardium (Fig. 1) thrombospondin (Thsd2), the Wnt modulator R-
Spondin (Rspo3), the adenosine receptor (Adora) and the neu-
ropeptide galanin (Gal)48. Expression of most of these genes was
also found in the HPVC population (Fig. 2). None of the gen-
es found enriched in expression in the chambers (Nppa, Irx2)
were present in AVC, nor in the HPVCs. Single cell RNA-
sequencing further confirmed previous data. At a single cell level,
endoglin (ENG) an endocardial-specific gene, VE-Cadherin
(CDH5), KDR and PECAM1, THSD1 were found highly enri-
ched at different levels either in TWIST1-negative or -positive
cells. GAL, ADORA1, and CAV1 were all expressed at a single
cell level.

The gene profiles of HPVCs as well as AVC were quite dif-
ferent from the ones of either the inferior or superior outflow
tract. None of the mainly enriched genes in both AVC and
HPVCs (Cav1, Thsd1, Spo3, Vsnl1, Gal, Igfbp7, Shisa2, Tbx2,
Hey1, Wnt2, Pitx2) were expressed in OFT regions49 thus
pointing to a specific AVC signature of HPVCs.

These findings collectively point to the pre-valvular endo-
cardial identity of the human cell-derived HPVC population and
validate the protocol used to derive such a cell population.
Overall, the transcriptome of HPVCs clustered with the one of
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E9.0 mouse AVC and not with mesenchymal cells (Fig. 1), further
emphasizes the identity of the HPVC. Together, these data reveal
the unique potential of our HPVC model to discover and further
investigate regulation of human valvulogenesis.

Our rationale to direct the fate of MESP1+ cardiovascular
progenitor towards the myocardium and endocardium, and fur-
ther to the endocardial cushions50 and a valvular fibroblastic as
well as tendinous/chondrogenic phenotype, was that these pro-
genitors should acquire an endothelial identity and an endo-
cardial cell fate within a cell population at the expense of
myocardial outcomes, in line with in vivo valvular prioritization.
We have found that FGF8, known to favor endocardium vs
myocardium24 as well as to play a role in formation and EMT of
cardiac cushion51,52, was potent in recapitulating the same cell
determination process from pluripotent stem cell-derived MESP1
+ cells23. We thus combined the action of VEGF, an endothelial
inducer, with FGF8 driving mesodermal cell fate toward endo-
cardial cells at the expense of myocardial lineage24. Stimulation
by VEGF and FGF8 were combined with the influence of an
extracellular fibronectin matrix and MEFs, which secrete FGF2
and TGFβ253 known to synergize with VEGF to determine the
endocardium54. Together, this inductive signaling induced the
HPVCs to express endothelial (i.e CD31, VE-CADHERIN,
ENDOGLIN) and endocardial lineage genes as found in the AVC
(i.e. GATA5, TBX2, GALANIN, RSPO, SMAD6, MSX1). This
suggests that HUES cells can not only recapitulate the meso-
dermal cardiogenic pathway23 but can also be directed toward the
fate of endocardial pre-valvular AVC cushion cells (Fig. 6). These
findings correlate with embryonic development as MESP1+ cells
are known to give rise to endocardial cells and cardiac cushions in
the mouse embryo19,55.

We further show that human valve progenitors are capable of
EMT under different experimental conditions. First, when cul-
tured on collagen gels, HPVCs acquire a mesenchymal phenotype
and express valvular fibroblast markers such as FILAMIN,
PERIOSTIN, VERSICAN and AGGRECAN. Second, when cul-
tured ex vivo or grafted in vivo with or close to cardiac cushions
of the AVC in mouse embryos, respectively, only HPVCs, but not
SSEA1- or SSEA1+MESP1+ cells, become valvular interstitial
cells expressing FILAMIN A, PERIOSTIN, SOX9 and COL-
LAGEN I, indicating that the HPVCs are unique and selective in
their response to cues derived from the surrounding mouse AVC
tissue.

The ex and in vivo EMT process is likely triggered through the
secretion of BMPs by the myocardium, as indicated in in vitro
mouse AVC explant cultures56 and in genetically altered in vivo
mouse systems19,57. Such a phenomenon could be recapitulated
in vitro using BMP2, WNT and NOTCH signaling pathway
activation with HUES cells-derived HPVCs. Indeed, BMP2 also
induces expression of post EMT genes such as SLUG, SMAD6,
PERIOSTIN, or SOX9. WNT also turned on expression of EMT
genes including SLUG, SMAD6, and MSX1. Expression of SLUG,
a direct notch target in vitro and in vivo32,56, and PERIOSTIN
were abrogated by the Notch inhibitor, DAPT. PERIOSTIN,
SLUG and MSX1 expression was further induced by ectopic
expression of the intracellular Notch domain (Supplementary
Fig. 2). Interestingly, KLF2 was expressed in a subset of
PECAM+ , ENG+ , CDH5+HPVCs and was significantly upre-
gulated by Wnt signaling (Supplementary Fig. 5), a response that
may play a role in mechanotransduction by securing KLF2
expression via a positive feedback of Wnt signaling35.

These findings thus confirm that maturation of stem cell-
derived HPVCs recapitulates in vitro, at least partially, the in vivo
embryonic signaling mechanisms mediating EMT and cell inva-
sion, including the interplay between the Bmp2/Notch signaling
pathways32.

Primary ciliary dyskinesia (PCD) without situs inversus58 as
well as other ciliopathies have been clinically associated with
myxomatous mitral valve and other valve diseases59. Interest-
ingly, patients with autosomal dominant polycystic kidney disease
(ADPKD), a disease in which cells feature an over-activation of
the SHH pathway60, have an increased occurrence of mitral valve
prolapse59. Dachsous is required for lymphatic valve develop-
ment37. Dachsous mutated HPVCs recapitulated several features
of mitral valve prolapse (Fig. 5). This included cilia defects
responsible for disorganization of valve interstitial cells within the
leaflets and excess secretion of hyaluronan, collagen I and peri-
ostin, a hallmark of mitral valve prolapse.

HPVC single cell-sequencing data uncovered that DCHS1
c.6988 C>T valve interstitial cells could not acquire a normal VIC
identity or express high levels of tissue-specific COL1A1 or
PSTN. This lack of cell identity could explain why the cells cannot
properly distribute within valve layers. This also suggests that
ECM may regulate cell fate of valve interstitial cells in the course
of leaflet patterning. Interestingly, cilia signal through sonic
hedgehog, which targets the hyaluronic acid synthetase (Has)
gene40 and other components of the ECM42 via the transcription
factor Gli3. In the absence of sonic hedgehog (SHH), the GLI
proteins GLI2 and GLI3 are phosphorylated by PKA, CKI and
GSK3β. This leads to their proteolytic cleavage to generate
repressor forms (GLI2R and GLI3R, respectively)61. A deregula-
tion of this signaling pathway would relieve inhibition on Has
and upregulate hyaluronic acid. Besides the role of cilia as a
sensor of the extracellular environment (i.e. EC Matrix), the
direct regulation of ECM organization may explain how muta-
tions in Dachsous and the absence of cilia deregulate synthesis of
ECM proteins through SHH pathway. Indeed, the SHH receptor
patched1 was found clustered at the basal body of cilia in wild
type cells while it was spread across the cell membrane in DCHS1
c.6988 C>T cells lacking cilia (Fig. 6). Furthermore GLIs 2 and 3
as well BRD2 and PRTM1, positive regulators of SHH targeted
genes43 were upregulated in DCHS1 c.6988 C>T cells valvular
cells vs wild type cells, pointing to an activation of SHH pathway.
Interestingly, a lack of cilia favors EMT in mouse Tg737/ift88
mutants62, which is in agreement with our observation that
DCHS1 c.6988 C>T undergo EMT like wildtype cells. However,
DCHS1 c.6988 C>T mutant cells featured an over-activation of
the SHH pathway in contrast to Tg737/ift88 mutant hearts62,
which lacked SHH signaling at least in second heart field
progenitors.

Our data using a SHH inhibitor (Fig. 6) confirmed that SHH
signaling is constitutively activated in DCHS1 c.6988 C>T cells.
Regulation of the pathway by a pharmacological SHH pathway
inhibitor rescued the ECM cell phenotype. Thus, our data bring a
potential pharmacological target to potentially prevent MVP.

In summary, we report that (patient) hiPS cell-derived HPVCs
can be used as faithful models for human valve disease.

A limitation of our study was the use of SSEA1+MESP1
+sorted cells. Such sorting may have excluded the endocardial
cells that are already determined in the primitive streak13,15,63

and segregated from the myocardial lineages in the pre-cardiac
mesoderm prior to the segregation of the first and second myo-
cardial lineages14,54, as reported in chicken, quail, and mouse
embryos. Whether at least some endocardial cells are already
determined in the pre-cardiac human mesoderm, remains to be
further investigated.

Our in vitro, ex vivo and in vivo assays facilitate further studies
examining the events that give rise to the human endocardium,
valvular interstitial cells, and tendinous/chondrogenic cells, as
well as studies to delineate the pathways triggering EMT and
potentially underlying mechanotransduction. For such an aim,
cells will have to be subjected to shear stress by applying a flow in
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a cyclic-dependent manner to mimic the heartbeat. This would
require engineering of a specific technical set-up. Two limitations
of our protocol are the likely embryonic nature of engineered
valvular cells and the 2D environment of cells in culture. Indeed,
valvular cells differentiate early in the outflow tract and atrio-
ventricular canal cushions filled with a jelly and mature up to
weeks after birth in an extracellular matrix3 and in a mechanically
dependent manner71. These situations may in the future be
mimicked by engineering hydrogels with appropriate stiffness
and relevant components of the jelly and extracellular matrix
proteins. HPVCs cells could then be plated on or embedded in 3D
gels to better mimic the in vivo scenario.

This human model of valvulogenesis could additionally be
applied to other patient-specific iPS cells and may help in
understanding the molecular mechanisms underlying valvulo-
pathies originating from defects in cell fate decisions and/or EMT.

Methods
Cell culture and sorting. Human embryonic stem (HUES) cell lines HUES-24 and
HUES-9, were obtained from Harvard Stem Cell Center (Dr Chad Cowan)23.
HUES-24 was here used to generate a transgenic cell line expressing GFP under the
control of the Sox9 promoter. To engineer the DNA construct, the 298-bp minimal
Sox9 promoter and two cis-regulatory elements64 were excised from the
pGBW101–1,2 vector (kindly given by Dr Bien-Willner, Baylor College of Medi-
cine, Houston) and subcloned in a pAcEGFP1–1 vector. The DNA construct was
electroporated and cells were selected with G418 for 10 days. HUES cell lines were
cultured on Mouse Embryonic Fibroblasts (MEF) prepared from E14 Mouse
embryos using KO-DMEM medium supplemented with β-mercaptoethanol
(10–7 M), glutamine, non-essential amino acids, 15% Serum Replacement
(Thermo-fisher) and 10 ng/ml FGF2.

To generate a MesP1+ cell population23, human pluripotent stem cells (both
HUES and hiPS cells) cultured on MEFs were treated with first Wnt3a (100 ng/ml)
and then Wnt3a (100 ng/ml) together with 10 ng/ml BMP2 for one day and then
with 10 ng/ml BMP2 alone for one more day, in RPMI/B27 containing 1 μM
SU5402, a FGF receptor inhibitor. For sorting, trypsinized cells were incubated for
30 min with gentle occasional agitation with EasySep™ Human Whole Blood CD15
(SSEA-1) Positive Selection Kit (Stem cells technologies) (25 μl/ml suspension
cells) in D-PBS supplemented with 0.5% (wt/vol) Bovine Serum Albumin (BSA)
and 2 mM EDTA at room temperature. Cells were then transferred to a column on
a magnet. Cells were washed three times with 5 ml D-PBS-BSA/EDTA.
Immunofluorescence, using an anti-CD15-FITC (Amicon) antibody, carried out
directly after sorting revealed 90% purity of SSEA-1+ cells[23]. HUES or hiPS cells
derived SSEA1+ sorted cells were phenotyped by RT-quantitative PCR and
expressed MESP1, MEF2C, NKX2.5, ISL1 but not CD31, ENG or CDH5.
Immunostaining documented that 90% of cells were MESP1+ 23.

To direct differentiation of (CD15+) SSEA-1+ cells towards endocardial HPVC
fate, cells were cultured on MEFs plated at low density (10,000 cells/cm2) on
fibronectin-coated plates and treated with 30 ng/ml VEGF, 10 ng/ml FGF8 and 2
ng/ml FGF2 for 6 days and sorted with anti-CD31 conjugated magnetic beads
(Miltenyi, France) (Supplementary Fig 1). A step-by-step protocol describing in
detail the valvular cell differentiation process has been described65. Separately,
CD31+ cells cultured on fibronectin-coated plates were further induced to undergo
EMT using 100 ng/ml BMP2 for 2 days in the presence or absence of DAPT (1
μM). In a series of experiments, 50 000 cells were transfected with a NCDI (Notch
intracellular domain) expression plasmid (1 μg) or empty backbone vector using
lipofectamine 2000.

iPS cells. iPS cells were derived using the Sendai viral vectors (Lifetech themofisher
France). Cells were characterized by immunostaining for OCT4 (anti-OCT4 santa-
cruz sc-9901), Sox2 (anti-SOX2 santa-cruz sc-17320) and NANOG (anti-NANOG
R&D AF1997). Cells were then differentiated toward endoderm by treatment with
100 ng Activin in DMEM supplemented with 10% FCS for 3 days, or toward
mesoderm by adding CHIR-99021 (5μΜ) the first day, CHIR-99021 and BMP2
(10 ng/ml) the second day and IWR1+ BMP2 the third day. Ectodermal cells were
obtained by culturing cells for three days in RPMI+N2 supplement and 0.5 μM
retinoic acid. Genomic integrity was tested at passages 15–20 using digital PCR of
copy number variants of main human recurrent genomic abnormalities (stemge-
nomics, Montpellier, France).

Reverse-Transcription Real-time quantitative PCR. RNA was extracted from
SSEA1+ cells or VEGF/FGF8/FGF2-treated using a Zymo research kit. RNA (1μg)
was reverse-transcribed using the Superscript II reverse transcriptase (Invitrogen,
Cergy, France) and oligo(16)dT primers. Q-PCR was performed using SYBR Green
and a Light Cycler LC 1.5 (Roche Diagnostic). Amplification was carried out as
recommended by the manufacturer. Data analysis and primers specific for human
genes are described in23 and in Supplementary Data 2.

Microarrays. The AVC and the primary ventricles of E9.0 mouse embryos were
dissected out and RNA (triplicates) was extracted with a Zymo research kit. RNA
was also extracted from HPVCs. cRNAs were profiled using Illumina Mouse WG-6
v2 BeadChips or human Expression HG-U133 arrays and analyzed in Genespring
GX 11.0. Data were quality filtered to exclude signal intensities below background,
and expression profile differences of 4-fold or greater at a significance threshold of
0.01 or less were compiled into upregulated and downregulated transcript lists.
Bioinformatically filtered genes were used for downstream analysis in Ingenuity
Pathway software to examine network relationships as well as identify over-
represented gene ontologies.

Cluster analysis of AVC and mesenchymal stem cell data sets were conducted as
follows. Previously published AVC (GDS3663) and mesenchymal array data sets
(GDS1288) were downloaded from GEO. HPVC gene expression profiles were
examined using HG-U133 arrays and signal values were computed using GCRMA
normalization. All expression signals for each dataset were Log10 transformed and
normalized by z-score transformation66. Three experimental replicates were then
averaged for each study, human and mouse orthologs and/or homologs between
microarray data sets were determined by matching NCBI gene symbols across
experiments and between species. This resulted in 9,385 orthologues that were then
clustered using the HOPACH algorithm for gene clustering with the cosangle
distance metric67 or by hierarchical clustering with the Euclidean distance metric.

Single cell-sequencing. HiPS cell-derived HPVC and hiPS cell-derived valvular
interstitial cells were dissociated with trypsin into single cells and processed with
the SingleCell3 Reagent Kit on the Chromium platform as described by the
manufacturer (10X genomics). cDNA libraries were sequenced with a Next-seq
Illumina sequencer. A first analysis was performed with the Cell Ranger and loop
cell10X genomics softwares. Clusters and subclusters were defined using genes that
were differentially expressed in cell clusters in comparison with all other cells with
a threshold of Log2 equal to at least 2. A secondary analysis was performed by B
Jagla at the Pasteur Institute (Paris) using the SCDE package and scShinyHub
(publicly available at https://github.com/baj12/scShinyHub). 1895 genes were
detected as expressed in 50% of cells and 4576 in 25% of cells (Supplementary
Fig. 2).

Antibodies. Antibodies used for cell or embryo immunofluorescence were used at
a dilution of 1/100 unless otherwise specified. Antibodies were raised against Isl1
(Developmental Hybridoma bank, Iowa University 1/50), Tbx20 (novus biological
H00057057-B01), Msx1 (Abcam ab93287), Tbx3 (Santa Cruz sc-178721), aggrecan
(Chemicon AB1031), versican (Chemicon AB1033), smooth muscle actin (Sigma
A-2547), Filamin A (Epitomics, CA, USA), vimentin dylight 550 (Novus biological,
VM452, 1/200), periostin (Abcam ab140141), CD31 (BD pharmigen, WM59), VE-
cadherin (R&D systems/MAB9381), Sox9 (a gift from Pr Wegner, University of
Nurnberg, and Santa-Cruz Sc17431), GATA5 (Abcam ab11877), Hyaluronan-
binding protein (Millipore 385911), collagen I (Abcam 34710), anti-Patched1
(Merck-Millipore, France, 06–1102), human Lamin A/C (Novacastra, NCL-LAM-
A/C), and anti-NFATc (Santa-Cruz 17844 H10).

Cell imaging. High content imaging was performed in 96 wells plates using an
Arrayscan (Cellomics Thermo Fisher Scientific) attached to an inverted microscope
(Carl Zeiss, Inc.) using 20x N-Achroplan objective, NA 0.45, at room temperature.
Other images were observed in epifluorescence microscopy (Zeiss microscope) or
using an Ultraview Vox Spinning disk Perkin Elmer confocal microscope driven by
the Volocity software or using a TRIO multispectral analysis setup (Caliper, Sci-
ence). To visualize cilia and Ptch1 staining, stacks of images were acquired using a
Zeiss observer epifluorescence microscope using a Plan-Apochromat 63X water
objective or a confocal LSM800 Zeiss microscope equipped with an airyscan of 32
detectors. Light was provided by a Colibri 7 source or a laser module 405/488,561
and 640 nm wavelengths, respectively. Images were acquired using the ZEN ZEISS
software. Then some images were deconvoluted using Autoquant and recon-
structed in 3D using Imaris software (IMARIS). Quantification of extracellular
matrix proteins was performed by thresholding images acquired with a Zeiss
observer microscope or a confocal LSM800 equipped with a Colibri7 4LED light
source using the same LED intensity and same exposure time for the CCD camera
for all images or a laser module using a constant laser power. The surface of the cell
field labelled by the antibody was calculated using Image J (NIH image). All details
of image acquisition including excitation wavelengths and power of the light
source, emission wavelengths and detector sensitivity as well image processing can
be found in Supplementary Table 1, “Cell imaging parameters”. All samples were
mounted in Fluoromount™ (Cliniscience, France).

AVC and OFT explants. Dissection and culture of explants on collagen I hydrogel
were carried out as described36. Briefly, after dissection, the OFT or AVC explants
were cultured with the endocardium facing the gel in DMEM/ITS medium.

Tendinous and chondrogenic differentiations of HPVCs. Chondrogenic differ-
entiation was performed according to established methods33 HPVCs were isolated
from MEF using collagenase IV (Life Technologies, France), transferred into 15 mL
of polypropylene centrifuge tubes (500,000 cells/tube) and gently centrifuged. The
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resulting pellets were statically cultured in DMEM high-glucose medium with
glutamine, penicillin/streptomycin and chondrogenic supplements (1X insulin-
transferrin-selenium, 1 μmol/L dexamethasone, 100 μmol/L ascorbic acid-2-
phosphate), and 10 ng/mL TGF-β1. After 3 weeks, RNA was extracted from pellets
and subjected to RT-Q-PCR. Cell pellets were fixed in 4% paraformaldehyde
overnight, embedded in paraffin, and sectioned in 5 μm slices. Sections were
stained with anti-collagen1a and –Sox9 antibodies.

Collagen gel culture. SSEA-1- HUES cells, SSEA-1+HUES cells or SSEA1+
HUES cells treated with VEGF and FGF8 and FGF2 (HPVCs) were cultured alone
and aggregated. Preparation of collagen gel (1 mg/ml type I collagen from rat tail
tendon, BD Sciences) was described68. Resultant cell aggregates were placed on
hydrated collagen gels and cultured for 48–72 h.

Cell injection in embryos, embryo culture, and isolated embryonic heart culture.
Mouse embryos were collected from E10.5 pregnant mice and cultured in

DMEM or in M2 medium supplemented with 10% FCS at 37 °C and set with pins
(isolated heart culture) or between pins (whole embryo culture) in a culture dish
filled with silicone (Fig. 4a). Glass injection pipettes were pulled with a P-87
Flaming/Brown Micropipette Sutter Puller to get a 20 μm tip inner diameter. To
optimize injection, a pipette was filled with the green dye CDCFDA, SE
(Invitrogen/Molecular Probes, USA) and the dye injected into AVC.

Micropipettes were filled with HUESC-derived HVPC, or MesP1+ SSEA1+ or
SSEA1- cells as controls in DMEM-10% FCS medium at a concentration of
105cells/μl. One to three injections at a pressure of 200 hPa for 1 s were carried out
in both the wall and the lumen of the AVC or OFT. Cell injections in brain were
used as a negative control. At 4 h following injection, hearts were dissected and
cultured at the air-liquid interface on insert coated with Matrigel and set in
multiwell plates filled with DMEM-10% FCS. After 48 h culture, embryonic hearts
were PFA-fixed and embedded in 1% agarose blocks prior to paraffin embedding.
Alternatively, cells were injected in the AVC of E9.5 embryos through the yolk sac
and embryos cultured in rolling tubes in 25% M16 medium /75% rat inactivated
serum and gassed with 40% O2/5%CO2 for 24–48h69.

Statistics. The data are expressed as mean ± SEM and represented as boxes and
whiskers (min to max) showing the values lower than the 2.5th percentile and
greater than the 97.5th percentile as circles. Experiments were repeated up to 9
times. Student-t test was used to compare data sets after checking for continuous
probability distribution (Gaussian distribution) for each data group.

Data availability
The authors declare that all data supporting the findings of this study are available within
the article and its supplementary information files or from the corresponding author
upon reasonable request. The raw data for the transcriptomic data have been deposited in
the Genbank database under accession code: GSE73546. The source data underlying
Figs. 1a, 2a, 2c and 5e are provided as a Source Data file.
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