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Abstract: Epithelial–mesenchymal transition (EMT) is a fundamental physiologically relevant process
that occurs during morphogenesis and organ development. In a pathological setting, the transition
from epithelial toward mesenchymal cell phenotype is hijacked by cancer cells, allowing uncon-
trolled metastatic dissemination. The competing endogenous RNA (ceRNA) hypothesis proposes
a competitive environment resembling a large-scale regulatory network of gene expression circuits
where alterations in the expression of both protein-coding and non-coding genes can make relevant
contributions to EMT progression in cancer. The complex regulatory diversity is exerted through an
array of diverse epigenetic factors, reaching beyond the transcriptional control that was previously
thought to single-handedly govern metastatic dissemination. The present review aims to unravel the
competitive relationships between naturally occurring ceRNA transcripts for the shared pool of the
miRNA-200 family, which play a pivotal role in EMT related to cancer dissemination. Upon acquiring
more knowledge and clinical evidence on non-genetic factors affecting neoplasia, modulation of the
expression levels of diverse ceRNAs may allow for the development of novel prognostic/diagnostic
markers and reveal potential targets for the disruption of cancer-related EMT.

Keywords: EMT; microRNA-200 family; ceRNA; lncRNA

1. Introduction

Primary tumor development is a histopathological progression involving the well-
documented acquisition of a series of somatic mutations [1,2]. Although relevant, hoping
to understand cancer dissemination simply by acknowledging somatic mutations accumu-
lating in the genome of neoplastic cells and defining the genes and gene products that drive
the process bears limitations. While mutations in driver genes do facilitate the development
of pro-metastatic traits, the baffling complexity of the mechanism seems to originate from
crosstalk between regulatory networks. The recent revelation that less than 2% of the
human genome is related to protein-coding genes has thus emphasized the importance of
unravelling these networks beyond frontline transcriptional control in order to fully com-
prehend cancer dissemination [3]. Here, we set out to examine the dynamics of the main
intrinsic regulatory mechanisms governing cancer-related epithelial–mesenchymal transi-
tion (EMT) and identify the stoichiometry of vital players in the competing endogenous
(ceRNA) network with a focus on cancer progression and metastasis.

2. Epithelial–Mesenchymal Transition

The EMT process is a vital cell mechanism which occurs during normal embryonic de-
velopment, wound healing, and tissue regeneration [4]. Upon EMT, cells shed pre-existing
epithelial surface-barrier and secretory functionalities and acquire a series of mesenchymal
characteristics (Figure 1) [5]. Theoretically, at the extreme epithelial axis pole (E), epithelial
cells exhibit cell-to-cell junctions and polarity, while cells at the extreme mesenchymal pole
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(M) exhibit heightened invasiveness and motility and spindle-like morphology [6]. Transi-
tion occurs through distinct molecular processes (thoroughly reviewed elsewhere [7–9]),
inclusive of the induction of EMT transcription factors (EMT-TFs), changes in the cell sur-
face protein expression profile, re-organization of the cytoskeleton, and altered expression
of specific cellular mediators [10]. In addition, regulation of the EMT process is exhib-
ited through three finely tuned epigenetic molecular layers: (1) small non-coding RNAs,
(2) differential splicing, and (3) translational/post-translational control [11]. Importantly,
carcinoma cells co-opt these mechanisms and the tumor microenvironment to promote
metastatic expansion [12].
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Figure 1. The process of epithelial–mesenchymal transition. A layer of polarized epithelial cells
transitions toward a mesenchymal state. The cells with intermediate phenotype have transitioned
into a partial EMT state and express both epithelial and mesenchymal markers (adapted from [10]).

Carcinomas, malignancies of epithelial cells, amount to approximately 90% of all
human cancers and account for the majority of metastasis-related deaths [13]. Although
the complete molecular and morphogenic regulatory mechanism underlying the metastatic
potential of carcinoma cells remains elusive, the process of metastatic progression has
been well characterized. Upon dissemination, primary neoplastic cells escape tumor
borders upon EMT activation, invade the surrounding extracellular matrix, travel through
the systemic circulation, extravasate in the parenchyma of a distant organ, and establish
secondary tumors [14]. Through this transition, a radical change in function, differentiation,
and cell lineage occurs [15].

This biochemical and morphological transition toward a variety of pathologic and non-
pathologic conditions presumably operates on multiple regulatory layers [15,16]. Despite
increasing efforts to unravel the specifics of the EMT process in neoplastic cells, research
into genes with recurrent mutations in metastasized cells is ongoing [8]. Thus, the dis-
tinct capabilities of cells acquired throughout the EMT process seem to be independent
of concomitant alterations in DNA, but rather point to a coordinated collaboration of
epigenetic signaling components [9,17]. A multitude of transcriptional repressors derived
from tumor-associated reactive stroma play crucial roles in the regulation of signaling
pathways affecting neoplastic cells and inducing EMT, including the zinc finger E-box
binding homeobox 1 (ZEB) protein family, the Twist protein family, and the Snail protein
family [9,16,18–25]. Specifically, increased expression of EMT-TFs leads to transcriptional
repression of CDH1, encoding for junction protein E-cadherin with a central role in the
maintenance of the polarized epithelial monolayer and metastatic suppression during tu-
mor progression [16,26]. While the knowledge of TFs acting in EMT reveals many signaling
pathways for the induction of phenotypic change in pathogenesis, endogenous expres-
sion of EMT-TFs has been found in multiple tissue types [11]. Thus, coupling EMT-TFs
exclusively to pathogenic de-differentiation might not always be accurate as these TFs bear
broader physiologically relevant roles. With this in mind, compelling data suggests that a
disturbance in the balance between different regulatory networks resulting in a shift from
epithelial to mesenchymal cell phenotype is one of the essential prerequisites allowing for
the invasion–metastasis cascade, differentiating it from the physiologically relevant EMT
process.
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3. Epithelial–Mesenchymal Transition Phenotype In Vivo

Depending on the signaling profile, cells progress through the EMT spectrum of
changes in a diverse manner and advance to variable extent toward the mesenchymal
phenotype (Figure 1) [8,27]. Interestingly, it has been recently indicated that stable cell
residence at any of the extreme poles—either the epithelial (E) or mesenchymal (M) pole—
prevents the acquisition of stemness, one of the central qualities a cell acquires in the
transition to a mesenchymal phenotype [28]. Moreover, the optimal state for acquiring stem
cell capabilities was shown to be the intermediate E/M cell state, termed partial EMT [29].
Kröger and colleagues showed that forcing highly tumorigenic E/M hybrid cells to undergo
full transition toward the extreme M state, a process referred to as complete EMT, results in
a loss of tumorigenicity [30]. Furthermore, Tsai and colleagues [31] demonstrated that the
transient nature of EMT promotes tumor cell dissemination in vivo. A similar conclusion
was drawn for circulating tumor cells with an intermediate E/M phenotype, as they could
exit the bloodstream more efficiently than cells with the extreme E or M phenotype, and
consequently pose a higher metastatic risk [32]. The plasticity of the process indicates
that EMT-related carcinoma progression does not function as a binary switch between the
two extremes. Rather, carcinoma cells rarely (if ever) execute the complete EMT program
in a spontaneously arising tumor [8,33]. Even though complete EMT can be achieved
experimentally, this is likely to be a non-physiological phenomenon arising mostly as an
experimental artefact, which was demonstrated in multiple in vivo studies [34–36]. In
spindle cell carcinoma, varying patterns of cadherin expression indicate that EMT indeed
comprises a wide spectrum of changes, where complete transition results in a loss of
epithelial and gain of mesenchymal markers [15]. Furthermore, during partial EMT, some
cells fail to activate the mesenchymal gene expression program [37]. As EMT-related
molecular and phenotypic changes are transient and non-conclusive for all tumor cells, this
might be the reason behind the incapacity to prove complete EMT on a molecular level
in vitro. In conclusion, the fluidity of EMT is evident in the co-expression of both epithelial
and mesenchymal markers on intermediate hybrid E/M cells, where partial EMT might
represent the final cell differentiation state.

4. Competing Endogenous RNA Hypothesis

Competitive regulatory crosstalk of different molecular species, including DNA–
protein, RNA–protein, RNA–RNA, and protein–protein interactions, has been described
in many non-pathological as well as pathological settings [38,39]. This review focuses
on sequence-based competition of naturally occurring protein-coding and non-coding
RNA transcripts, termed here as competing endogenous (ceRNAs) RNA molecules, for
microRNA (miRNA) molecules, resulting in aberrant gene expression regulation (Figure 2).
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Figure 2. Network of competing endogenous RNAs (ceRNAs). MicroRNAs bind to miRNA response
elements (MREs) that are in the transcriptome of different classes of RNA transcripts, namely cir-
cRNAs, lncRNAs, pseudogenes, and protein-coding mRNA. All classes of RNA transcripts contain
MREs and compete for miRNA binding, thereby regulating the common pool of miRNA. All rep-
resented classes carrying the same MRE interact with each other through competition for the same
miRNA (adapted from [40]).

MiRNAs are an abundant class of small, non-coding, single-stranded oligoribonu-
cleotides, serving as sequence-specific silencers of target gene transcription upon bind-
ing [41]. They serve as regulators in many diverse cellular processes and their expression
profile ranges from being largely ubiquitous to highly temporal or site-specific [26,38]. It
was recently estimated that miRNAs affect expression levels of more than half of all protein-
coding genes [42]. However, functional studies often show only a modest decrease in target
gene expression [43]. A reason for this can be found in the ubiquitous character of miRNA
molecules for all biological networks. The majority of RNA molecules act in a “many-to-
many” manner—each miRNA molecule can potentially target miRNA response elements
(MREs) on multiple messenger RNA (mRNA) molecules, while each mRNA molecule can
be targeted by multiple miRNA molecules [44]. This principle explains the competition
for small regulatory molecules among multiple target transcripts and designates miRNA
molecules as having a central role in the competitive regulatory crosstalk.

The ceRNA hypothesis suggests that the competition for miRNAs encourages func-
tional interactions among common targets to induce post-transcriptional regulation [45–47].
As postulated, ceRNA acts in a competitive manner [45,47]. When the expression levels
of a specific ceRNA increase, the probability of it binding to the target miRNA increases
as well, leading to a decrease in miRNA expression levels, which results in decreased
miRNA–mRNA binding. Consequently, an increase in mRNA expression levels can be
detected. Similarly, reverse effects can be seen with low ceRNA expression levels [45,47].
Arvey and colleagues [48] proposed that miRNA-guided post-transcriptional regulation
does not solely depend on their binding sites and the quantity of target molecules [48].
They found that many RNA molecules are able to titrate specific miRNAs from the common
pool, consequently sequestering them away and causing upregulation of the target gene.
This competitive race amongst diverse regulators with common target sequences leads to
the assumption of functional redundancy of some RNA families.

5. Competing Endogenous RNA Network

CeRNAs competing for common MREs regulate one another via ceRNA networks
(ceRNETs) [49–51]. CeRNETs generally consist of two different levels of regulation: (1) di-



Cells 2022, 11, 73 5 of 19

rect competition between two ceRNA regulators sharing common MREs, and (2) indirect
linkage via a common ceRNA, independent of miRNAs, through which a titration mech-
anism occurs [51–53]. The modeling work undertaken by Ala et al. [53] suggested that
proportional balancing of miRNAs and other ceRNAs is crucial in gene expression regu-
lation, in which alterations often lead to pathological states. They demonstrated that an
increase in a specific ceRNA can result in a proportional increase in the expression of an-
other regulatory ceRNA, together with a decrease in available miRNA levels. Furthermore,
they implied that losing a single ceRNA regulator and changing the near equimolar equi-
librium may result in changes on a global level, since multiple two-part ceRNA crosstalks
were found to be affected by a third transcript, leading to a critical alternation. Although
several regulatory networks have been proposed for different species of RNA that offer a
clearer view of their functionality in cancer [54], a genome-wide scale study to define the
intertwined roles of non-coding transcripts and potential non-coding functions of coding
genes would be critically beneficial.

5.1. MicroRNA-200 Family and ZEB Factors

The pivotal role in cancer-related EMT has been continuously assigned to the micro
RNA-200 (miR-200) family [55–57]. The miR-200 family comprises five members that can
be further divided into two functional subgroups based on a single-base difference in an
otherwise conserved Watson–Crick pairing of the 5′ region of the miRNA: (1) miR-200a
and miR-141, further referred to as subgroup I, and (2) miR-200b, miR-200c, and miR-429,
further referred to as subgroup II [10,15,41]. The MiR-200 family shows enriched expression
in tissues where the epithelial phenotype prevails [58,59], and has been associated with
the initiation and progression of malignant transformation [24,60]. Aberrant expression
of miR-200 members results in tumor progression by lowering the expression of vital
surface and polarity factors [61]. A study on spindle cell carcinoma showed significant
miR-141, -200a, -200c, and -429 downregulation in carcinoma tissue compared with normal
mucosa [15,62]. Furthermore, downregulation of the miR-200 family showed a significant
correlation with loss of E-cadherin, characteristic for EMT progression [15,63–65]. Another
study demonstrated that restored levels of miR-200a inhibited tumor growth in vivo [66].
Nevertheless, as a consequence of intra-tumoral heterogeneity, the causal relationship of
aberrant miRNA expression and its pathophysiological relevance in cancer is difficult to
assess.

Specificity of the potent regulation of miRNA species is exerted through a 2-7-nucleotide
long “seed sequence” in the 5′ end, binding by complementarity to the MREs in the 3′

UTR of the target mRNA [60]. Common binding targets for the miR-200 family are the
conserved miR-200 sites in the 3′ UTR of the repressors of E-cadherin expression, ZEB1
and ZEB2, inducing EMT by limiting the expression of genes crucial for development and
maintenance of the epithelial cell phenotype [10,55,67]. Interestingly, all members of the
miR-200 family were found to be transcriptional targets of ZEB1 and ZEB2 [68], displaying
a reverse inter-relation and proposing a double-negative feedback loop [24]. The reciprocal
relationship of the regulatory circuits was described by many, implying a detrimental effect
of the opposing functionalities, possibly resulting in miR-200 family downregulation and
ZEB1 upregulation, both in support of EMT promotion [69–73].

5.2. LncRNA and miRNA Subgroup I

Long non-coding RNA molecules (lncRNAs) were recently found to be involved in the
regulation of many biological functions as well as cancer progression [45]. Accounting for
the largest portion of the human transcriptome, lncRNAs are involved in diverse biological
functions [74]. While miRNAs were found to depend mostly on the abundance of their
targets, target multiplicity of lncRNA molecules is ascribed to cross-regulation in the
common pool of MREs [48]. In support of this, lncRNA were indeed found to sponge and
hijack the miRNA pool that targets transcripts with essential roles in EMT, including E-
cadherin [46,74]. While we now know that some lncRNA molecules function as oncogenes
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and others act as tumor suppressors [54], the functions and mechanisms of the crosstalk
between lncRNA, circular RNA (circRNA), pseudogenes, and other types of RNAs remain
unclear [45].

Elucidating the diverse roles of lncRNAs is a major focus in cancer research since their
role of regulating target mRNA expression through competitive binding to shared miRNA
sites has been confirmed [75]. Accumulating data point to lncRNAs having a vital role in
sponging miRNAs in EMT and consequently sequestering away specific molecules and
their functionality. The tilting of the balance toward one of the EMT poles is activated
through the regulation of surface protein expression, EMT-TFs, and players in the ceRNA
crosstalk. There are a few common characteristics of every lncRNA molecule in a specific
ceRNET [47]. Firstly, lncRNAs were found to be the primary targets of miRNA; they show a
competitive character toward miRNAs for common mRNAs in ceRNETs [74]. Furthermore,
the ceRNA hypothesis provides a justification for both the functionality of lncRNAs in the
network as well as an explanation for the 3′ UTR regulatory function [47].

H19 was the first molecule to be identified as lncRNAs [76]; since then, its role in
various cancers has been established [24,55,58,71,77–79] (Table 1). Furthermore, H19 was
shown to be essential for tumor metastasis [80,81] and was found to be involved through-
out the process of tumorigenesis [82]. H19 facilitates the invasion of colon cancer cells
via miR-200a sponging mechanism and consequential ZEB1/2 upregulation, while its
overexpression results in upregulation of vimentin and downregulation of E-cadherin, and
indicates a significant increase in tumor size in vivo [83].

Table 1. Members of lncRNA-miRNA-mRNA ceRNA network type for miRNAs in subgroup I.

ceRNA Member Competitor Shared miRNA Model Type Cancer Type Ref.

MALAT1

PDL1 miR-200a in situ, in vitro non-small cell lung cancer [84]

FOXA1 miR-200a in vivo, in vitro anaplastic thyroid
carcinoma [85]

ZEB2 miR-200 family in situ clear cell kidney
carcinoma [86]

MAGI2-AS3 ZEB1/2 miR-200a/miR-141 in situ gastric cancer [87]

SNHG15

YAP1 miR-200a in situ, in vitro papillary thyroid
carcinoma [88]

ZEB2/E2F3 miR-141 in situ, in vitro hepatocellular carcinoma [89]

SIRT1 miR-141 in situ, in vitro colorectal cancer [90]

/ miR-141 in situ, in vitro osteosarcoma [91]

KLF9 miR-141 in vitro nasopharyngeal
carcinoma [92]

PDL1 miR-141 in situ, in vitro gastric cancer [93]

H19
ZEB1/2 miR-200a/141 in situ, in vitro lung cancer [94]

VIM/ZEB1/ZEB2 miR-200a in situ, in vitro colorectal cancer [83]

TP73-AS1

BDH2 miR-141 in situ, in vitro pancreatic cancer [95]

HMGB1/RAGE miR-200a in situ, in vitro hepatocellular carcinoma [96]

TFAM miR-200a in situ, in vitro breast cancer [97]

ZEB1 miR-200a in situ, in vitro breast cancer [98]

ZEB1-AS1
ZEB1 miR-200a in situ, in vitro intrahepatic

cholangiocarcinoma [99]

/ miR-141 in situ, in vitro colorectal cancer [100]

SNHG16 / miR-200a in situ, in vitro colorectal cancer [101]
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Table 1. Cont.

ceRNA Member Competitor Shared miRNA Model Type Cancer Type Ref.

BFAL1 RHEB/mTOR
pathway miR-200a in situ colorectal cancer [102]

HULC
c-Myc/Bcl-2
(PI3K/AKT
pathway)

miR-200a in vitro chronic myeloid leukemia [103]

MRAK081523 Plxna4 miR-141 in vivo, in vitro pulmonary fibrosis [104]

HOTAIR SKA2 miR-141 in situ, in vitro glioma [105]

linc00475 YAP1 miR-141 glioma [106]

LINC01857 MAP4K4 miR-141 in situ, in vitro diffuse large b-cell
lymphoma [107]

MIAT
SIX1/PI3K/AKT

pathway miR-141 in situ, in vitro osteosarcoma [108]

DDX5 miR-141 in situ, in vitro gastric cancer [109]

XIST / miR-141 in situ, in vitro colorectal cancer [110]

While extensive research has been done on the role of H19 lncRNA in cancer metastasis
since its discovery, several other lncRNA molecules were recently found to be critical in
the regulation of cancer-related EMT (Table 1). Metastasis-associated lung adenocarci-
noma transcript 1 (MALAT1) lncRNA molecule is one of the most commonly implicated
lncRNA molecules in various types of cancer; Xiao et al. further defined its role as an
oncogene, acting through sponging of multiple miR-200 family members, resulting in ZEB2
increase. They demonstrated that a knockdown of MALAT1 decreased renal cancer cell
proliferation, migration, and invasion potential in vitro and in vivo [86]. A recent study
performed by Wei and colleagues showed significant downregulation of miR-200a with an
upregulation of MALAT1 lncRNA molecule in non-small cell lung cancer, which indicates
that the MALAT1/miR200a/PD-L1 axis might have an important role in EMT [84]. Similar
results were found in anaplastic thyroid carcinoma, where disease progression is regulated
by MALAT1-dependent sponging of tumor suppressor miR-200a and results in FOXA1
oncogene upregulation [85]. Importantly, programmed death-ligand 1 (PD-L1) was found
to arrest metastasis of non-small cell lung cancer cells; its expression is directly affected by
miR-200a and regulated by the MALAT1/miR200a/PD-L1 negative feedback loop [84]. As
functions of MALAT1 lncRNA differ among cancer types [111–113], this might imply that
specific final effects may depend on specific molecular interactions [84].

LncRNA TP73 antisense RNA 1T (TP73-AS1) plays a crucial role in many different
carcinomas [95]. As miR-200a was found to directly inhibit expression of human mito-
chondrial transcription factor A (TFAM), coding for a protein involved in breast cancer cell
proliferation, reduced TFAM levels were detected in a TP73-AS1 knockdown experiment,
where inducing miR-200a inhibition resulted in restitution of primary protein levels [97].
Likewise, aberrant expression of ZEB1 TF in EMT is a consequence of ZEB antisense
1 (ZEB1-AS1)-induced miR-200a sponging, resulting in EMT promotion in intrahepatic
cholangiocarcinoma in vitro and in vivo [99]. Similarly, Bacteroides fragilis-associated
lncRNA1 (BFAL1), participating in gut bacteria-induced carcinogenesis, was found to bind
to miR-200a in a competitive manner, activating the MTORC1 binding/mammalian target
of the rapamycin (RHEB/mTOR) pathway, which is commonly dysregulated in cancer [102].
With tumor-suppressing miR-200a as its target in papillary thyroid carcinoma, small nu-
cleolar RNA host gene 15 (SNHG15) indirectly regulates expression of miR-200a’s target
YAP1 oncogene and enhances disease progression [88]. Furthermore, small nucleolar RNA
host gene 16 (SNHG16) was proposed to regulate the balance in an SNHG16/miR-200a
ceRNET and was associated with regulation of malignancy potential of colorectal cancer
cells [101]. Deregulation of highly upregulated in liver cancer (HULC) lncRNA molecule in
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several cancer types has been associated with the PI3K/AKT signaling pathway, which is
central to cell proliferation, differentiation, and apoptosis [103]. Upon miR-200a-related
HULC silencing in leukemic cells, the number of apoptotic cells dramatically increased,
while HULC upregulation resulted in leukemic cell proliferation, apoptosis resistance, and
cell cycle progression, all attributed to aberrant PI3K/AKT signaling and an increase in
c-Myc and Bcl-2, two critical cell survival regulators [103].

Aberrant expression patterns for H19, MALAT1, TP73, ZEB1-AS1, SNHG15, and
others were detected in a multitude of other cancer types [95,114,115], as well as in relation
to other molecules belonging to the microRNA-200 family. H19 was found to regulate
miR-141 in ceRNA crosstalk and plays an essential role in human breast cancer tumor metas-
tasis [116]. Similarly, ZEB1-AS1 was found to sequester miR-141 in colorectal cancer [100].
SNHG15 expression correlates with aberrantly expressed programmed cell death ligand 1
(PD-L1), where NHG15/miR-141 interaction results in upregulation of PD-L1, allowing
gastric cancer cells to escape the host’s immune response [93]. Similar SNHG15-dependent
sequestering of miR-141 has been associated with the progression of multiple cancer types,
including hepatocellular carcinoma [89], colorectal carcinoma [90], osteosarcoma [91], and
nasopharyngeal carcinoma [92]. In addition, Li and colleagues revealed the co-expression
of MAGI2 antisense RNA 3 (MAGI2-AS3) with ZEB1 and identified their role in the promo-
tion of gastric cancer through miR-141/200a sponging [87]. Future studies on MAGI1-AS3
transcriptional regulators and expression trajectories will hopefully further understanding
of the role of MAGI1-AS3 in the ceRNA cancer network.

5.3. LncRNA and miRNA Subgroup II

Through the accumulation of knowledge on ceRNA networks, we are beginning to
understand that post-transcriptional manner of action plays an essential role in cancer
metastasis regulation and depends on interactions between specific ceRNA molecules.
Zhou and colleagues hypothesized that H19 physically associates with miR-200b and miR-
200c to construct a ceRNA sponge and indirectly regulates expression levels of Git2 and
Cyth3, two regulators of the RAS superfamily member adenosine 5′-diphosphate ribosy-
lation factor (ARF) [80] (Table 2). ARF promotes EMT and cell migration of tumor cells;
H19 critically contributes to a change in ARF abundance by sponging its regulators [80].
Oncogenic OIP5-AS1 lncRNA was found to affect fibronectin-1 (FN1), a glycoprotein with a
vital role in cellular adhesion in migration processes [117,118]. Through miR-200b sponging,
the EMT process is affected by aberrant levels of FN1 expression; in addition, FN1 was
found to be significantly upregulated in chemo-resistant osteosarcoma tissues [118]. Wu
and colleagues identified the role of OIP5-AS1 in the facilitation of cell growth in vitro as
well as in vivo through miR-429/FOXD1 axis regulation [119].

Table 2. Members of lncRNA-miRNA-mRNA ceRNA network type for miRNAs in subgroup II.

ceRNA Member Competitor Shared miRNA Model Type Cancer Type Ref.

MALAT1

MET markers miR-200c in vivo endometrioid endometrial
carcinoma [120]

/ miR-200c in situ, in vitro ovarian cancer [121]

ZEB2 miR-200 family in situ clear cell kidney
carcinoma [86]

ZEB1 miR-429 in situ, in vitro hypopharyngeal
squamous cell carcinoma [122]

/ miR-429 in vitro cervical cancer [123]

/ miR-429 in vitro renal cell carcinoma [124]

TβR2/Smad2 miR-200c in situ, in vitro endometrioid endometrial
carcinoma [120]

E2F3/ZEB1 miR-200b in vivo, in vitro lung adenocarcinoma [125]
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Table 2. Cont.

ceRNA Member Competitor Shared miRNA Model Type Cancer Type Ref.

H19 GIT2/CYTH3 miR-200b/200c in vivo breast cancer [80]

LINC00667 GIT2/CYTH3 miR-200b/200c in vivo breast cancer [80]

XIST
COL1A1/COL3A1/FN1 miR-200c in situ, in vitro leiomyoma [126]

ZEB1 miR-429 in situ, in vitro pancreatic cancer [127]

ATB Kindlin-2 miR-200b in situ, in vitro esophageal squamous cell
carcinoma [128]

ATB ZNF-217/TGF-β miR-200c in situ, in vitro breast cancer [129]

OIP5-AS1
FN1 miR-200b in situ, in vitro osteosarcoma [118]

FOXD1 miR-429 in situ, in vitro pancreatic ductal
adenocarcinoma [119]

SOX2OT / miR-200c in vitro bladder cancer [130]

TMPO-AS1
TMEFF2 miR-200c in situ, in vitro ovarian cancer [131]

GOT1 miR-429 in situ, in vitro hepatocellular carcinoma [132]

DLEU1 TFAP2A miR-429 in situ, in vitro ovarian cancer [133]

Long non-coding RNA activated by transforming growth factor β (lnc-ATB) was found
to be abnormally expressed in a number of cancer types and exerts pro-metastatic traits
by competitively binding miR-200c [129] as well as miR-141 [110,134]. This was shown
to result in the upregulation of EMT progression-related genes, including ZEB1 [134] and
ZNF-217 [129]. In addition, when lnc-ATMB expression was silenced in a knockdown
experiment, consequential downregulation of vimentin and N-cadherin and upregulation
of E-cadherin were detected [128]. Furthermore, Li and colleagues confirmed the binding
of miR-200c to the 3′UTR of the MALAT1, forming a sponge in endometrioid endometrial
carcinoma [120].

In hypopharyngeal squamous cell carcinoma tissues, both MALAT1 and ZEB1 were
upregulated, while miR-429 levels decreased [122]. Furthermore, evidence of suppressed
in vitro cell proliferation, migration, and invasion [122,124], in addition to repressed cell
growth in vivo [122,135], indicate a central role of MALAT1 in the promotion of cancer
cell migration and disease progression through miR-429 sponging. Wang and colleagues
showed the involvement of long intergenic non-protein-coding RNA 667 (LINC00667)
in ceRNA by occupying the binding motif of miR-429, which lead to the promotion of
cancer cell proliferation, migration, and invasion [136]. Furthermore, this molecule was
shown to act as a sponge for miR-143 [137] and miR-200c [138], decreasing their expression
and inhibiting their functionality, and has a role in promotion of EMT by suppressing
E-cadherin expression. Liu et al. demonstrated the primary involvement of LINC00667 in
Wilms’ tumor metastasis by sponging miR-200b/c/429 and modulating critical regulatory
and signaling pathways [139]. Similarly, silencing of DLEU1 inhibited migration and
invasion of ovarian cancer cells through targeted sponging of miR-429 [133]. Importantly,
overexpression of miR-429 restored the inhibition of proliferation, migration, and invasion
of ovarian cancer cells [133,140].

5.4. CircRNA

CircRNAs are a distinct ceRNA subtype, different from lncRNAs in their closed-loop
structure [141]. They are known for their stability and resistance to ribonucleases [141].
While the complete function of most circRNAs is yet to be defined, the functionality of
some circRNAs has been unraveled recently. Zhu and colleagues showed how silencing of
circ-0067934 limits the proliferation, migration, and invasion of hepatocellular carcinoma,
while suppression of miR-1324 through binding induces cell apoptosis [142]. Furthermore,
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the frequently downregulated miR-615-5p, known to act as a tumor suppressor, is regulated
post-transcriptionally by both circRNAs and lncRNAs [143].

While hsa_circ_0008305 was found to inhibit EMT and metastasis in non-small cell
lung cancer and offers a potential therapeutic strategy [144], most circRNAs show miRNA
sponging functionality and therefore promote EMT (Table 3). A study from 2019 [145]
revealed aberrant expression of hsa_circ_0057481 in malignant tissue from patients with
laryngeal cancer and was found to affect miR-200a/miR-200c-associated regulation of
ZEB1, while aberrantly expressed hsa_circ_001783 downregulated miR-200c expression,
thus inducing EMT and resulting in poorer prognoses in breast cancer patients [146].
Knockdown of circ_GNB1 significantly decreased the expression of IGF1R [147], a protein
which is aberrantly expressed in malignancies and enhances cell survival, and is thus
considered a potential therapeutic target [148,149]. As circ_GNB1 sponges miR-141 and
upregulates IGF1R [147], these results demonstrate the detrimental role of this circRNA
molecule in this ceRNET. Similarly, Li and colleagues identified an important circRNA–
miRNA–mRNA axis which modulates the migration potential of hepatocellular carcinoma
cells. Upon circ_101368 knockdown, miR-200a expression was rescued, which decreased the
migratory activity of hepatocellular carcinoma cells through HMGBI/RAGE signaling [150].

Table 3. Members of circRNA–miRNA–mRNA ceRNA for miRNAs in subgroup I and subgroup II.

ceRNA Member Competitor Shared miRNA Model Type Cancer Type Ref.

hsa_circ_0008305
TIF1γ miR-200b in vivo, in situ,

in vitro non-small cell lung cancer [144]

TIF1γ miR-429 in vivo, in situ,
in vitro non-small cell lung cancer [144]

hsa_circ_0057481 ZEB1 miR-200c in vitro laryngeal cancer [145]

circ_001783 miR-200c breast cancer [146]

circ_GNB1 IGF1R axis miR-141 in situ, in vitro breast cancer [147]

circ_101368 HMGB1/RAGE miR-200a in situ hepatocellular carcinoma [150]

circ_100338 RHEB miR-141 in situ hepatocellular carcinoma [151,
152]

circ_ZEB1.33 CDK6 miR-200a in situ hepatocellular carcinoma [153]

circ_SMG1.72 GSN miR-141 in situ, in vitro hepatocellular carcinoma [154]

circ_CRKL KLF5 miR-141 in situ, in vitro prostate cancer [155]

circ_ZEB1 ZEB1 miR-141 in situ, in vitro prostate cancer [156]

In conclusion, these results confirm that circRNAs represent important modulators
of mRNA expression through miRNA sponging. Promotion of proliferation due to de-
regulated levels of miRNA, achieved via circRNA sponging, has been detected for many
other circRNA molecules and could serve as a prognosis indicator system in a clinical
setting [154].

5.5. Pseudogenes and mRNA

Pseudogenes were found to be an additional class of regulatory molecules in the EMT.
The term pseudogenes describes DNA sequences that are similar to the functional gene but
contain non-transcribed nucleotide sequences that result from terminated translation [47].
Their processed versions form through retro-transcription of spliced mRNA into DNA
and its re-integration into the genome [157]. Due to the high sequence homology between
pseudogenes and their protein-coding gene counterparts, the overlap represents a common
target pool for the same miRNAs [47,158]. In fact, some of the earliest evidence for ceRNA
activity in mammalian cells was revealed when analyzing the haploinsufficient tumor sup-
pressor pseudogene 1 (PTENP1) and its parental gene, haploinsufficient tumor suppressor
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(PTEN) [159]. Since the loss of the PTENP1 locus is accompanied by reduced PTEN expres-
sion in melanoma [158] and colon cancer [159], PTENP1 has been shown to regulate PTEN
post-transcriptionally and act as a decoy for PTEN-targeting mRNA [159,160]. Additional
pseudogene regulators were confirmed to have the ability to act as decoy miRNAs for their
gene counterparts [161,162]. Similar to other ceRNA molecules, pseudogene-derived RNA
molecules can promote initiation of EMT as cross-regulators by sponging miRNAs [163].
While over 10,000 pseudogene molecules have been identified [164], knowledge on their
biological importance is lacking, specifically in relation to the miR-200 family. Further in-
vestigation into pseudogene biology and regulation are essential to establish which mRNA,
miRNA, and protein molecules crucially affect the induction of EMT, potentially acting as
competitive endogenous sponging molecules for pathogenic expression of pseudogenes.

Since the revelation that a single dynamically induced mRNA could regulate EMT
by inducing MREs [46], mRNA is considered to be an active participant in the regulatory
network rather than a passive target, as commonly perceived. Due to high expression
levels of specific mRNAs and lowered levels of miRNA expression in cancer cells, com-
pelling evidence shows how a single aberrantly expressed ceRNA is directly coupled
with the double-negative feedback loop in EMT [46]. The ceRNA–mRNA stoichiometry
could represent a crucial parameter that determines both the reversibility and the stage of
EMT. However, greater knowledge on binding affinity, time, location, and energy—and
its appropriate assessment—is needed in order to understand how mRNA levels affect
ceRNETs.

6. Conclusions

Since the first postulation of the ceRNA hypothesis, the functional roles of ceRNAs
in neoplastic progression have been reported in a series of studies [49,158,161]. Molecules
acting in ceRNETs have revealed differential expression in tumor compared with in normal
samples [47]. CeRNA activity closely resembles a large-scale regulatory network of gene
expression controlling EMT and expanding the functional genetic information across
the human transcriptome. While miRNAs have been conventionally considered to be
mRNA regulators, there is evidence of back-regulation through changes in target mRNA
availability due to sponging by ceRNET members. Precisely this broader perspective
allows for the hypothesis of a double-negative forward loop, in which the miR-200 family
is regarded as a segment in cancer-related EMT, rather than an individual regulator. The
stoichiometry between miRNAs and other ceRNA allows dynamic transition between
epithelial and mesenchymal phenotypes, which can be achieved by manipulating a single
member of the ceRNA network [24].

It is now becoming clear that de-regulation of lncRNA, miRNA, mRNA, pseudogenes,
circRNA, and other ceRNA molecules can result in tumorigenesis. Whether dynamic
changes in ceRNA stoichiometry can modulate tumor suppression of miRNA activities
is still a matter of controversial dispute, mostly focusing on in vitro vs. in vivo molecular
abundance discrepancies [165]. Another point of controversy is related to the proportion of
transcription and degradation of miRNA and targets—due to binding time and affinity,
the abundance of miRNA is the key regulator in ceRNETs [165]. Nevertheless, the ceRNA
hypothesis offers an interesting and relevant view on epigenetic regulation, portraying
RNA molecules as important modifiers of the epigenetic landscape instead of merely
“bearers of genetic information”. Upon acquiring more knowledge and clinical evidence,
distinct ceRNA members could serve as prognostic/diagnostic markers as well as potential
targets for the disruption of uncontrolled EMT in neoplastic progression [115,126,153].

Furthermore, this work directs attention toward a parallel controversial issue—the
spectral, bi-phenotypic EMT status of cells in transition. Conclusions as to whether reports
of the existence of a partial EMT cell state in vivo [166] describe a transitional state (i.e., an
intermediate stage between the transition from the E to the M pole) rather than a finalized
state in the cell differentiation process have not yet been drawn. The complexity of the
ceRNA network reflects the multifaceted character of EMT with ceRNA sponging of miRNA
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directly affecting the extent of transition toward one of the differentiation poles. The ceRNA
hypothesis allows for system-level effect analysis, taking into account both feed-forward
and feed-back miRNA–mRNA loops and regulation by other molecular species, as well as
the possibility of coding-independent regulatory functions of genes.

Outlook

Dysregulation of the ceRNA network notably plays a critical role in promotion of the
invasion–metastasis cascade and can lead to the development of a variety of tumors [74].
Thus, quantitative change in the miRNA population, leading to a decrease in mRNA
targeting, bares important implications in defining the causal actors in the crosstalk. Due
to an unmet need for early diagnosis and prognosis in various cancers, ceRNA crosstalk
remains an important avenue worth exploring. While chemotherapy and immunotherapy
remain the standard-of-care treatment, it has been recently demonstrated that inhibition of
specific ceRNA components could, in the future, represent an alternative therapeutic target
for the treatment of certain cancer types. In addition, ceRNA was reported to be functional
in a therapeutic resistance setting [167], rendering it a potential prognostic and diagnostic
tool.

While we are still in the early stages of translating the acquired knowledge on ceRNA
regulation into the clinical setting, important steps have been made to advance this tran-
sition. Importantly, through improved understanding of miRNA biogenesis, regulation,
and alterations, alongside simultaneous advances in technologies to deliver miRNA-based
therapeutics in vivo, we are now able to divide miRNA-based therapeutics into candidates
for therapeutics (miRNA mimics) or targets (antimiRs) [168]. In the case of miRNA mimics,
the aim is to replenish the pathologically induced decrease in miRNA expression by design-
ing double-stranded RNA molecules matching the target mRNA. In contrast, antimiRs are
single-stranded molecules which are complementary to the dysregulated miRNA sequence
and therefore prevent its functionality [168]. In addition to the complexity of identification
of miRNA target candidates, one of the main challenges on the path toward clinical appli-
cation are the limitations in delivery system options. Due to the nature of RNA molecules,
RNA-based therapeutics face the potential of undesired degradation by RNases in the
serum or endocytic compartment of cells [168]. Additionally, with an ideal delivery system,
off-target toxicities should be avoided. Genome-wide functional screens using miRNA
mimics or inhibitors, identification of miRNAs that are able to re-sensitize chemoresistant
cancer cells, and extensive research on the miRNA “targetome” related to specific onco-
genes and tumor suppressor genes are just a few of the avenues in need of attention for
advancement toward the use or miRNA-based therapeutics. With recent advancements
in genomics, sequencing approaches, and capture techniques for more precise miRNA
“targetome” identification, a more profound understanding of the ceRNA concept could
help to translate these findings into applications in the clinical setting.
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cell carcinoma of the oral cavity. Virchows Arch. 2017, 472, 237–245. [CrossRef]
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