
fmicb-13-1016947 September 28, 2022 Time: 18:32 # 1

TYPE Methods
PUBLISHED 04 October 2022
DOI 10.3389/fmicb.2022.1016947

OPEN ACCESS

EDITED BY

Decai Jin,
Research Center
for Eco-Environmental Sciences (CAS),
China

REVIEWED BY

Kai Feng,
Key Laboratory of Environmental
Biotechnology, Research Center
for Eco-Environmental Sciences (CAS),
China
Yujia Qin,
University of Hawaì i at Manoa,
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Microorganisms do not exist as individual population in the environment.

Rather, they form complex assemblages that perform essential ecosystem

functions and maintain ecosystem stability. Besides the diversity and

composition of microbial communities, deciphering their potential

interactions in the form of association networks has attracted many

microbiologists and ecologists. Much effort has been made toward

the methodological development for constructing microbial association

networks. However, microbial profiles suffer dramatically from zero values,

which hamper accurate association network construction. In this study,

we investigated the effects of zero-value issues associated with microbial

association network construction. Using the TARA Oceans microbial profile as

an example, different zero-value-treatment approaches were comparatively

investigated using different correlation methods. The results suggested

dramatic variations of correlation coefficient values for differently treated

microbial profiles. Most specifically, correlation coefficients among less

frequent microbial taxa were more affected, whichever method was used.

Negative correlation coefficients were more problematic and sensitive to

network construction, as many of them were inferred from low-overlapped

microbial taxa. Consequently, microbial association networks were greatly

differed. Among various approaches, we recommend sequential calculation

of correlation coefficients for microbial taxa pairs by excluding paired zero

values. Filling missing values with pseudo-values is not recommended. As

microbial association network analyses have become a widely used technique

in the field of microbial ecology and environmental science, we urge cautions

be made to critically consider the zero-value issues in microbial data.

KEYWORDS

microbial community, zero values, data filtering, correlation inference, association
networks

Frontiers in Microbiology 01 frontiersin.org

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://doi.org/10.3389/fmicb.2022.1016947
http://crossmark.crossref.org/dialog/?doi=10.3389/fmicb.2022.1016947&domain=pdf&date_stamp=2022-10-04
https://doi.org/10.3389/fmicb.2022.1016947
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fmicb.2022.1016947/full
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/


fmicb-13-1016947 September 28, 2022 Time: 18:32 # 2

Wang and Tu 10.3389/fmicb.2022.1016947

Introduction

Rather than simple accumulation of individual populations,
microorganisms in natural ecosystems may interact with each
other and form complex assemblages, thereby execute essential
ecosystem functions (e.g., biogeochemical cycling of various
nutrients) and maintain ecosystem stability (Fuhrman et al.,
2015). Therefore, in addition to the community structure
and composition, their interactive relationships shall also be
critically considered for better understanding the roles that
microbial communities play in both natural and artificial
ecosystems. However, due to the complexity and not yet
cultured majority of microbial taxa, direct observation of
such complex relationships is generally not feasible (Trosvik
et al., 2010; Berry and Widder, 2014). Recent advances in
high throughput metagenomic technologies make it possible
to capture genomic information for thousands of microbial
taxa in a single experiment (van Dijk et al., 2014; Slatko
et al., 2018). Since then, multiple statistical approaches, such
as SparCC (Friedman and Alm, 2012), MENA (Deng et al.,
2012), LSA (Xia et al., 2013), CoNet (Faust and Raes, 2016),
and SPIEC-EASI (Kurtz et al., 2015), have been developed to
infer the complex relationship among microbial taxa based on
the (relative) abundance profiles, in the form of association
networks.

Notably, these different approaches mainly focus
on different statistical methods for pairwise correlation
coefficients calculation and network construction. For example,
SparCC focuses on correlation inference of compositional
data, and uses Aitchison’s variance of log-ratios to solve
ingredient problems (Friedman and Alm, 2012). MENA
uses Random Matrix Theory (RMT) to identify a cutoff for
constructing microbial association networks, by determining
the transition point of nearest-neighbor spacing distribution
of eigenvalues from Gaussian (random) to Poisson (non-
random) distribution (Deng et al., 2012). LSA breaks down
the global molecular similarity as local similarity at each
grid point surrounding the molecules and is efficient to
calculate statistical significance for pairwise local similarity
analysis, making possible all-to-all local association studies
otherwise prohibitive. The LSA approach is commonly used to
construct association network from time series data (Xia et al.,
2013). CoNet offers ensemble-based network construction,
by combining a number of different correlations (Pearson,
Spearman, and Kendall), similarities (Mutual information)
or dissimilarities (Bray-Curtis and Kullback-Leibler) to
improve the accuracy of the strength of the associations
between objects (Faust and Raes, 2016). SPIEC-EASI is a
computational framework that includes statistical methods
for the inference of microbial ecological interactions from
16S rRNA gene sequencing datasets, and is equipped with
a sophisticated synthetic microbiome data generator with

controllable underlying species interaction topology (Kurtz
et al., 2015).

Microbial communities in natural ecosystems are usually
consisted by a few dozens of abundant and occasional taxa,
and a long “tail” of rare taxa (Logares et al., 2014). As
a result, zero values are especially common in microbial
community profiles, especially for occasional and rare
taxa, suggesting that these microbial taxa could be either
biologically absent or not detected by the current sequencing
effort. Consequently, inadequate considering the issues
associated with zero values may lead to problematic
microbial association network construction. However,
current studies constructing microbial association networks
generally input the (log-transformed) (relative) abundance
profiles to the abovementioned approaches and do not
specifically consider the situation of zero values in microbial
profiles.

In this study, we aimed to investigate the issues associated
with correlation coefficient inference and association
network construction caused by zero values in microbial
profiles. Multiple situations for dealing with zero values
in microbial profiles were considered and comparatively
evaluated for association network construction. The results
demonstrated that different data filtering methods for zero
values dramatically interfere microbial association network
construction. Different data filtering methods may exert as
strong variation in correlation coefficient values as network
correlation inference methods. Such issues were especially
critical for negative association inference. Therefore, we
urge that the common zero values in microbial profiles
be thoroughly considered for robust microbial association
network construction.

Materials and methods

Methodological framework

A framework was presented to illustrate the overall
methodology flow of this study (Figure 1). A typical microbial
profile containing large number of zero values was selected as
the example dataset. Different data filtering methods were then
applied to process the zero values associated with the microbial
profile. The commonly used correlation coefficient calculation
methods including the Spearman, Pearson and Kendall were
applied to calculate the pairwise correlation among microbial
taxa. The SparCC method was also employed to construct
microbial association networks based on the microbial profile
containing large number of zero values. Association networks
were then constructed with identical cutoffs and comparatively
analyzed, in order to evaluate the effects of different data filtering
methods.
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FIGURE 1

A flowchart illustrating the overall methodology workflow of this study. A typical microbial profile containing large number of missing values
was selected as the example dataset. Different data filtering methods were then applied to process the missing values associated with the
microbial profile. Commonly used correlation coefficient calculation methods including the SparCC, Spearman, Pearson, and Kendall were
applied to calculate the pairwise correlation among microbial taxa. Association networks were then constructed and comparatively analyzed.

The TARA oceans microbial profile

We first tried to generate synthetic microbial profiles
using models like generalized Lotka–Volterra (gLV) model
(Hernández-Bermejo and Fairén, 1997). However, effective
dataset containing comparable zero-values to experimentally
generated datasets cannot be generated. Due to the lack
of standard microbial profiles with zero values and known
relationships, we used a real dataset, the TARA Oceans
metagenome, to illustrate the effects of different data
filtering methods on microbial correlation coefficient
calculation. The TARA Oceans metagenomic dataset was
selected because it is a representative dataset covering
139 microbial communities in the largest fluid ecosystem
in the Earth’s biosphere. Zero-values are common in this
dataset, satisfying the requirement of this study. The miTAG
based microbial taxonomic profile was downloaded from
http://ocean-microbiome.embl.de/companion.html. The row
annotated as unclassified taxa was first removed from the
microbial profile for its representing an aggregation of many
unknown microbial OTUs. The profile was then rarefied to
a same sequencing depth (39,410 reads per sample). In the
profile, a total of 35,650 OTUs were found. The absolute value
of OTU abundance after rarefaction was retained for correlation

coefficient calculation. In addition to direct using abundance
data for correlation calculation, several studies suggest that
microbial profiles are compositional (Jackson, 1997; Friedman
and Alm, 2012). Therefore, in addition to rarefied abundance
data, the microbial profile was also centered log transformed and
subject to correlation calculation. The R package “compositions”
was used for centered log transformation (van den Boogaart
and Tolosana-Delgado, 2008).

Data filtering and correlation
coefficient calculation

Six different data filtering methods were employed to deal
with zero values (Figure 1). The first method is to treat zero
values (i.e., NA values) as 0. The second method is to use a
nearest neighbor algorithm instead of zero values (Cover and
Hart, 1967), by which zero values were replaced by inferred
expectations based on observed data. The R package “DMwR2”
was used for nearest neighbor employment (Torgo, 2016). The
third method is to use 0.01 instead of zero values, which is
the default value recommended by the MENA pipeline (Deng
et al., 2012). The fourth method is to exclude the samples
from correlation calculation in which pairwise zero values are
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detected and the unpaired zero values are replaced with 0.01.
The fifth method is similar to the fourth method but unpaired
zero values are kept as is. The sixth method is to exclude
all samples from correlation calculation as long as paired or
unpaired zero values are observed.

Afterward, correlation methods including Spearman,
Pearson, and Kendall, which reflect the direction and degree
of the change trend between two variables, were employed
for correlation coefficient calculation for the treated microbial
profiles. Correlation coefficient values were sequentially
calculated for each pair of OTUs meeting the minimum
requirement (i.e., larger than 30 paired valid observations).
Since the data filtering methods are not applicable to SparCC,
only the raw microbial profile containing zero values was
subject to correlation calculation and network construction by
SparCC. Here, the python package SparCC31 was used, with the
iteration value set to 20. Since SPIEC-EASI is based on penalized
estimators, the edge weights are not directly comparable to
SparCC and Pearson/Spearman correlation coefficients, this
method was not investigated here. In some cases (e.g., methods
4, 5, and 6), OTU pairs that did not meet the minimum
requirement (i.e., larger than 30 paired valid observations)
for correlation calculation were excluded. The calculated
correlation coefficients by different data filtering methods and
correlation methods were comparatively analyzed. For better
illustration, a total of 10,000 OTU pairs were randomly selected.
The associated R code and documents for correlation calculation
are available at https://github.com/qichao1984/DataFiltering.

Microbial association network
construction

In many approaches, an empirical cutoff is selected for
association network construction, except the MENA pipeline.
Here, for evaluation purpose, a correlation cutoff with absolute
value larger than 0.6 and P-value smaller than 0.001 were
chosen for network construction. As in many other studies,
we focus on the patterns of association networks and do
not expect strong effects of this cutoff on the results and
conclusions. In addition, Random Matrix Theory (RMT) was
also employed via the iNAP pipeline (Feng et al., 2022) to
identify thresholds for constructing highly confident microbial
ecological networks, together with the P-value cutoff of
0.001 (Zhou et al., 2010; Feng et al., 2022). Two types of
association networks, including co-occurrence and co-exclusive
networks, were constructed and analyzed. In the co-occurrence
network, only positive associations were included, whereas,
in the co-exclusive network, only negative associations were
included. Microbial association networks were constructed for

1 https://github.com/JCSzamosi/SparCC3

microbial profiles subject to different data filtering methods and
correlation methods. The structural and topological differences
among the constructed networks were comparatively inspected.

To better illustrate how microbial association networks
differ from each other, subnetworks were also constructed
targeting the first neighbors of top ten most connected nodes
identified in the fifth data filtering methods. In addition,
consensus networks were constructed based on differently
treated microbial profiles and different correlation methods, in
order to see the variations caused by data filtering methods and
correlation methods. The constructed networks were visualized
and analyzed by the Cytoscape software (Shannon et al., 2003).

Results

Zero values were rarely critically
considered in microbial association
network constructions

We first investigated the current situation of implementing
microbial association network analyses in microbial ecological
and environmental studies by analyzing published literatures.
Using the keywords “microbial ecological network” and
“microbial co-occurrence network,” it was found that the
number of published studies in the NCBI PubMed database
increased dramatically over the past 13 years. Specifically,
the number of indexed literatures per year achieved to ∼581
in December 2021, whereas the number was only ∼15 in
2009 (Figure 2A). This means that, as a recently developed
technology in the metagenomic era, microbial association
network analyses have become a routine approach in microbial
ecological and environmental studies. Among these studies,
SparCC is the method with most citations, followed by SPIEC-
EASI and MENA (Figure 2B).

Although commonly applied, it should be pointed out that
issues associated with zero values have rarely been critically
considered in many studies. For computational purposes, only
minimal treatments have been employed by different association
network construction approaches (Table 1). For instance,
methods like SparCC and SPIEC-EASI assign a pseudo-count
of 1 to zero values, to avoid log transformation of zero value
(Friedman and Alm, 2012; Kurtz et al., 2015). The MENA
pipeline (Deng et al., 2012), which mainly employs Pearson
correlation coefficient and Spearman’s rank order correlation for
association inference, fills a pseudo-value of 0.01 to zero values
by default, with the option of user defined values available.
A common agreement reached by computational microbial
ecologists is that OTUs showing up in only a few samples should
be excluded from correlation analyses, as they may lead to false
association inferences (Huse et al., 2010; Haas et al., 2011; Reshef
et al., 2011; Degnan and Ochman, 2012; Faust, 2021). More
critically, literature analysis suggested that no specific attention
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FIGURE 2

The current situation of implementing microbial association network analyses in microbial ecological and environmental studies by analyzing
published literatures. (A) Using the keywords "microbial ecological network" and "microbial co-occurrence network," the number of papers
published in the NCBI PubMed database in the past 13 years was analyzed. (B) Citations of different microbial association network construction
methods. (C) The number of papers whether missing values were considered when constructing microbial association networks.

was paid to zero value issues by many studies (Figure 2C), as
judged by whether zero values are specifically mentioned in
the methods section, though it is possible that some studies
do have considered zero values but did not mention it in the
paper. Ignoring such issues may impose severe consequences to
the conclusions drawn in the studies, such as inaccurate (false
positive and false negative) inference of microbial association
relationships. It is therefore of necessity to investigate how zero
values may affect microbial association network inference.

Issues associated with microbial
community profiles

Using the TARA Oceans microbiome data as an example,
we first illustrated the typical data structure of microbial profiles
and how different data filtering methods would affect them.
Although the following issues may have already been recognized
by the community, we believe they still deserve to be further
emphasized here.

First, zero values are common in microbial profiles.
As previously reported, microbial communities are usually
composed by a small number of abundant taxa and a long “tail”
of rare taxa (Logares et al., 2014), meaning the existence of many
zero values in microbial profiles. Although thousands to tens of
thousands microbial taxa could be identified in a routine study,
only a small portion of them (6.34%) were present in multiple
samples (e.g., 60 samples) (Figure 3A). In each sample of the
profile, more than 88.69% observations are zero (Figure 3B).
The meaning of these zero values is uncertain that they could
either be biologically absent from the sample or technically not
detected. In addition, random subsampling of microbial profiles
to an equal sequencing depth may also result in zero values for
rare taxa.

Second, not all OTUs shall be subject to correlation
analyses for association network construction. Correlation
coefficient between two OTUs can be calculated as long as
they are present in three or more samples. And confident
estimation of correlation coefficients between two OTUs
requires more valid observations. However, the number of
OTUs decreases with the number of samples they show up.
For instance, 2 260 (6.34%) OTUs were present in ≥60
samples in the TARA Oceans expedition, though a total
of 35,650 annotated OTUs were identified (Figure 3A). To
our best knowledge, no standard or consensus criteria is
available to define a sample number cutoff for selecting OTUs.
Empirically, the MENA pipeline recommended a cutoff of
showing up in 50% samples to select OTUs for correlation
analyses. However, large scale studies (both spatial and
temporal, e.g., studies encompassing hundreds of samples at
the continent or global scale) may invalidate such empirical
recommendations as very few microbial taxa may show up in
≥50% samples.

Third, treating zero values differently may lead to
dramatically differed input microbial profiles for correlation
analyses, further affecting association network inference.
Multiple data filtering methods are available (Figure 1). Taking
the TARA Oceans microbial profile containing OTUs showing
up in ≥60 samples for example, the number of OTU pairs
suitable for correlation analyses varied dramatically for different
data filtering methods (Figure 3C).

Data filtering methods interfere
microbial correlation inference

We then investigated how different data filtering methods
may affect microbial correlation inference. As multiple
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microbial correlation inference methods are available, here
only those more commonly used approaches were investigated,
including the Pearson correlation coefficient, Spearman’s
rank order correlation, and the non-parametric Kendall rank
correlation. The correlation coefficient values returned by
the SparCC approach was also assessed. These are also the
correlation methods used by most microbial association
network construction methods. Correlation methods such as
Bray-Curtis dissimilarity, Mutual Information, and Maximal
Information Coefficient were not considered here due to their
returned values always ≥0, failing to encompass negative

TABLE 1 Characteristic and zero-value-treatment methods of the
commonly used microbial association network construction methods.

Method Characteristic Zero value
treatment

SparCC (6) SparCC focuses on correlation
inference of compositional data, and
uses Aitchison’s variance of log-ratios
to solve ingredient problems. It could
be used on any genomic survey data
that has low diversity.

Add a pseudo-value
of 1 to each element.

MENA (7) MENA uses Random Matrix Theory
(RMT) to identify a cutoff for
constructing microbial association
networks, by determining the
transition point of nearest-neighbor
spacing distribution of eigenvalues
from Gaussian (random) to Poisson
(non-random) distribution.

By default, unpaired
zero values were
filled by a
pseudo-value of 0.01.
More user defined
options are also
available.

LSA (8) LSA breaks down the global
molecular similarity as local similarity
at each grid point surrounding the
molecules and is efficient to calculate
the statistical significance for pairwise
local similarity analysis, making
possible all-to-all local association
studies otherwise prohibitive. It is
commonly used to construct
association network from time series
data.

No mention of the
treatment of zero
values.

CoNet (9) CoNet offers ensemble-based network
construction, by combining a number
of different correlations (Pearson,
Spearman, and Kendall), similarities
(Mutual information) or
dissimilarities (Bray-Curtis and
Kullback-Leibler) to improve the
accuracy of the strength of the
associations between objects.

Omitting sample
pairs with zero
values from the
association strength
calculation.

SPIEC-EASI
(10)

SPIEC-EASI is a computational
framework that includes statistical
methods for the inference of
microbial ecological interactions from
16S rRNA gene sequencing datasets.
A sophisticated synthetic microbiome
data generator with controllable
underlying species interaction
topology is also equipped.

Add a pseudo-value
of 1 to zero values.

correlations in microbial association relationships in the same
way and criteria as other methods did.

First, treating zero values differently resulted in dramatically
different correlation coefficients. Here, microbial OTUs showing
up in ≥60 samples were extracted and subjected to data
filtering by all six methods. Correlation coefficients among
different OTUs were calculated for the filtered microbial
profiles. Using correlation coefficients among OTUs with paired
abundance values (i.e., method 5) as standard, it was found that
different data filtering methods resulted in different correlation
coefficient values, no matter which correlation method was
used (Figures 4A–C). Specifically, the correlation coefficient
values for microbial profile whose zero values were filled by
nearest neighbor algorithm showed the strongest variations
from those by other methods. Correlation coefficient values
for microbial profile whose zero values were filled with 0.01,
which is the default approach used by the MENA pipeline,
were much higher than the standard. Notably, correlation
coefficient values were also sensitive to correlation methods.
Pearson correlation coefficient seemed to be more robust than
Spearman’s rank correlation and Kendall’s rank correlation that
correlation coefficient values were more centered to the standard
for abundance-based microbial profiles with different treatment
of zero data, except that filled by the nearest-neighbor algorithm.

Second, correlation inference for less frequent microbial
taxa was more affected. Microbial profiles consisted by OTUs
showing up in ≥30 samples and ≤60 samples were also extracted
and evaluated. In the nearest neighbor algorithm, missing
values are inferred from its neighboring samples around.
Therefore, missing values could not be inferred using the nearest
neighbor algorithm for less frequent microbial taxa. As a result,
comparing to the microbial profiles consisted of OTUs showing
up in ≥60 samples, the correlation coefficient values for less
frequent OTUs were much more sparsely distributed, no matter
which correlation calculation method was used (Figures 4D–F).
This suggested that cautions should be taken for microbial
association network construction based on less frequent OTUs,
either for choosing correlation calculation or data filtering
methods.

Third, negative correlations could be more problematic.
We also investigated how different data filtering methods
affected positive and negative inference of microbial
associations (Supplementary Figure 1). The number of strong
positive and negative microbial associations (| corr| > 0.6)
greatly varied for different data filtering methods. This
was especially critical for microbial profiles whose zero
values were replaced by the nearest neighbor algorithm and
subject to correlation calculation by Spearman and Kendall
correlation methods. For positive inference, the majority of
strong positive correlation were identified among microbial
taxa whose overlapped observations were larger than 60
(Supplementary Figures 1A–C). For negative inference, a large
portion of strong associations were identified among microbial
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FIGURE 3

The situation of missing values in typical microbial profiles. Using the TARA Oceans miTAG microbial profile as an example, the following
information was shown: (A) The number of OTUs under different frequency cutoff. With 60 samples as the frequency cutoff, the number of
detected OTUs was 2,260, accounting for 6.34% of all OTUs. (B) The average number of missing values and valid values present in each sample
with standard error. (C) The number of OTU pairs suitable for correlation analyses using different data filtering methods.

FIGURE 4

The effects of data filtering methods on correlation coefficient calculation. Two types of datasets, including OTUs showing up in ≥60 samples
(A–C) and OTUs showing up in ≥30 samples and ≤60 samples (D–F) were analyzed. Three different correlation calculation methods were
evaluated, including the Spearman, Pearson, and Kendall. For better visualization, correlation coefficient values of 10,000 randomly selected
OTU pairs were plotted. For the less frequent dataset (D–F), nearest neighbor algorithm was not applicable.

taxa with fewer overlapped observations, especially for those
calculated by Spearman and Kendal correlation methods.
Negative correlation coefficients were lowly detected using
Pearson and Kendall correlation methods (Supplementary
Figures 1D–F). Such results suggested that negative association
inference for microbial association networks were more strongly

affected by data filtering methods. The results also provided
potential clues explaining why negative associations were rarely
found in many studies.

Fourth, log-transformation of the abundance data improved
the centrality of the distribution of correlation coefficient values
to the standard. Several studies suggested that the abundance
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data of microbial profiles is compositional (Jackson, 1997;
Friedman and Alm, 2012). A common approach to treat such
data is log transformation. Here, the abundance profiles of
microbial communities were centered log transformed and
subjected to correlation coefficient calculation. As a result,
comparing to untransformed microbial profiles, correlation
coefficient values were overall more centralized to the
standard. Such result was consistent across different correlation
methods and different frequency cutoffs of microbial profiles
(Supplementary Figure 2). Again, the correlation coefficient
values for microbial profiles whose zero values were filled by
nearest neighbor were always sparsely distributed from the
standard. This suggested that the nearest neighbor algorithm
seemed not a good way for microbial community data
preprocessing, though this method has been widely applied in
genomic studies (Parry et al., 2010; Belka et al., 2018; Tjarnberg
et al., 2021; Xie et al., 2021).

Finally, correlation coefficient calculation method like
SparCC may also be affected. Since data filtering methods are
not applicable to SparCC, which is one of the representative
methods that treat microbial community data as sparse,
we compared the correlation coefficient values calculated
by Spearman, Pearson, and Kendall correlation methods
with that by SparCC (Supplementary Figure 3). As a
result, the correlation coefficient values between SparCC
and other methods were all strongly correlated (R2 > 0.95,
P < 2.2e-16). This suggested that the same issue encountered
by other correlation methods also tended to exist in
methods like SparCC.

Microbial association networks
dramatically differed

Finally, microbial association networks were constructed
and comparatively analyzed. Correlation coefficient cutoffs
of 0.6 and –0.6 (P < 0.001) were respectively used to
identify positive and negative associations among different
microbial taxa. Using the microbial association networks
constructed based on Spearman correlation coefficient as
examples, dramatically differed networks were obtained, both
topologically and in content (Supplementary Figure 4). For
both co-occurrence and co-exclusive networks, distinct network
structures were observed for microbial profiles subject to
different data filtering methods. Such distinct network topology
resulted in distinct network parameters such as the number
of connected nodes/edges, average number of neighbors,
network diameter, network radius, characteristic path length,
clustering coefficient, network density, network heterogeneity,
network centralization, and connected components. We then
extracted the subnetworks of top ten most connected nodes
(Supplementary Figure 5), which is the commonly used
approach to investigate the network topology of the most

connected microbial taxa. More strikingly, the extracted
subnetworks suggested that different data filtering methods
resulted in different clues in finding out the most “important”
microbial taxa in the ecosystem. Further, we constructed and
compared the consensus networks by extracting the overlapped
nodes and edges in the networks constructed using different
data filtering methods and correlation methods (Figure 5).
As a result, great difference among different data filtering
methods could be found. Highly dissimilar consensus network
was observed for different data filtering methods and different
correlation methods.

In addition, the iNAP pipeline was also employed to
determine the cutoffs for network construction based on RMT
method. Similar analyses were then carried out (Supplementary
Figures 6–8). In general, consistent result was observed that
microbial association networks highly differed for different data
filtering methods. However, as the cutoffs determined by RMT
were much larger than 0.6, the constructed networks were
strongly altered with much fewer nodes and links, especially for
co-exclusive networks. Such scenario was expected considering
the large cutoffs used for network construction. Based on the
above results, we demonstrated that data filtering was also a
critical issue as the selection of correlation methods.

Discussion

As a sophisticated computational approach developed
about 10 years ago (Weiss et al., 2016; Röttjers and Faust,
2018), microbial association network analyses have been widely
performed in microbial ecology and associated fields to reveal
the potential relationships among microbial taxa (Barberán
et al., 2012; de Vries et al., 2018; Guo et al., 2022), as well as those
between microbes and environmental factors (Chaffron et al.,
2010; Lima-Mendez et al., 2015). With proper experimental
design and data interpretation, interesting studies that cannot be
achieved conventionally have been carried out, such as accurate
predicting the biotic interactions among microbes (Barzel and
Barabási, 2013; Feizi et al., 2013; Lv et al., 2019), identifying
microbial taxa belonging to the same ecological niche (Ma
et al., 2020), and revealing the community diversity from the
angle of microbial interconnected relationships (Ma et al.,
2016; Tu et al., 2020). Foreseeably, the approach will be much
more intensively employed by researchers from various fields
to address important biological, ecological and environmental
questions.

Similar to other approaches, microbial association network
analyses also confront a series of caveats and challenges, from
methodology to interpretation of the results. A series of issues
have been recently discussed by Faust (2021) and Goberna and
Verdú (2022). Among these, the issue of zero values is also
emphasized in context with rare taxa, for which the majority
values are filled with zero. However, the issue of zero values is
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FIGURE 5

Consensus networks representing microbial co-occurrence and co-exclusive associations were constructed and comparatively analyzed.
(A) Consensus co-occurrence and co-exclusive networks constructed by extracting the overlapped nodes and edges based on networks
constructed using the first, third, fifth, and sixth data filtering method (refer to Figure 1). The Spearman’s rank order correlation coefficient was
used for network construction. (B) Consensus co-occurrence and co-exclusive networks constructed by extracting the overlapped nodes and
edges based on networks constructed using different correlation methods, including Spearman, Pearson, Kendall, and SparCC. The first data
filtering method (filling missing values with zero) was used here. (C) Overlapped edges between the consensus networks of different data
filtering methods and correlation methods. (D) Overlapped nodes between the consensus networks of different data filtering methods and
correlation methods. In panels (A,B), networks with red edges represent co-occurrence networks, and networks with blue edges represent
co-exclusive networks.

not only associated with rare, but also abundant and occasional
taxa, though with lesser extent. Most correlation coefficient
measurements are not designed to consider zero values (i.e.,
zeros), except few such as Bray-Curtis dissimilarity, which

automatically ignores matching zeros between microbial taxa
pairs (Faust, 2021). However, dissimilarity values of Bray-Curtis
range from 0 to 1, making it hard to define negative correlations
in the same manner as other methods.
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Current effort mainly focuses on methodology development
and novel applications of the approach, leaving the zero-value
issue less attended. In previous attempts, researchers generate
simulated datasets to validate the accuracy and robustness of the
network construction methods they developed (Friedman and
Alm, 2012; Kurtz et al., 2015; Yang et al., 2021). However, to our
best knowledge, the complex issue of zero values in microbial
profiles cannot be well-simulated. Recently, Cougoul et al.
(2019) proposed a framework to compute the upper bounds
beyond which associations become less meaningful. This study
demonstrated that the zero-value issue could be one of the most
critical issues in microbial association network construction.
As a computational approach, microbial association network
analyses also comply the classic “garbage in, garbage out”
bioinformatics principle, in which problematic outputs are given
by problematic input data (Mellin, 1957; Babbage, 1994). From
this point of view, proper data input could be even more
important than the choice of correlation methods and network
construction methods. This was also confirmed in this study that
different data filtering methods resulted in dramatically varied
correlation coefficient values using the same correlation method.
Different data filtering methods may exert as strong variation on
correlation coefficient values as different correlation methods.

Integrating all the results obtained in this study, we propose
to critically consider the following caveats for more confident
and robust microbial association network construction. First,
the frequent zero values in microbial profiles may cause
highly differed correlation inference in microbial association
network construction. In general, paired valid values are
expected to generate robust inference of both positive and
negative associations, whereas unpaired valid values could
be of great importance for negative associations. Not only
shall attention be paid to rare taxa (Faust, 2021), but also
abundant and occasional taxa are affected. Second, filling
zero values with pseudo values is not recommended. Biased
correlation values are observed for microbial profiles filled
with pseudo values. The commonly used approaches in the
genomic era, e.g., filling zero values using nearest neighbor
algorithm (Torgo, 2016; Tjarnberg et al., 2021; Dann et al.,
2022), do not seem to be effective in metagenomics. Third,
rare and abundant taxa shall be differently treated prior
to network construction. For rare taxa with less statistical
power, either prevalence removal or forbidding computing
correlation coefficients among rare taxa with large number
of matching zeros shall be considered, though it may ignore
valuable information carried by them (McMurdie and Holmes,
2014; Faust, 2021). Notably, cautions should be made to
avoid altered relative abundance due to the removal of rare
taxa. For correlation inference among abundant taxa, paired
zeros shall be excluded for their biologically insignificance and
reducing the statistical power of confident observations. As
such, sequential correlation inference between taxa pairs is
recommended to avoid miscellaneous issues associated with

correlation inference based on whole microbial profile. Many
R functions for correlation calculation usually treat and include
zero values as is. Fourth, different data filtering methods result
in dramatically different microbial association networks. It
is therefore necessary for researchers to thoroughly consider
the zero values associated with microbial profiles and choose
the appropriate one for correlation calculation in network
construction. This is an especially critical issue for negative
association inference. Whether and how data filtering is carried
out for association network construction shall be clearly stated
in the manuscripts.

In conclusion, this study investigated the zero-value issue
associated with microbial association network construction,
which is an issue rarely critically considered in many of the
current studies. Different data filtering methods resulted in
highly differed association inference for network constructions,
especially for negative association inference. As microbial
association network approaches are being widely applied in
various fields, even to infer relationships among microbial taxa
(Barberán et al., 2012; de Vries et al., 2018; Guo et al., 2022),
environmental factors (Chaffron et al., 2010; Lima-Mendez
et al., 2015), and organic molecules (Li et al., 2018, 2019; Zhao
et al., 2019), we urge this issue be critically considered in future
studies. Whether and how zero values are treated shall be clearly
stated in each study.
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