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ABSTRACT
Epitopes that arise from a somatic mutation, also called neoepitopes, are now known to play a key role
in cancer immunology and immunotherapy. Recent advances in high-throughput sequencing have
made it possible to identify all mutations and thereby all potential neoepitope candidates in an
individual cancer. However, most of these neoepitope candidates are not recognized by T cells of
cancer patients when tested in vivo or in vitro, meaning they are not immunogenic. Especially in
patients with a high mutational load, usually hundreds of potential neoepitopes are detected, high-
lighting the need to further narrow down this candidate list. In our study, we assembled a dataset of
known, naturally processed, immunogenic neoepitopes to dissect the properties that make these
neoepitopes immunogenic. The tools to use and thresholds to apply for prioritizing neoepitopes have
so far been largely based on experience with epitope identification in other settings such as infectious
disease and allergy. Here, we performed a detailed analysis on our dataset of curated immunogenic
neoepitopes to establish the appropriate tools and thresholds in the cancer setting. To this end, we
evaluated different predictors for parameters that play a role in a neoepitope’s immunogenicity and
suggest that using binding predictions and length-rescaling yields the best performance in discriminat-
ing immunogenic neoepitopes from a background set of mutated peptides. We furthermore show that
almost all neoepitopes had strong predicted binding affinities (as expected), but more surprisingly, the
corresponding non-mutated peptides had nearly as high affinities. Our results provide a rational basis
for parameters in neoepitope filtering approaches that are being commonly used.

Abbreviations: SNV: single nucleotide variant; nsSNV: nonsynonymous single nucleotide variant; ROC:
receiver operating characteristic; AUC: area under ROC curve; HLA: human leukocyte antigen; MHC:
major histocompatibility complex; PD-1: Programmed cell death protein 1; PD-L1 or CTLA-4: cytotoxic
T-lymphocyte associated protein 4
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Introduction

While epitope-based cancer immunotherapies have been the
subject of intense investigation for decades, initial results in
the clinical setting were mixed. 1–3 However, recent years have
witnessed a resurgence of interest in epitope-based cancer
immunotherapy due to advances in high-throughput sequen-
cing that have enabled rapid identification of cancer-asso-
ciated, patient-specific mutations that can be recognized as
T cell epitopes (mutated cancer epitopes or neoepitopes). 4–8

This enthusiasm is further enhanced by the potential of cou-
pling epitope immunization with recently developed check-
point inhibitors targeting PD-1, PD-L1 or CTLA-4.
Checkpoint inhibitors reduce immune suppressive mechan-
isms thus amplifying the immunogenicity of cancer-specific
antigens and potentially overcoming a weakness of epitope-
based cancer vaccines. 4,9,10

Not all neo-peptides resulting from cancer mutations are
expected to be immunogenic. Recognition of a peptide by T

cells requires a number of steps, most notably the binding of
the peptide to a host-encoded HLA molecule. Previous studies
defined 500nM as a minimal HLA binding affinity threshold
for peptide immunogenicity in the context of MHC class I
restricted cytotoxic T cell (CTL) responses to viral and other
non-self-origin epitopes. 11 However, it is not clear if the same
threshold should also be used to identify epitopes in self-
antigens, such as the ones recognized in autoimmunity and
cancer. Indeed, some reports have suggested that these epi-
topes are associated with distinctively lower HLA affinity 12–15

as a result of the T cells recognizing high-affinity binders
being silenced by central and peripheral tolerance. However,
this tenet was challenged by several studies showing that
cancer and autoantigen associated epitopes also bound with
affinities similar to those of their microbial counterparts. 16,17

The controversy was renewed in the setting of mutated cancer
epitopes, with some studies suggesting that HLA binding is a
crucial factor in selecting them 18 with others indicating that
binding is of marginal importance 19 and that the MHC
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binding affinity of the non-mutated sequence from which the
mutation is derived is also of importance.

Additional factors that are expected to play a role in
immunogenicity include the capacity of epitopes to be derived
by natural processing and subsequent recognition by a TCR.
Processing can be predicted by several tools available online 20

which model the specificity of the antigen processing machin-
ery such as proteasomal cleavage and TAP transport. TCR
recognition is dependent on availability of a suitable TCR
repertoire, which is in turn influenced by both positive and
negative selection, and peripheral tolerance. 19 This complex
process is hard to predict, but it seems to favor the recogni-
tion of amino acid residues with large and aromatic side
chains types in peptide residue positions facing the TCR,
which can be used to assign peptides an immunogenicity
score independent of MHC binding and processing. 21

By now there have been multiple studies using immunoin-
formatics tools to analyze large-scale cancer sequencing data
to predict mutation-derived epitopes and identify those with
clinical relevance or to select candidates for clinical applica-
tion. 5,20,22 However, most of these studies used different
combinations of tools and applied different criteria to prior-
itize their set of mutated epitopes. 6,23–29 This lack of unifor-
mity in defining ideal criteria for neoepitope prioritization
shows the need for a study like ours to determine an optimal
approach that combines the main factors influencing immu-
nogenicity within the specific context of cancer.

Results

Assembly of mutated cancer epitopes

We assembled mutated epitopes previously described in the
literature, as listed in the Cancer Immunity Epitope Database
(http://cancerimmunity.org/peptide/). We only considered
mutated epitopes whose HLA class I allele restriction was
defined at four-digit resolution, 30 and for which HLA bind-
ing assays were available in our panel. 31 We furthermore used
stringent inclusion criteria and only considered an epitope to
be immunogenic if a corresponding epitope-specific T cell
was shown to be capable of recognizing autologous tumor
cells. This resulted in the identification of 32 mutated epitopes
and associated non-mutated sequence pairs in the Cancer
Immunity Epitope Database. Furthermore, utilizing the search
and curation strategies developed by the Immune Epitope
Database (IEDB), 32 we identified an additional 17 mutated
epitopes in a first- and 29 in a second round of curation. In
total, 78 distinct epitope HLA pairs were curated, of which 14
were filtered out because they were also included in the
dataset provided by the National Cancer Institute (NCI,
described below), leaving 64 epitope HLA pairs that were
used for bioinformatics analysis. Table 1 gives an overview
of the epitope sets utilized throughout this study.
Supplemental Table 1 lists the specific mutated epitope
sequences, the corresponding non-mutated sequence, the pro-
tein of origin, and the journal article in which the epitopes
were described.

We wanted to validate the findings from the analysis of the
literature dataset in a completely independent set of validated

immunogenic neoepitopes. We received a set of peptides
(25mers) that cover cancer mutations from the Surgery
Department at the National Cancer Institute (NCI) for
which T cell recognition status had been determined experi-
mentally and peptides were classified into 52 positive peptides
(with demonstrated T cell recognition) and 2,760 negative
peptides (for which no T cell recognition was detected).
Importantly, the workflow utilized at NCI considers all
detected mutations in a patient and tests all mutated peptides
for T cell recognition, meaning the peptides in both the
positive and negative set were not pre-selected based on
MHC binding. 33

For each 25-mer peptide, we considered all possible pep-
tides of lengths 8–11 contained in it that span the mutation
and paired each of these short peptides with each of the
corresponding HLA class I alleles expressed by the patient
from which they were derived, which resulted in 599,241
short peptide HLA pairs. To assess the efficiency to discrimi-
nate positives from negatives, predictions were performed for
each short peptide HLA pair and every 25mer was then
assigned the best prediction score among its corresponding
short peptides.

As a first comparison, we wanted to assess the HLA allele
distribution compared in these datasets. For the literature
dataset, HLA-A*02:01, HLA-A*03:01, HLA-A*24:02 and
HLA-A*01:01 are the four most frequently reported restric-
tions, potentially reflecting study bias for these well character-
ized MHC molecules. However in the distribution of HLA
alleles found in the NCI donor cohort, HLA-A*02:01 and
HLA-A*03:01 and HLA-A*01:01 are the top most frequent
alleles, suggesting that while the literature dataset is certainly
over-representing well characterized alleles, at least these are
also frequently found expressed in actual patients. This is
further confirmed by the top two restricting MHC alleles in
the NCI dataset being HLA-A*02:01 and HLA-A*03:01, which
are both in the top four literature alleles. Given the large
number of different HLA alleles and their population specific
frequencies, the datasets examined cannot be expected to fully
represent this diversity, but some frequent alleles are well
covered.

Experimental identification of the HLA class i binding
affinity thresholds for neoepitopes

We synthesized peptides corresponding to the 49 epitope
sequences identified in curation round 1 and utilized purified
HLA molecules and in vitro binding assays 31 to measure their

Table 1. Overview of epitope sets.

Epitope Set total number of analyzed peptides

Neoepitopes round 1 49
Neoepitopes round 2 29
NCI 25mers 52 positives

2,760 negatives
Unique literature neoepitope set 64
IEDB viral 2,299
Shared tumor-specific 64
Differentiation 57
Overexpressed 92

e1492508-2 Z. KOŞALOĞLU-YALÇIN ET AL.

http://cancerimmunity.org/peptide/


binding affinity for the HLA molecule identified in the pub-
lished studies as their restricting element. Supplemental Table 1
lists the measured affinities. The results as summarized in
Figure 1A, establish that an HLA binding affinity threshold of
500 nM captures 92% of the epitopes and 5,000 nM captures
98%. These affinities are largely in agreement with a previously
defined threshold for class I epitopes 11,34, where a 500 nM
affinity level identified 85% of epitopes derived from various
pathogens. In conclusion, the data presented herein suggested
that 500 nM is a suitable binding affinity threshold associated
with the majority of mutated HLA class I restricted T cell
epitopes, and 5,000 nM is a conservative threshold capturing
close to 98% of all epitopes.

Predicted HLA binding affinities of mutated cancer
epitopes establish thresholds similar to those obtained by
experimental binding affinities

Experimental measurement of HLA binding affinities for a
very large number of peptides is time and resource consum-
ing. A more efficient alternative is the use of bioinformatics
predictions of HLA binding. A number of algorithms are
available that can perform this task. The IEDB analysis
resource hosts validated and benchmarked algorithms that
are freely available to the community 35, among them,
NetMHCpan 36, which is a commonly utilized tool that pro-
vides quantitative affinity predictions for all alleles in our
panel. Using the NetMHCpan tool, we wanted to define

Figure 1. Measured and predicted affinity thresholds of different classes of epitopes. (A) Experimental identification of the HLA class I binding affinity
thresholds for mutated cancer epitopes. 49 neoepitopes curated from literature were synthesized and utilizing purified HLA molecules in vitro binding assays 31

were performed to measure binding affinities. HLA binding affinity threshold of 500 nM (dashed line) captures 83% of the epitopes and 5000 nM captures 93%. (B)
Predicted HLA binding affinities of mutated cancer epitopes establish thresholds similar to those obtained by experimental binding affinities. The HLA
binding prediction tool NetMHCpan 2.8 was used to predict binding affinities of neoepitopes curated from literature. The NetMHCpan predicted IC50 threshold of
500nM identified about 84% of epitopes and 5000 nM identified 97%. These values are remarkably close to those determined experimentally. (C) Comparison of
affinity thresholds of mutated cancer epitopes to viral epitopes. A set of 2,299 viral epitopes were retrieved from the Immune Epitope Database (IEDB) and HLA
binding predictions were performed using NetMHCpan. Neoepitopes curated from literature were predicted to bind with a lower threshold than viral epitopes; the
NetMHCpan 500 nM threshold identified 69%, and 5000 nM identified 85% of the IEDB viral epitopes. When neoepitopes received from the National Cancer Institute
(NCI) were considered, the NetMHCpan 500 nM threshold identified 96%, and 5000 nM identified 100%. (D) Comparison of affinity thresholds of mutated cancer
epitopes to other classes of cancer epitopes. Tumor-specific antigens (n = 64), differentiation antigens (n = 57), and cancer-specific overexpressed antigens
(n = 92) were retrieved from the cancer epitope database and HLA binding predictions were performed using NetMHCpan. The predicted binding affinity threshold
of 500 nM identified 75, 84, and 76% of shared, differentiation, and overexpressed antigen derived cancer epitopes, respectively, while 5,000nM identified 90, 97, and
88%, respectively.
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thresholds that could be utilized in mutated neoepitope pre-
diction pipelines, at least partially removing the need for
experimental determination of HLA binding. To keep the
results comparable to the measured binding affinities we
only considered the 49 epitopes for which experiments were
performed. The result of this analysis is shown in Figure 1B,
where the cumulative distribution of epitopes is shown as a
function of NetMHCpan-predicted IC50 values. The
NetMHCpan predicted IC50 threshold of 500nM identified
about 88% of epitopes and 96% of epitopes were identified at
5000 nM. These values are remarkably close to those deter-
mined experimentally. Also, the measured and the predicted
IC50 values were highly significantly correlated (Pearson’s
correlation, r2 = 0.59631, p < 0.0001, Supplemental
Figure S1). In conclusion, this analysis established that
NetMHCpan predictions reliably estimated binding affinities
of immunogenic neoepitopes described in the literature, and
thus suggested that NetMHCpan could be utilized in subse-
quent analyses in lieu of actually experimentally measuring
binding affinities.

Comparison of affinity thresholds between mutated
cancer epitopes and viral epitopes

To directly compare the HLA affinity thresholds between
mutated cancer epitopes and other types of epitopes, we
assembled a set of viral epitopes taken as prototype non-self
class-I restricted epitopes. As described in the methods, we
retrieved viral T cell epitope sequences with defined HLA
class I restriction from the IEDB resulting in a set of 2,299
viral epitopes. For each epitope, we generated NetMHCpan
predicted binding affinities (IC50 in nM, Supplemental
Table 4), and plotted the predicted IC50 values separately
for each epitope category (Figure 1C). We found that the
NetMHCpan 500 nM threshold identified 69% of the IEDB
viral epitopes, which is a smaller fraction than the 88% of the
neoepitopes curated from literature. To validate these findings
we also considered neoepitopes received from the NCI (which
were identified without any pre-selection based on MHC
binding), and found that the 500 nM threshold identified
96% of epitopes which is an even greater fraction than the
88% of the neoepitopes curated from literature. Based on
these results, mutated cancer epitopes bound with even higher
affinity than viral epitopes.

Comparison of affinity thresholds between mutated
cancer epitopes and other classes of cancer epitopes

The fact that mutated cancer epitopes actually bound better
than viral epitopes was at first surprising, as previous studies
had suggested that epitopes similar to self-antigens tended to
have weaker MHC binding affinity, as T cells recognizing
them would have been deleted based on negative selection
otherwise. 12–15 However, given that neoepitopes are different
from self, we asked if lower affinities were a feature of cancer-
associated epitopes that do not contain coding mutations in
the epitopes themselves. To address this issue, we selected
non-mutated epitopes from the Cancer epitope database
(Supplemental Table 3) that were derived from tumor-specific

antigens (ex. Melanoma Antigen Gene (MAGE); n = 64),
differentiation antigens (ex. Carcinoembryonic antigen
(CEA); n = 57) and overexpressed antigens (ex. Her2Neu;
n = 92). The sequences of these non-mutated cancer epitopes
are unchanged from their corresponding germline sequences,
and their immune recognition is presumably a result of their
source antigen being expressed in an unusual amount or in a
tissue associated with tumor pathology. As shown in
Figure 1D, non-mutated cancer epitopes also had predicted
affinities better than viral epitopes, and similar to mutated
cancer epitopes. More specifically, the predicted binding affi-
nity (IC50) threshold of 500 nM identified 75%, 84%, and
76% of shared, differentiation, and overexpressed antigen
derived cancer epitopes, respectively, compared to 88% and
69% for mutated and viral epitopes. These analyses suggested
that high binding affinities are a general feature of tumor
epitopes that might be necessary to overcome the immuno-
suppressive tumor environment and there is no evidence for
lower affinities due to similarity of the recognized epitopes to
self-antigens.

Assembly of a benchmark set of epitopes and
background control peptides

Next, we wanted to systematically analyze the performance of
various tools in successfully identifying immunogenic neoepi-
topes. For all following analyses, we used the unique literature
dataset consisting of 64 immunogenic neoepitopes. To assess
how well cancer T cell epitopes can be identified from within
a given set of tumor mutations, we generated a control set of
mutated peptides and their corresponding non-mutated coun-
terparts based on mutation data extracted from The Cancer
Genome Atlas database (TCGA). For each mutation extracted
from TCGA, the corresponding nucleic acid sequence was
translated into peptides that contained the mutated position.
From this set of TCGA peptides, 100 peptides for each of the
64 neoepitopes were randomly selected. This ratio roughly
reflects the situation in practice were approximately 1 in 50
tested peptides is positive. The background control dataset
contained 6,400 peptides of length 8–11 residues in equal
proportions, and were assigned HLA restrictions matching
the distribution of restricting molecules found in the epitope
dataset. This set of mutated peptides with unknown T cell
recognition status served as a background distribution from
which mutated epitopes with known T cell recognition status
were to be picked out. This random background control
dataset (randoms) together with the curated immunogenic
neoepitopes (positives) is provided as a benchmark dataset
in Supplemental Table 5.

NetMHCpan version 2.8 was used to retrieve binding pre-
dictions for all curated neoepitopes and for the generated
random control peptides. The predicted percentile rank of
each non-mutant/mutant pair from the generated background
dataset was plotted as grey dots in Figure 2A and compared to
the ranks associated with neoepitopes recognized by T cells
plotted as blue squares. The data indicated that 5,814 out of
6,400, (91%) background control peptides had predicted per-
centile ranks ≥ 10 and can therefore be considered non-
binders. In contrast, all but two (97%) of experimentally
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confirmed neoepitopes had predicted percentile ranks below
that threshold. This highlights how powerful MHC binding
predictions are to pick out immunogenic epitopes from ran-
dom mutations. The goal of our study was to refine neoepi-
tope predictions beyond excluding clear non-binding
peptides, so we excluded all peptides from further analysis
that had affinities lower than this conservative threshold of 10
percentile ranks: 2 epitopes (3%) and 5,814 background con-
trols (91%). This makes it more challenging to separate epi-
topes from the control dataset, and better highlights what
approaches provide the most benefit in terms of improving
predictions.

Quantitative HLA class i binding affinity of neoepitopes is
an excellent predictor of immunogenicity

To test how well the predicted quantitative HLA class I bind-
ing affinity of a mutated peptide could separate known cancer
epitopes from control peptides in the filtered (percentile rank
< 10) benchmark dataset, we performed an ROC analysis to
evaluate the classification accuracy of peptides into positives
(epitopes) and non-epitopes (background peptides) based on
the predicted affinities and percentile ranks. The overall
results are shown in Table 2. On the filtered dataset, the
AUC value for the predicted IC50 value to distinguish epi-
topes from controls was 0.920, which is remarkably good. In
comparison, without removing the non-binders first, the AUC
value is as high as 0.989, close to perfect and in a range where
the practical relevance of differences in AUC values becomes

obscured. We thus focus in the following on improving pre-
diction performance in the more difficult filtered dataset of
peptides with predicted percentile ranks < 10.

Next, we compared the performance of using the quanti-
tative IC50 value vs. using the predicted percentile ranks using
ROC plots (Figure 2B). For either measure, the ROC plot
revealed that the prediction has most discriminatory power
for very high affinities, where a quick gain of true positive
predictions with few false negatives was observed. Once a true

Figure 2. HLA class I binding affinity of neoepitopes is an excellent predictor of immunogenicity. (A) Predicted affinities for mutant and non-mutant
peptide pairs of a benchmark set of epitopes and background control peptides. HLA binding predictions were performed using NetMHCpan and predicted
percentile ranks of mutated peptides were plotted against those of non-mutated peptides. A threshold of 10 percentile ranks was determined to discriminate
epitopes (blue squares) from background control peptides (grey dots). (B) ROC curves of different NetMHCpan binding prediction methods. Performance of the
different NetMHCpan prediction methods IC50 (blue), percentile rank (red), and length-rescaled ranks (green) was assessed and prediction based on length-rescaled
ranks was found to outperform the other methods.

Table 2. Immunogenic neoepitope identification efficacy of different predictors
(AUC values).

Method
All

peptides
non-binders (percentile rank

≥ 10) removed

NetMHCpan – IC50 0.989 0.920
NetMHCpan – percentile rank 0.990 0.931
NetMHCpan – length-rescaled rank 0.986 0.952
NetMHCpan – length-rescaled rank
& AP3 discarded

0.982 0.954

Proteasomal cleavage score 0.695 0.572
TAP transport score 0.767 0.584
Combined proteasomal cleavage &
TAP transport score

0.779 0.589

Combined processing & binding 0.981 0.906
NetMHCstabpan score 0.978 0.860
NetMHCstabpan rank 0.984 0.890
Combined NetMHCstabpan score
and binding

0.989 0.917

Combined NetMHCstabpan rank and
binding

0.946 0.884

Similarity score 0.561 0.545
Immunogenicity score 0.589 0.562
Immunogenicity Threshold 0.986 0.953
Combined 0.982 0.956
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positive rate of ~ 95% was reached, the prediction quality
tailed off, and a plateau was reached. The red curve indicating
predictions using percentile ranks was consistently above the
blue curve, indicating a trend that ranks outperformed quan-
titative affinity values, however, this difference in AUC was
not significant when the two ROC curves were compared with
a paired bootstrap test (p = 0.43, two-tailed Mann-Whitney
test).

It is important to note that for an individual allele, the
ROC curve using IC50 values or percentile ranks would be the
same, as the ROC curve uses the predictions to order peptides
from best to worst candidate. The improved performance
when using percentile ranks over IC50 values in our dataset
thus reflected the effect of mixing predictions for different
MHC alleles. This confirmed previous findings that compar-
ing predictions across alleles on a rank scale is more appro-
priate, presumably because some alleles intrinsically bind
more peptides than others. Thus, comparing IC50 values
tends to bias predictions towards certain alleles, as compared
to what is seen in T cell recognition data. 37

Adjusting MHC binding affinity predictions by peptide
length significantly improves epitope identification

The neoepitopes reported in the literature and utilized in the
current study are between lengths 8–11. In many studies, only
9mer peptides are used for predictions, since this is the ‘cano-
nical’ length of epitopes most frequently encountered in the
case of MHC-I restriction. 38,39 As shown in the red curve in
Supplemental Figure S2, 9-mer predictions were effective when
the goal was to keep the rate of false positive predictions
extremely low, and clearly outperform predictions that treat
all peptide length equally (blue curve) for false positive rates
less than about 10%. However, by definition, such predictions
can only identify the approximately 65% of epitopes that are
indeed nine residues in size. Previous studies 40 indicated that
accuracy of epitope predictions can be significantly improved
by a model accounting for HLA allele-specific ligand length
profiles, which reflect both the difference in length preference
of binding to different HLA class I alleles and the differential
availability of peptides of a given length for binding to HLA
class I in the endoplasmic reticulum. We investigated whether
this length based rescaling would improve the prediction of
neoepitopes. Indeed, the rescaled predictions are remarkably
effective with an AUC of 0.952 (Table 2), significantly out-
performing the unbiased length predictions and the IC50 pre-
dictions (paired bootstrap test, p = 0.011 and p = 0.036, two-
tailed Mann-Whitney test). This highlights the need to adjust
pure HLA affinity predictions to take into account length pre-
ferences the antigen processing and presentation pathway.

Considering the HLA binding affinity of the non-mutated
sequence

An additional parameter playing a potential role in the selec-
tion of mutated epitopes is the absolute HLA class I binding
affinity of the non-mutated sequence from which the muta-
tion is derived. During T cell maturation, the non-mutated
sequence will be available for processing and presentation by

HLA class I, and may impact positive and/or negative selec-
tion of T cells if they are cross-reactive with the mutated
epitope sequence. This will depend on the affinity of the
non-mutated peptide sequence. To investigate the affinity
patterns of neoepitopes and their corresponding non-mutated
counterparts, we used length-rescaled affinity rank predictions
shown in the previous section to correlate best with epitope
immunogenicity. Analogous to Figure 2A, length-rescaled
ranks of each non-mutant/mutant pair in the epitope and
background control dataset were plotted (Figure 3). The
results showed that 38 neoepitopes (61%) were predicted to
bind stronger than their corresponding non-mutated counter-
part, for 9 neoepitopes (15%) the non-mutated peptide was
predicted to bind stronger, and in 15 instances (24%) the
mutated and non-mutated had similar predicted length-
adjusted percentile rank. This is an important observation,
as several studies used this as a criterion and deprioritized
neoepitopes if the mutation did not improve binding affinity
above the non-mutated counterpart. 19,27 Applying such a
filter to our dataset would remove 39% of the neoepitopes,
highlighting the need to use a threshold when filtering out
neoepitopes with weaker binding affinity than the corre-
sponding non-mutated peptide.

It was previously suggested that the difference of predicted
binding affinity between the mutated peptide and its corre-
sponding non-mutated counterpart is a better predictor of
immunogenic neoepitopes.19 We evaluated the performance
of the proposed “differential agretopic index” (DAI) and

Figure 3. Peptide pairs can be categorized into three distinct affinity
patterns. Analysis of the distribution of length-rescaled ranks of mutated/non-
mutated peptide pairs revealed three distinct affinity patterns (APs): AP1 corre-
sponds to peptides for which a substantial increase in affinity was associated
with the mutational event, AP2 corresponds to peptides for which no appreci-
able change in binding affinity was introduced by the mutation, and AP3
corresponds to peptides for which a substantial decrease in affinity was asso-
ciated with the mutational event.
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found that tested on our dataset, it is performing worse than
NetMHCpan predictions alone with an AUC of 0.86 when
using percentile rank (as suggested by the authors) and 0.902
when using rescaled ranks.

Further inspection of Figure 3 revealed that peptides could
be categorized into three distinct affinity patterns (APs). The
first class of peptides, AP1, corresponded to peptides for
which a substantial increase in affinity was associated with
the mutational event. The second class, AP2, corresponded to
those for which the difference in predicted binding affinity
introduced by the mutation was limited. A third class of
peptides, AP3, corresponded to peptides for which a substan-
tial decrease in affinity was associated with the mutation. To
determine if the definition of these classes of peptides allowed
filtering out random control peptides more effectively, we
systematically varied a threshold describing the difference in
predicted percentile rank of the mutated and non-mutated
peptide, filtered out all peptides falling into AP3 and assessed
performance. We performed 5-fold cross-validation and
found that at a threshold of 1.1–1.2, a large fraction of ran-
dom peptides fall into AP3 and are filtered out, slightliy
improving AUC when compared to length-rescaled predic-
tions alone. We chose the less stringent threshold of 1.2 and
found that at this threshold 145 background control peptides
(25%), fall into the AP3 category while no epitope had
decreased affinity above this threshold. 12 neoepitopes (19%)
and 237 random control peptides (40%) fall into AP1, and 50
neoepitopes (81%) and 204 random controls (35%) fall into
AP2. It is important to note, that the AP3 filter will perform
best when no epitopes are filtered out and due to the small
number of positives in our dataset it might be the case that the
threshold of 1.2 is overfitted. Incorporating a filter that
removes all peptides below the threshold 1.2, i.e. peptides in
AP3, slightly improves AUC to 0.954, which was however not
significant when compared to length-rescaled predictions
alone (Table 2).

TAP transport and proteasomal cleavage predictions do
not improve epitope identification

Proteasomal cleavage and TAP transport of epitopes and
their precursors have been shown to have a sequence-
dependent effect on the likelihood of a peptide to be recog-
nized by T cells. To test the ability to incorporate these
predictions into the epitope determination pipeline, we uti-
lized the proteasomal cleavage and TAP transport predic-
tions implemented in the IEDB. The proteasomal cleavage
predictions alone and the TAP transport predictions alone
gave AUC values of 0.572 and 0.584, respectively, and in
combination gave an AUC value of 0.589 (Table 2).
Notably, this is much lower than the performance these
predictions have when evaluated on the benchmark data
that includes peptides that are clear non-binders (percentile
rank ≥ 10) where the combined AUC value reaches a
respectable AUC of 0.779. The reduction in prediction per-
formance in the benchmark dataset that focus on peptides
with at least minimal MHC binding affinities indicates that
peptides generated by the antigen processing and presenta-
tion machinery tend to have sequence motifs that also make

them suitable as MHC binders. Within peptides that are
reasonable MHC binders, the ability to distinguish epitopes
from non-epitopes is much weaker. This becomes even
more evident when combining the HLA class I binding
predictions with processing predictions, for which the
AUC of the combination is lower (0.906) than what could
be obtained by HLA class I binding predictions alone
(0.931). This suggested that incorporating processing pre-
dictions did not provide a boost to the epitope identification
performance, and that MHC predictions by themselves
essentially incorporate the major contribution of at least
the proteasomal cleavage and TAP transport sequence
preferences.

Stability prediction does not improve neoepitope
identification

It has been reported that the stability of the MHC-peptide
complex is a strong predictor of immunogenicity. 41,42 To test
the ability to utilize MHC-peptide stability predictions for
neoepitope identification we used the prediction tool
NetMHCstabpan. 43 Stability predictions alone and in combi-
nation with binding predictions, as recommended by the
authors, 43 did not improve immunogenic neoepitope predic-
tion performance when compared to binding prediction alone
(Table 2). AUC values of stability predictions alone were
lower (0.860 for stability prediction score and 0.890 for stabi-
lity prediction percentile rank) than for binding predictions
alone (0.931 for binding prediction percentile rank). Even
when stability and binding predictions were combined
(using the default combined setting of NetMHCstabpan),
AUC values were lower than those for binding prediction
alone.

The nature of amino acid substitutions has minor impact
immunogenicity of mutated epitopes

Next, we analyzed neoepitopes for additional factors that
could help understand what discriminates them from random
control peptides. We hypothesized that when the epitope
mutation is not associated with increased binding (i.e. AP2),
there might be an increased need of the TCR facing residues
to be different from the non-mutated sequence in order to
overcome T cell tolerance. To test this hypothesis, we exam-
ined whether the substitutions found in mutated epitopes in
AP2 were less conservative compared to control mutations in
that region. We utilized the BLOSUM62 matrix to quantify
the degree of similarity between a given peptide pair. While
the similarity scores of peptide pairs in AP1 were not signifi-
cantly different when compared to control peptides pairs, the
difference for peptide pairs in AP2 was significant (p = 0.003,
two-tailed Mann-Whitney test) (Figure 4A). This finding
might be statistically significant, but it is not informative
biologically, given the fact that the shift in similarity scores
was very slight, and overlap of the score range was high. In
line with this, incorporating a threshold for similarity score as
a filtering step did not improve performance. Hence, the
similarity score was not considered further in our selection
scheme.

ONCOIMMUNOLOGY e1492508-7



The residue composition of mutated epitopes has a minor
impact to on immunogenicity

The amino acid composition of an MHC bound peptide in
residue positions that are likely to be in contact with the TCR
was shown to correlate with the likelihood of a peptide to be
immunogenic. 21 Analogous to the similarity scores analysis
described above, we incorporated the calculated immunogeni-
city scores, separately considering peptides in the AP1 and the
AP2 categories (Figure 4B). We found no significant difference
between the immunogenicity scores of epitopes and back-
ground control peptides neither in AP1 nor in AP2.
Nevertheless, we wanted to analyze if including the immuno-
genicity score as a selection step into our prediction pipeline
using the length adjusted percentile ranks provides a boost in
performance. We systematically varied a threshold of the
immunogenicity score and discarded all peptides with scores
below that threshold. We found that with an immunogenicity
score threshold of −0.43 neoepitopes could be marginally better
discriminated from background control peptides, slightly
improving the AUC to 0.953, compared to 0.952 when
length-adjusted ranks were used alone. This filter removes 24
random peptides (4%) while no epitope is affected.

Establishment of neoepitope specific prediction rules

Based on our results above, we have defined an overall scheme
based on which we would filter and prioritize candidate pep-
tides to test for immune recognition. This scheme would be
implemented as follows: 1) Given a selected set of cancer
mutations, generate all 8–11 mers that overlap the mutations
2) Predict HLA binding affinity of each mutated and corre-
sponding non-mutated peptide. Subsequently, apply three
filtering steps that improve the immunogenicity prediction
performance of neoepitopes: 3) Discard peptides with pre-
dicted percentile rank ≥ 10, 4) Discard peptides for which
the corresponding non-mutant peptide binds more than 1.2
percentile points stronger than the mutant peptide, 5) Discard
peptides with less than −0.43 immunogenicity score 6,) Rank
the remaining peptides by their length-adjusted percentile
rank HLA binding affinity. This scheme performs well on
our filtered benchmark set with an AUC of 0.956, slightly
outperforming length-rescaled ranks alone with an AUC of
0.952 (paired bootstrap test, p = 0.03801, two-tailed Mann-
Whitney test, Table 2).

To validate these findings and to rule out a class imbalance
problem that might have been introduced by the large

Figure 4. Impact of nature and position of amino acid substitutions on immunogenicity. Epitopes of the two affinity patterns (APs), i.e. AP1 (increased binding
of mutated peptide) and AP2 (no significant increase in binding), were compared to the corresponding background control peptides. (A) The nature of amino acid
substitutions does not impact immunogenicity of neoepitopes. The BLOSUM62 matrix was used to assess the degree similarity of the mutated peptide to the
non-mutated counterpart in the epitope and background control datasets. The difference in similarity scores between epitopes and background control peptides was
found to be significant for peptide pairs in AP2 (p = 0.003568, two-tailed Mann0Whitney test). (B) The type of specific residues found at mutated position
contributes to the intrinsic immunogenicity of neoepitopes. The IEDB immunogenicity prediction tool was used to assess the immunogenicity of mutated and
non-mutated peptides in the epitope and background control datasets. No significant difference between the immunogenicity scores of epitopes and background
control peptides was.
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difference in the number of positives and random controls in
the utilized dataset, we additionally used size matched sub-
samples of the background controls: we scaled the random
background dataset down to match the numbers of positive
epitopes and recalculated AUCs and thresholds for 100 dif-
ferent randomly sampled background control datasets. As
expected, our findings remained unchanged: in 86 of 100
cases, ranks outperformed IC50 values, and in 96 of 100
cases, length-rescaled ranks outperformed ranks. The thresh-
olds for AP3 and immunogenicity did not change in any of
the subsamples.

While the improvement in performance is small, our filter-
ing steps remove random control peptides so that the remain-
ing candidate list is enriched for epitopes. Given that in a
typical study or clinical setting, selected peptides from the
candidate list would be synthesized and tested experimentally
for T cell recognition, any such enrichment that can be
reproducibly performed is highly beneficial.

Validation of results on an independent dataset of
immunogenic neoepitopes from the national cancer
institute (NCI)

To test the robustness of our initial findings, we repeated all
steps from the analysis above on a completely independent set
of immunogenic neoepitopes received from the NCI.

We first performed binding predictions using NetMHCpan
version 2.8 and plotted the predicted percentile rank of each
non-mutant/mutant pair analogous to Figure 2A, to compare
the ranks associated with immunogenic neoepitopes (green
squares) to ranks associated to peptides that were not recog-
nized by T cells (green dots) (Figure S3). 70 negatives (2.5%)
had predicted percentile ranks ≥ 10, while all positives had
predicted ranks below this threshold.

We again evaluated the classification accuracy of each tool
and could confirm that using length-adjusted percentile ranks
outperforms all other prediction methods. All results are
summarized in Table 3 and ROC curves are plotted in
Supplemental Figure S5. Next, we plotted the length-adjusted
percentile rank of each mutant/non-mutant pair analogous to
Figure 3 and assessed the previously defined affinity patterns
(Figure S4). This analysis showed, that for 32.7% of the
epitopes, the non-mutated peptide had better predicted
length-rescaled ranks than the mutated peptide. This again
highlights that it is critical not to filter out epitopes where the
non-mutated counterpart binds better, but to use a threshold

instead. The difference in ranks between mutated and non-
mutated was smaller than our previously defined threshold of
1.2 for 51 of the 52 epitopes (98%). In contrast, for 12.9% of
the negatives the difference was greater than 1.2, placing them
in AP3 and eventually filtering them out. However, incorpor-
ating this threshold as a filtering steps does again not improve
performance, as one epitope is lost. Slightly relaxing the
threshold to 1.3 however, avoids filtering out that epitope
and slightly improves performance to an AUC of 0.780 com-
pared to an AUC of 0.777 when using length-rescaled ranks
alone. Of note, when this relaxed AP3 threshold of 1.3 was
applied to the literature dataset instead of the 1.2 threshold,
the AUC remained unchanged at 0.954. The third filter, i.e.
the 5th step in our proposed decision tree discarding peptides
with less than −0.43 immunogenicity score, removed one
negative peptide from this dataset. Taken together, applying
our combined filters and using length-adjusted percentile
ranks yields improved performance with an AUC of 0.782.
These findings show that our initial results for using length-
rescaled ranks for MHC binding predictions were reproduced
on an independent dataset. However, additional thresholds
for affinity patterns (AP3) that previously led to minor
improvements were not robust and had to be relaxed. This
suggests that the safest and most robust way to identify
neoantigen candidates is to use MHC binding predictions.

NetMHCpan version 4

Having established that MHC binding predictions are the
most robust way to discriminate immunogenic neoepitopes
from random control peptides and that allele-specific length-
rescaling provides a noticeable boost in performance, we
assessed the recently published most up-to-date version of
NetMHCpan (version 4.0), which includes an allele-specific
length-adjustment as an intrinsic step to the new method. 44

NetMHCpan4 was trained on naturally eluted ligands as well
as on binding affinity data and therefore returns two pre-
dicted values: likelihood of a peptide becoming a natural
ligand (EL), and predicted binding affinity (BA). We used
NetMHCpan-4.0 to perform predictions for the NCI dataset.
We found that NetMHCpan-4.0 EL percentile rank outper-
forms all other approaches with an AUC of 0.807 on the
unfiltered dataset and 0.802 on the dataset, where non-binders
were removed. This suggests that the simplest practical imple-
mentation for neoepitope identification is to use the
NetMHCpan-4.0 EL scores, discard peptides with percentile
ranks > 10, and rank the remainders in order.

Discussion

Recent years have witnessed a resurgence of interest and hope
linked to personalized cancer immunotherapy. 4–7,45 This is in
large part linked to the success of checkpoint blockade inhi-
bitors, which promise to overcome immunosuppressive
mechanisms that are believed to have hampered the ability
of cancer vaccines to induce effective immune responses. In
addition, today’s capacity for fast and comprehensive sequen-
cing of genomes and transcriptomes of tumor samples from
cancer patients makes it possible to design cancer vaccines to

Table 3. Prediction performance on NCI dataset (AUC values).

Method
All

peptides
non-binders (percentile rank ≥ 10)

removed

NetMHCpan – IC50 0.762 0.755
NetMHCpan – percentile

rank
0.760 0.754

NetMHCpan – length-
rescaled rank

0.783 0.777

Combined relaxed filters 0.786 0.782
NetMHCpan-4 BA percentile

rank
0.798 0.792

NetMHCpan-4 EL percentile
rank

0.807 0.802

ONCOIMMUNOLOGY e1492508-9



the specific mutations that could be immune targets in a
patient’s tumor. It has however become evident that the vast
majority of these neoepitope candidates do not induce a T cell
response when tested in vivo or in vitro, i.e. most are not
immunogenic. 24,28,46 Especially in patients with high muta-
tional load, hundreds or even thousands of mutated peptides
are commonly found based on sequencing approaches, high-
lighting the need to further narrow down this candidate list
and increase the specificity in detecting immunogenic
neoepitopes.

In our study, we assembled a dataset of known immuno-
genic neoepitopes to determine properties that distinguish
them from other cancer-specific peptides arising from muta-
tions. The most commonly used approach to select candidate
T cell epitopes from a set of peptides is to determine their
MHC binding affinity. A commonly used threshold to deter-
mine if a peptide is likely to be immunogenic was established
over two decades ago, stating that most epitopes have a pep-
tide:MHC binding affinity with an IC50 < 500 nM. 11 This
threshold has been repeatedly validated for viral and other
non-self origin epitopes but it is being controversially dis-
cussed whether the same threshold is also applicable for
cancer epitopes. 15,18,19,47 Neoepitopes are generally very simi-
lar to their non-mutated counterparts which are self-proteins
that are subject to central tolerance. Thus, studies have sug-
gested that the binding threshold for neoepitopes should be
substantially higher than 500nM. 19 Based on our results in
this study, we can confirm that the IC50 < 500 nM threshold
is applicable for neoepitopes. 45 out of 49 analyzed neoepi-
topes (92%) had measured binding affinities of < 500 nM.
Predicted binding affinities using NetMHCpan were highly
correlated to the measured affinities, and 43 out of 49 ana-
lyzed neoepitopes (88%) had predicted binding affinities of
< 500 nM. Surprisingly, we found that the association between
HLA affinity and immunogenicity was even more pronounced
for mutated epitope and other cancer epitopes in general as
compared to epitopes of viral origin, where 1,579 out of 2,299
analyzed viral epitopes (69%) have predicted binding affinities
< 500 nM. This finding might reflect the generally immuno-
suppressive environment associated with tumor sites, and in
this scenario, the higher affinity of cancer epitopes might be
required to compensate this immunosuppressive
environment.

It is well recognized that immunogenicity in general and in
the cancer setting in particular, is a complex process, influ-
enced by multiple variables beyond MHC binding. In our
study, we have evaluated several different predictors and we
suggest that using binding prediction alone, i.e. length-rescaled
percentile ranks, yields the most robust performance in discri-
minating immunogenic neoepitopes from a background set of
mutated peptides as well as from a set of non-immunogenic
mutated peptides. We did not find that using proteasomal
cleavage or TAP transport predictions improve performance.
In fact, whether proteasomal cleavage and TAP transport pre-
dictions should be incorporated into neoepitope prediction
pipelines is another controversially discussed topic. 5,45,48 The
fact that we did not see an increase in performance when
combining binding and proteasomal cleavage and/or TAP
transport predictions should however not be taken to signify

that these processes are not relevant. Proteasomal cleavage
prediction and TAP transport prediction alone achieved rea-
sonable AUC values, showing that these tools indeed have
predictive value, but this value gets lost when combined with
binding predictions. This indicates that peptides generated by
the antigen processing and presentation machinery tend to
have sequence motifs that make them preferable as MHC
binders, which is likely a result of co-evolution. Additionally,
it is well known that antigen processing has a lower relative
weight in the whole antigen processing and presenting machin-
ery when compared to HLA binding. 34

There are several reports in the literature that the stability
of the MHC-peptide complex is a stronger predictor of immu-
nogenicity than peptide affinity alone. 41,42 We used the pep-
tide-MHC stability prediction tool NetMHCstabpan and
could not confirm those previous reports since our results
indicated that binding prediction alone performed better than
both stability prediction alone and stability prediction in
combination with binding.

Several studies have now confirmed that only a very small
fraction (< 1%) of expressed mutations are immunogenic in
cancer patients. 24,49 In this context, it is often mentioned that
the tumor microenvironment plays a critical role for antitumor
T cell responses, not only by inhibiting existing T cells, but also
by preventing T cell priming against neoepitopes. 50,51 At the
same time, it needs to be stressed that even in the context of e.g.
poxvirus infection, the vast majority of peptides that could in
principle be recognized by the immune system in any context
of immune exposure are not. 34,52 There are multiple aspects
influencing immunodominance that impact which epitopes
ultimately get recognized, ranging from variables associated
with the antigen encoding the epitope (such as its abundance,
cellular localization or kinetics of transcription), as well as
conservation/cross-reactivity with other immune targets.
These are also all relevant in the cancer setting, where expres-
sion level of the antigen itself, and the clonality of a mutation
within the cancer cell population both impact the likelihood of
detecting an immune response against it. 53 Our current ana-
lysis does not take any such factors into account and assumes
that all peptides are equally accessible for T cell recognition.

Using a comprehensive dataset of mutated peptides as a
background set, we show that known neoepitopes can be very
efficiently picked based on predicted HLA binding affinity.
Two important considerations stand out in this context. First,
when considering binding affinities for different alleles
together, there are different options to pick predicted positives
from the combined set. We found that when considering
peptides of different lengths, one cannot simply use the pre-
dicted binding affinities, but must consider the fact that
different peptide lengths are intrinsically more or less favored,
presumably due to differences in the efficiency with which
they are processed and presented. We apply a length-rescaling
approach developed for this purpose, 40 which mimics the
length distribution found in naturally eluted ligands. This
length-rescaling approach is only available for predictions
based on NetMHCpan version 2.8, which considers all lengths
equally likely to bind. The newest version of this algorithm,
NetMHCpan-4.0, is taking length preferences for naturally
eluted ligands directly into consideration during training,
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and which provides a simpler implementation of length-spe-
cific scores, and shows similar improvements in the identifi-
cation of neo-epitopes. 44,54,55

The two epitope datasets utilized in our study are very
different: First, it has to be noted that about half of the
epitopes (37 out of 78) in the first dataset were curated from
studies that used an HLA binding prediction tool to select
candidate epitopes for testing. This introduces an HLA bind-
ing bias into this dataset, which is expected to lead to an
overestimate of the performance. By removing 90% of the
peptides from the background dataset that had low predicted
binding affinity, we attempted to reduce this effect, and allow
us to focus more on how other factors contribute to epitope
recognition, but it is likely that some overestimation effect
remains. Given the sparsity of completely unbiased epitope
mapping data in the literature, we consider our approach a
reasonable compromise between lack of bias and retaining a
reasonably large dataset.

Another important difference between the datasets is that
the first one is comprised of peptide epitopes mapped to their
minimal length and have known restrictions to specific HLA
molecules in the patient that recognized them. The second
dataset consists of 25-mer peptides spanning the mutation,
with no restriction defined. A single 25-mer contains 17 x 9-
mers, 16 x 10-mers, 15 x 11-mers = 48 potential minimal
peptides, restricted by any of the HLA class I molecules
expressed in a patient. Most likely, only one of these minimal
peptide:HLA combinations will be the true epitope recognized
within the 25-mer peptide that got a T cell response in a
patient. Distinguishing a positive long peptide from a negative
long peptide, where it is not known what the actual recog-
nized minimal epitope is, or what HLA it is restricted by, is
intrinsically harder than distinguishing positive vs. negative
minimal peptides for a defined HLA restrictions, as is the case
for the first dataset. This explains why the AUC values are
systematically lower for the second set compared to the first
set. On the other hand: The difference in prediction perfor-
mance highlight that testing longer peptides for T cell recog-
nition experimentally is a very efficient way to reduce the
number of tests that need to be performed, which can be
especially important if patient samples are limited. Once posi-
tive long peptides have been identified, subsequent experi-
ments can still narrow down minimal epitopes if desired.
This stresses that predictions are particularly effective at iden-
tifying minimal epitopes, but this might not be the most
effective strategy if samples are limited for testing.

In terms of limitations of the present study, it is important
to emphasize that our current analysis is focused on neoepi-
topes derived from point mutations and does not consider
epitopes derived from insertions, deletions, translocations,
fusions, etc. These classes of neoepitopes are often thought
to be more immunogenic as they usually more significantly
differ from self-peptides8. More recently, additional classes of
unconventional epitopes have emerged and are being appre-
ciated as valuable targets for cancer immunotherapy. 56–58 As
more datasets about immunogenicity of such epitopes
becomes available, our analysis should be expanded to cover
them as well.

Overall, our study provides an actionable and straightfor-
ward way to implement selection scheme for T cell epitope
candidates from a set of mutations. While we did validate our
results with an independent dataset of additional immuno-
genic neoepitopes, we would have much preferred to conduct
larger scale validation. Unfortunately, such data is very lim-
ited at this time. Currently ongoing efforts such as the Tumor
Neoantigen Selection Alliance (TESLA), will provide such
validation opportunities.

Currently, the IEDB does not curate cancer epitopes, as its
mandate is focused on infectious diseases, allergy, and auto-
immunity. However, there is clearly a need for a centralized
resource and database, freely available to the scientific com-
munity. As studies reporting immunogenic neoepitopes are
being published regularly, capturing and centrally storing
neoepitope data on an ongoing basis would provide up-to-
date datasets that could highly facilitate our understanding of
what makes a good immunogenic neoepitope.

Methods

Curation of mutated cancer epitopes from literature

The first set of neoepitopes were assembled in February of
2016 (round 1). Mutated epitope sequences, as well as corre-
sponding non-mutated sequences, were obtained from
‘Mutations Table 1ʹ provided in the Cancer Immunity
Peptide Database [www.cancerimmunity.org/peptide], a data
resource from the Cancer Research Institute. Additional
mutated epitopes were identified using an expanded keyword
search of the published literature (PubMed), in parallel with a
survey seeking input from various cancer immunologists.
Briefly, we modified the standard IEDB query 59,60 which
retrieves papers containing epitope information, by adding
the keywords ‘neo-epitope, neoepitope, neo-antigen, neoanti-
gen, chromosomal translocation, chromosomal translocations,
mutanome.’ In total, 80 papers were retrieved by this
expanded query and their neoepitope content was manually
verified by experts. We used stringent inclusion criteria and
included only minimal epitopes. Also, epitopes were only
included if a corresponding epitope-specific T cell was
shown to be capable of recognizing autologous tumor cells.
We only considered epitopes that i) result from single nucleo-
tide variants, ii) are of lengths 8–11 amino acids, and iii) have
a defined HLA class I allele restriction that was covered by
one of the alleles in our binding assay repertoire encompass-
ing 49 common HLA A and B specificities. 31 As result, a total
of 49 unique mutated epitopes included in this first set of
curated neoepitopes. For all mutated and non-mutated pep-
tides in this set, experimental HLA binding measurements
were performed. In January of 2018, an additional set of
neoepitopes was assembled using the same query as described
above (round 2). We identified 15 additional papers that
contained suitable information regarding neoepitopes asso-
ciated with positive T cell responses in humans and known
HLA class I restriction at the 4-digit level. This second set of
curated neoepitopes consisted of 29 neoepitopes
(Supplemental Table 1).
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We received an additional set of peptides from the Surgery
Branch at the National Cancer Institute (NCI) for which T
cell recognition status had been experimentally determined.
This set contained 2,844 peptides of which 56 were recognized
by T cells (positives) while 2,788 were not (negatives). To be
consistent with the literature datasets, we only considered
peptides derived from nonsynonymous point mutations,
resulting in the removal of 28 peptides that were derived
from indel mutations. We also removed four neoepitopes,
that were only recognized by CD4 T cells. The final NCI
dataset that was investigated in this study consisted of 52
positives and 2,760 negatives (Supplemental Table 2).

Several of the peptides from the NCI dataset were also
published, 46,61–63 which resulted in an overlap with the
curated literature dataset. To keep the datasets distinct from
each other, we filtered the literature dataset and removed all
peptides included in the NCI dataset for all bioinformatics
and statistical analyses. From the 78 peptide HLA pairs that
were initially curated, 14 peptides were removed because they
overlapped with peptides in the NCI dataset. As a result, the
final literature dataset consisted of 64 unique peptide HLA
pairs.

Assembly of additional epitopes (viral and non-mutated
cancer origin)

Epitopes from cancer antigens that did not involve coding
mutations were also obtained from the Cancer Immunity
Peptide Database. This included epitopes from shared
tumor-specific antigens (e.g. MAGE; n = 64), differentiation
antigens (e.g. CEA, Tyrosinase; n = 57) and overexpressed
antigens (e.g. Telomerase, Her2Neu; n = 92, Supplemental
Table 3). A control set of 2299 viral epitopes with defined
HLA class I restriction was also retrieved from the IEDB
(Query criteria: source organism = viruses,
restriction = HLA class I, T cell response = positive.) Query
results were filtered using the same length and HLA restric-
tion as for cancer epitopes above (Supplemental Table 4).

Background dataset generation

A set of peptides covering cancer mutations and their cor-
responding non-mutated counterparts was generated to
serve as a background control. Somatic mutation data
from the publicly available TCGA data portal were down-
loaded for the 33 cancer types available on the TCGA
website (http://cancergenome.nih.gov/). Mutation annotated
files (MAF format version 2.2) were extracted from the
Somatic Mutations directories of each dataset. From these,
missense mutations resulting from single nucleotide variants
were randomly selected so that the number of mutations
selected from each file was proportional to the total number
of mutations contained in that file. For each of these ran-
domly selected mutations, peptide sequences for all possible
8, 9, 10 and 11-mer peptides overlapping the mutation were
taken into consideration. We randomly picked 100 control
peptides for each of the 64 neoepitopes in our curated
literature dataset described above. The control peptide

pairs were assigned the same HLA restriction as the neoe-
pitope for which they were picked (Supplemental Table 5).

HLA class I binding measurements

Purification of HLA class I molecules and quantitative com-
petitive inhibition assays to measure the binding affinity of
peptides to purified HLA class I were performed as previously
described. 31 Briefly, 0.1–1 nM of a high-affinity radiolabeled
peptide is co-incubated at room temperature with 1 µM to
1 nM of purified HLA class I in the presence of a cocktail of
protease inhibitors and 1 µM β-microglobulin. Following a
two-day incubation, HLA class I bound radioactivity is deter-
mined by capturing HLA class I/peptide complexes on W6/32
(anti-class I) antibody coated Lumitrac 600 plates (Greiner
Bio-one, Frickenhausen, Germany), and measuring bound
cpm using the TopCount (Packard Instrument Co.,
Meriden, CT) microscintillation counter, and the concentra-
tion of peptide yielding 50% inhibition of the binding of the
radiolabeled peptide is calculated. Under the conditions uti-
lized, where [label]<[HLA class I] and IC50 ≥ [HLA class I],
the measured IC50 values are reasonable approximations of
true Kd values. 64,65 Each competitor peptide is tested at six
different concentrations covering a 100,000-fold dose range,
and in three or more independent experiments. As a positive
control, the unlabeled version of the radiolabeled probe is also
tested in each experiment. The dataset has been submitted to
the Immune Epitope database, submission: http://www.iedb.
org/subid/1000715.

HLA class i binding predictions

Binding predictions were performed using the command-line
version of NetMHCpan version 2.8 available on the Immune
Epitope Database website (http://www.iedb.org).35,36,66

NetMHCpan was selected because it consistently performs
as one of the best prediction tools across a wide array of
alleles, and also provides predicted IC50 nM values for the
complete set of common class I alleles considered here. 67,68 In
addition to predicted affinity (IC50), NetMHCpan also pro-
vides a percentile score expressing the relative capacity of each
peptide to bind each specific allele, compared to a universe of
potential sequences of the same size. While newer versions of
NetMHCpan are available, we focused on the 2.8 version as
only for this implementation a length-rescaling model is
available, as described by Trolle et al. 40 Briefly, ligands from
five common HLA class I alleles were eluted and the allele-
specific length-distribution of ligands was determined. This
data showed that different MHC alleles have different length
preferences and that these preferences seem to have an impact
on the length distribution of naturally processed ligands.
These findings were translated into a normalization model
that corrects predicted percentile ranks from NetMHCpan 2.8
and provides more accurate length-rescaled ranks. 40 A tool
implementing this model can be accessed via the IEDB
Analysis Resource (http://tools.iedb.org/mhci/, select
“Prediction Method” “NetMHCpan 2.8”)69.

To test the added value of HLA binding stability, we used
the prediction tool NetMHCstabpan (Version 1.0) 43 and
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performed stability predictions alone and in combination with
affinity predictions as recommended by the authors.

Processing predictions

In order to evaluate the performance of proteasomal cleavage
and TAP transport predictions, we used the combined proces-
sing predictor implemented in the IEDB (http://tools.iedb.
org/processing/). This tool allows combined prediction of a
peptide’s intrinsic characteristics and provides separate pre-
diction scores for proteasomal cleavage, TAP transport, and
HLA class I binding affinity, as well as combined scores for
processing (proteasomal cleavage and TAP transport com-
bined) and a total score which combines all three predictions.
Scores are combined by a simple linear model adding up
individual scores on log scale. 70

Assessment of sequence similarity

To assess the similarity of the mutated epitopes and their non-
mutated counterparts, we used a BLOSUM matrix, which is
based on the frequency of amino acid substitutions observed
in evolutionarily related protein sequences.71,72 A BLOSUM
matrix contains log-odds scores for each of the possible sub-
stitutions of the 20 amino acids, where highly conserved
amino acids have the highest scores, while non-conservative
substitutions have negative scores. We used the BLOSUM62
matrix, which is generated based on protein sequence align-
ments of 62% identity or less. For each pair of the mutated
epitope and corresponding non-mutant peptide, we calculated
the similarity score as previously described. 73 Briefly, for two
peptides a and b the similarity score is calculated as the
BLOSUM score for a and b divided by the square root of
the product of the BLOSUM scores of the two peptides
aligned to themselves. This method assigns two identical
peptides a similarity score of 1.

Immunogenicity predictions based on amino acid
composition

We used the IEDB immunogenicity prediction tool (http://
tools.iedb.org/immunogenicity/) which assigns a score to a
given peptide based on its amino acid composition at residues
not directly involved in binding to the MHC molecule as
previously described. 21

Predictions for the NCI dataset

Peptide sequences provided for analysis by the NCI Surgery
Department consisted of 25 amino acids (25mer) with the
mutation in the center of the peptide. For each peptide, the
HLA class I alleles expressed by the corresponding patient
were also provided. We considered all possible peptides of
lengths 8–11 that were contained in each 25mer and con-
tained the mutation. Each of these short peptides were paired
with each of the corresponding HLA class I alleles, resulting
in 599,241 short peptide HLA pairs. For each of these pairs, all
above-mentioned predictions and calculations were

performed individually. Every 25mer was then assigned the
best prediction score among its short peptide HLA pairs.

Performance assessment and statistical calculations

The R package pROC was used for performing ROC analysis,
calculating AUCs and performing paired bootstrap tests of
ROC curves.74
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