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4Département d’Oncologie Médicale, Gustave Roussy Cancer Campus, Villejuif 94800, France
5INSERM U981, Gustave Roussy Cancer Campus, Villejuif 94800, France
6INSERM U1287, Gustave Roussy Cancer Campus, Villejuif 94800, France
7INSERM US23, CNRS UMS 3655, Gustave Roussy Cancer Campus, Villejuif 94800, France
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SUMMARY
Blood myeloid cells are known to be dysregulated in coronavirus disease 2019 (COVID-19), caused by SARS-
CoV-2. It is unknownwhether the innatemyeloid response differswith disease severity andwhethermarkers of
innate immunity discriminate high-risk patients. Thus, we performed high-dimensional flow cytometry and sin-
gle-cell RNA sequencing of COVID-19 patient peripheral blood cells and detected disappearance of non-clas-
sical CD14LowCD16High monocytes, accumulation of HLA-DRLow classical monocytes (Human Leukocyte Anti-
gen - DR isotype), and release ofmassive amounts of calprotectin (S100A8/S100A9) in severe cases. Immature
CD10LowCD101�CXCR4+/� neutrophils with an immunosuppressive profile accumulated in the blood and
lungs, suggesting emergency myelopoiesis. Finally, we show that calprotectin plasma level and a routine
flowcytometry assaydetectingdecreased frequenciesof non-classicalmonocytescoulddiscriminatepatients
who develop a severe form of COVID-19, suggesting a predictive value that deserves prospective evaluation.
INTRODUCTION

Coronavirus disease 2019 (COVID-19) is caused by severe acute

respiratory syndrome coronavirus 2 (SARS-CoV-2), which in-

fects the lungs, leading to fever, cough, and dyspnea (Guan

and Zhong, 2020). Most patients presenting with mild disease

develop an efficient immune response (Thevarajan et al., 2020),

but some go on to develop acute respiratory distress syndrome,

leading to admission to the intensive care unit (ICU), often culmi-

nating in multi-organ dysfunction and death (Wang et al., 2020).

In addition to cell-autonomous effects of the viral infection, a

dysregulated immune response participates in the sudden dete-

rioration of COVID-19 patients, ultimately overwhelming infected

and non-infected tissues (Vabret et al., 2020). This overt inflam-

matory response centers around a cytokine storm (Chen et al.,

2020a) with elevated blood concentrations of interleukin-6
C

(IL-6). Accordingly, therapeutic agents targeting the IL-6/IL-6R-

gp130 axis can alleviate the inflammatory response (Michot

et al., 2020) and ameliorate immune dysregulation (Giamarel-

los-Bourboulis et al., 2020), emphasizing the clinical significance

of this cytokine. Marked lymphocytopenia is also associated

with COVID-19 severity (Chen et al., 2020a); however, the pri-

mary source of the cytokine storm and of the mechanisms

behind lymphocytopenia remains elusive (Li et al., 2020).

Agrowingbodyofevidencepoints todysregulationof innate im-

mune cells of the granulomonocytic lineage during viral infections

of the lungs.Avarietyofhumanviruses infectmonocytesandmac-

rophages to spread through the tissues (Al-Qahtani et al., 2017;

Desforges et al., 2007; Nottet et al., 1996; Smith et al., 2004; Yilla

et al., 2005). SARS-CoV-2mRNA is detectable in lungmonocytes/

macrophages of severe COVID-19 patients (Bost et al., 2020), but

its ability to enter these cells in the peripheral blood and activate
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Ido Amit,20 Fabrice Barlesi,4 Aurélien Marabelle,1,21 Frédéric Pène,2,9 Bertrand Gachot,15 Fabrice André,4,5,22
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23Centre d’Investigation Clinique – Biothérapie, INSERM CICBT1428, Villejuif 94800, France
24Shanghai Institute of Immunology, Shanghai JiaoTongUniversity School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
25Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore 169856, Singapore
26These authors contributed equally
27Lead Contact

*Correspondence: florent_ginhoux@immunol.a-star.edu.sg (F.G.), michaela.fontenay@aphp.fr (M.F.), eric.solary@gustaveroussy.fr (E.S.)
https://doi.org/10.1016/j.cell.2020.08.002

ll
Article
them directly remains unclear. Also, tissue damage induced by

SARS-CoV-2 infectionmay lead to releaseof pathogen- anddam-

age-associated molecular patterns that, in turn, induce activation

and recruitment of inflammatory cytokine- and chemokine-pro-

ducing innate immunecells in anamplifying loop (Liao et al., 2020).

It remains unclear to what extent immune patterns associated

with COVID-19 pathophysiology are causative and exacerbate

the disease and/or could be used for accurate patient stratifica-

tion. Here, using high-dimensional single-cell approaches,

including single-cell RNA sequencing, mass cytometry, and

25-parameter spectral flow cytometry, we show that patients

who develop severe disease exhibit a massive release of

S100A8/S100A9 calprotectin accompanied by changes in

monocyte and neutrophil subsets. We further discover that this

pathological immune system reorganization is initiated by onset

of emergency myelopoiesis, which release immature myeloid

cells with an immunosuppressive phenotype into the peripheral

blood and lungs. Our study integrates frequencies of non-clas-

sical monocytes and immature neutrophils with calprotectin

plasma levels as robust biomarkers of COVID-19 severity and

suggests potential therapeutic strategies targeting calprotectin

to alleviate severe COVID-19.

RESULTS

Introduction to the Patient Cohort
This non-interventional study enrolled 158 patients (Table S1),

including 86 and 72 subjects referred to the hospital with various

flu-like symptoms who were diagnosed or not with COVID-19

based on positive and negative RT-PCR of pharyngeal swabs,

respectively. Patients were stratified according to disease

severity. Mild disease (n = 27) was defined as having no or limited

clinical symptoms and not requiring computed tomography (CT)

scanningorhospitalization.Moderatedisease (n=16)wasdefined

as being symptomatic, with dyspnea and radiological findings of
1402 Cell 182, 1401–1418, September 17, 2020
pneumonia upon thoracic CT scan, requiring hospitalization with

a maximum of 9 L/min of oxygen. Severe disease (n = 43) was

defined as respiratory distress requiring admission into the ICU.

Mild and moderate cases were mixed in the discovery part of the

study and considered separately to explore the ability of a routine

flow assay to discriminate patients who require hospitalization.

Circulating Innate Immune Cells in Patients with Mild
and Severe COVID-19 Exhibit Distinct Phenotypes
To explore changes in circulating immune cell phenotype induced

by SARS-CoV-2 infection, we first collected peripheral blood

samples from a discovery cohort of 13 patients positive for

SARS-CoV-2 (hereafter called COVID-19 patients) by RT-PCR

and 12 patients suffering from flu-like symptoms but negative

for SARS-CoV-2. The former group included 5 patients with

mild disease and 8 patients with severe COVID-19 (Table S2). Af-

ter red blood cell lysis, we labeled peripheral blood cells with a

panel of 25 antibodies recognizing immune cell surface markers

(Key Resources Table) and analyzed them by spectral flow cy-

tometry (Figures 1A, S1A, and S1B). By pooling the data from

the 25 control and COVID-19 patients and subjecting them to

dimensionality reduction using the non-supervised UniformMani-

fold Approximation and Projection (UMAP) for dimension reduc-

tion algorithm (Becht et al., 2018), we identified populations of

CD4+ T cells, CD8+ T cells, CD19+ B cells, CD14High monocytes,

and CD15+CD66b+ neutrophils (Figures 1B and 1C). We also

identified HLA-DRHighCD11b+ and CD16High monocytes as well

as neutrophils expressing CD11b, CD15, CD16, and CD64 (Fig-

ures 1B and 1C). Analysis and visualization, using UMAP dimen-

sionality reduction to the cell surface marker expression datasets

from control and mild and severe COVID-19 groups suggested

differences in the repartition of cell populations (Figure 1D).

Patients with severe disease exhibited an expansion in the

proportion of circulating neutrophils within the peripheral blood

cell population (Figure 1E) that was associated with an increase
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in their absolute numbers (Table S2), as already reported (Huang

et al., 2020). Focusing on neutrophil subsets, we noticed a slight

increase in the fraction of CD10LowCD101+ neutrophils in pa-

tients with mild COVID-19 (Figure 1F), whereas the fraction of

CD10LowCD101� neutrophils was remarkably amplified in pa-

tients with severe disease, suggesting an accumulation of imma-

ture subsets of neutrophils (Ng et al., 2019) in the peripheral

blood of these patients (Figures 1G and S1C–S1E).

In patients with severe disease, the absolute numbers of circu-

lating monocytes (Table S2) and the proportion of total mono-

cytes among peripheral blood leucocytes (Figures 1H and S1F)

were similar to controls, but we noticed changes in monocyte

subset repartition. The fraction of CD14HighCD16High intermedi-

ate monocytes was significantly greater in patients with mild

COVID-19 (16.95% ± 6.75%) than in the control (5.84%

±1.02%) or severe (6.77% ± 1.10%) groups, whereas the non-

classical CD14LowCD16High monocyte fraction was lower in pa-

tients with severe COVID-19 (1.31% ± 0.35%) than in the mild

(5.46% ± 1.57%) or control groups (6.68% ± 1.14%) (Figures

1I and 1J). Within the CD14HighCD16Low classical monocyte sub-

set (Figure S1G), we detected higher frequencies of CD11bHigh

monocytes with increased disease severity (Figure S1H),

whereas the intensity of HLA-DR expression was lower across

the CD11b+ and CD11b� monocyte populations of patients

with severe COVID-19 (Figures 1K and 1L).

Changes in myeloid cell repartition observed in patients with

severe disease were associated with lower frequencies of B cells

compared with controls (p < 0.001) and of CD4+ (p < 0.001) and

CD8+ T cells (p < 0.01) relative to controls and patients with mild

disease, whereas CD56+ natural killer (NK) cell frequencies re-

mained comparable across all groups (Figure 1M).

Altogether, these data suggested that SARS-CoV-2-induced

changes in the relative abundance of monocyte and neutrophil

subsets within the peripheral blood cell population, with loss of

non-classical CD14LowCD16Highmonocytes, reduced the expres-

sion of HLA-DR on classical monocytes and a drop in CD101 and

CD10 expression on neutrophils, characterizing severe cases.

Serial Single-Cell Analysis of Mild versus Severe Patient
Blood Cells Identifies Dynamic Changes in Monocyte
Subsets
As a second step in our discovery process, we collected periph-

eral blood samples from three control patients with flu-like symp-
Figure 1. Spectral Flow Analysis of Peripheral Blood Cells in a Learnin

(A) Peripheral blood sample collection pipeline.

(B) Non-supervised UMAP analysis of data from 25 patients (controls, 12; mild, 5

(C) Cell surface marker expression in the UMAP analysis shown in (B).

(D) Non-supervised UMAP analysis of patient blood samples in the control, mild

(E) Percentage of neutrophils among total cells in each individual sample in the i

(F) Partition of neutrophil subsets, based on CD101 and CD10 expression, in eac

(G) Percentage of CD10LowCD101+/� neutrophils among total neutrophils as in (E

(H) Percentage of monocytes among total cells as in (E).

(I) Partition of monocyte subsets in each individual sample in patient groups, based

(right panels).

(J) Fractions of non-classical monocytes among total monocytes as in (E).

(K) CD11b and HLA-DR expression on classical monocytes in each patient grou

(L) Percentage of HLA-DRlow classical monocytes among classical monocytes a

(M) Percentage of B, CD4+ T, CD8+ T, and NK cells among total cells as in (E).

Kruskal-Wallis test, *p < 0.05, **p < 0.01, ***p < 0.001; ns, non-significant.
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toms who tested negative for SARS-CoV-2 and three SARS2-

CoV-2-positive patients, one outpatient with mild disease and

two patients with severe disease admitted to the ICU (Figures

2A and 2B; Table S3). Using the 10X Chromium droplet-based

platform, these samples were subjected to single-cell RNA

sequencing (scRNA-seq) immediately after collection and red

blood cell lysis, without additional sorting or freezing, to preserve

fragile cell populations, mainly neutrophils. Unsupervised clus-

tering based on gene expression identified B and T cells as

well as neutrophils, monocytes, erythroid cells, and platelets

(Figures 2C, S2A, and S2B). Samples analyzed by scRNA-seq

were analyzed simultaneously by spectral flow cytometry for

comparison (Figure 2D). UMAP analysis of spectral flow cytom-

etry data suggested lower proportions of CD4+ and CD8+ T cells,

whereas the neutrophil fraction was greater in patients with se-

vere disease compared with controls and with the unique patient

with mild disease (Figures 2E and S2C). The three SARS2-CoV-

2-infected patients were sampled again 10 days later to monitor

progression of the immune response in relation to clinical status

(Figures 2A–2E).

UMAP visualization of monocytes analyzed by scRNA-seq

identified three clusters (Figure 3A) that may correspond to

well-defined monocyte subsets (Guilliams et al., 2018). Cells

of cluster 1 expressed CD14, ITGAM (encoding CD11b), and

KLF4 while poorly expressing FCGR3A (encoding CD16), sug-

gesting classical monocytes. Cells of cluster 3, which ex-

pressed high levels of FCGR3A and low levels of CD14, may

correspond to non-classical monocytes, and cluster 2, in which

cells expressed CD14 and FCGR3A, evoked intermediate

monocytes (Figure 3A). Differentially expressed genes (DEGs)

and pathway analyses delineated a type I interferon signature

in monocytes of patients with mild COVID-19 (Figures 3B,

S3A, and S3B; Table S4). This signature was less pronounced

in the two severe COVID-19 samples, contrasting with the

elevated expression of genes involved in production of reactive

oxygen species (ROS) and nitric oxygen species (NOS) (Figures

S3A and S3B).

A non-supervised UMAP analysis of the data collected by

spectral flow cytometry of the same samples detected variations

in monocyte subset repartition among patients; compared with

controls and the patient with mild disease, patient 1 with severe

disease showed a lower fraction of CD14LowCD16High non-clas-

sical monocytes at day 0, whereas the other patient with severe
g Cohort of Controls and COVID-19 Patients

; critical, 8).

, and severe groups.

ndicated patient groups.

h patient group (data pooled per group).

).

on CD14 and CD16 expression (left panels) or CD11b and HLA-DR expression

p (data pooled per group).

s in (E).



Figure 2. scRNA-Seq of Peripheral Blood Cells in SARS-CoV-Negative and SARS-CoV-Positive Patients

(A) Two blood samples were collected 10 days apart from 3 COVID-19 patients. Blood was also collected once from 3 outpatient controls whose SARS-CoV-2

RT-PCR was negative. Individual cell mRNAs were sequenced using Chromium 10X technology.

(B) Timeline of sample collection in the three patients (further details in Table S4).

(C) UMAP analysis of the 9 sequenced samples showing repartition of the indicated cell populations. Patient samples were analyzed individually at days 0 and 10;

for control patient individual analyses, see Figure S2.

(D) Spectral flow cytometry analysis of surface marker expression performed on the same samples.

(E) UMAP analysis of cell populations detected by spectral flow cytometry data in each patient at day 0 and at day 10 and in controls (for individual analyses, see

Figure S2).
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disease showed a high level of thismonocyte fraction (Figure 3C).

Additionally, the two patients with severe disease showed mark-

edly higher levels of classical CD14HighCD16Low monocytes, ex-

pressing more CD141 (THBD) at their surface (Figure 3D), in

accordance with the scRNA-seq analysis (Table S4).

In the patient with mild disease, one of the most highly ex-

pressed genes in classical monocytes was the interferon-stimu-
lated gene (Sevelsted et al., 2015) SIGLEC-1, consistent with the

high level of expression of CD169, the corresponding protein, at

the surface of classical monocytes at day 0 (Figure 3E). Ten days

later, SIGLEC-1 gene expression was downregulated, and

CD169 expression was undetectable at the surface of HLA-

DRHigh classical monocytes (Figures 3B and 3E). The two pa-

tients with severe disease exhibited low expression of HLA-DR
Cell 182, 1401–1418, September 17, 2020 1405
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protein on monocyte surfaces at day 0, without significant

change at day 10 (Figure 3E).

Validating these discovery experiments, we performed mass

cytometry analysis of an independent cohort of 12 patients

(four in each group; control, mild, and severe) (Table S5), which

showed a lower fraction of CD14LowCD16High non-classical

monocytes in patients with severe compared with mild disease

(Figures 3F and 3G). In accordance with pathway analysis of

scRNA-seq data highlighting nuclear factor kB (NF-kB) activa-

tion as a prominent feature in monocytes of patients with severe

disease (Figures 3B and S3B), we observed significantly higher

levels of the phosphorylated transcription factor RelA/p65

(P-p65), a critical effector of the canonical NF-kB pathway, in

HLA-DRLowCD14High classical monocytes from patients with se-

vere disease compared with controls (Figures 3H and 3I). We

also measured P-p65 expression in circulating CD34+ cells,

identifying increased expression in severe disease (Figure S3C).

Serial Single-Cell Analysis of Blood Cells from Patients
with Mild versus Severe Disease Identifies Changes in
Neutrophil Subsets
UMAP analysis of neutrophils identified two clusters (Figure 4A).

We observed an increase of cluster 2 cells in patients with severe

COVID-19 (Figure 4B). Cluster 1 expressed the IL1R2 gene,

whereas cluster 2 also expressed high levels of S100A8 and

S100A9, CXCR4, SELL, and SPI1 (Figures 4C and S4A). DEGs

and pathway analyses in neutrophils of patients with mild dis-

ease informed about a type I interferon response at day 0 that

was lost by day 10 (Figures 4D, S4B, and S4C). This signature

was absent in controls and also in the two samples collected

from patients with severe disease at later time points (Figure 4D),

demonstrating high expression of genes involved in production

of ROS, the inducible NOS pathway, IL-1 signaling, and NF-kB

activation pathways (Figures S4B and S4C).

Analysis of the data collected by spectral flow cytometry of the

same samples distinguished CD10+CD101+ mature neutrophils

from CD10LowCD101� immature neutrophils. At day 0, the

two patients with severe disease had more circulating

CD10LowCD101� immature neutrophils compared with controls

or the patient with mild disease (Figure 4E). Neutrophils from pa-

tient 1 with severe disease had increased expression of CD101

on their surfaces at day 10, whereas neutrophils from patient 2

with severe disease retained their immature phenotype at day

10. Focusing on expression of a pre-neutrophil hallmark,

CXCR4, on the surface of CD10LowCD101� immature neutro-

phils (Ng et al., 2019), we observed an increase in the proportion

of neutrophils with a CD10LowCD101�CXCR4+ phenotype,
Figure 3. Single-Cell Analysis of Monocytes by scRNA-Seq, Spectral F

(A) UMAP profile of monocytes in the samples described in Figure 2A and violin

(B) Heatmap of differentially expressed genes (DEGs; logFC ± 0.25; false discov

generated by comparing each patient sample at day 0with the pool of the three co

the expression of these genes in each patient sample at day 10 compared with

(C–E) Spectral flow analysis of pooled controls and each individual patient samp

scRNA-seq (C), CD11b and CD141 expression among classical monocytes (D),

(F–I) Mass cytometry analysis of monocyte subsets in 4 patients within each grou

each individual sample within the 3 groups (G), p65/NF-kB expression in HLA-DR

DRlow classical monocytes among classical monocytes as in (G) (I). Kruskal-Wal
which, presumably, are pre-neutrophils (Figure 4F). Mass cytom-

etry analysis of an independent cohort of 12 patients (four con-

trols, four patients with mild COVID-19, and four patients with

severe COVID-19; Table S5) again suggested a higher fraction

of CD10LowCD101� immature neutrophils in patients with severe

disease compared with control patients (Figures 4G and 4H).

Altogether, the results of these exploratory scRNA-seq exper-

iments identified a transient type I interferon response in cells of

a patient with mild disease and the presence of phenotypically

immature subsets of monocytes and neutrophils in two patients

with severe disease, which was further confirmed by mass

cytometry.

Calprotectin Plasma Levels Distinguish Patients with
Mild from Patients with Severe COVID-19
S100A8 and S100A9 alarmins, representing �45% of the cyto-

plasmic proteins in neutrophils, are released under inflammatory

conditions and form a stable heterodimer known as ‘‘calprotec-

tin’’ (Wang et al., 2018). In accordance with preliminary results

generated by scRNA-seq (Figure S4A), qRT-PCR analysis de-

tected higher expression of the S100A8 and S100A9 genes in

peripheral blood nucleated cells of patients with severe

COVID-19 (n = 8) compared with controls (n = 8) and patients

with mild disease (n = 16) (Figure S5A; Table S5). This led us to

measure the plasma level of calprotectin, together with type I

interferon (IFNa) and 40 other cytokines and chemokines, in

samples from a cohort of 84 patients (Table S6). As seen in Fig-

ure 5A, patients with mild disease showed significantly less

CXCL8 (Figures 5C and S5B) and significantly more type I IFNa

(Figures 5A and 5C) compared with controls. Patients with

severe disease exhibited dramatically higher calprotectin levels

compared with patients with mild COVID-19 or controls, without

a further increase in IFNa plasma levels above mild disease

levels (Figures 5B, 5C, and S5C). Calprotectin was the most

significantly increased circulating biomarker in patients with

severe disease, accompanied by a rise in 23 other tested

chemokines and cytokines, including CXCL-8, CXCL-12, and

IL-6 (Figures 5B, 5C, and S5B).

Age and comorbidities (including obesity, diabetes mellitus,

cardiovascular and respiratory diseases, and cancer) are predic-

tors of severe COVID-19 disease (Richardson et al., 2020). We

found that plasma calprotectin levels were significantly higher

in control patients with comorbidities as well as in mild or severe

COVID-19 patients with comorbidities (Figure 5D). Nevertheless,

the increase in calprotectin in patients with severe COVID-19 far

exceeds correlations associated with comorbidities. None of the

other measured circulating proteins were significantly higher in
low Cytometry, and Mass Cytometry

plots of gene expression in three statistically defined clusters.

ery rate (FDR) < 0.05) in total monocytes; columns labeled ‘‘0’’ identify DEGs

ntrols and the two other patient samples at day 0. Columns labeled ‘‘10’’ identify

day 0. Genes are shown in Table S4.

le at day 0 and day 10 of monocyte subset partition in samples analyzed by

and CD169 and HLA-DR expression among classical monocytes (E).

p (pooled data) (F), non-classical monocyte fraction among total monocytes in
low classical monocyte subset as in (F) (H), and fraction of p65/NF-kBhighHLA-

lis test, *p < 0.05.
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patients with comorbidities (Figure 5E). Bacterial infections can

occur in patients with severe COVID-19 (Chen et al., 2020c; Llit-

jos et al., 2020) and were present in some of our patients with

severe disease but did not significantly modify the profile of

released proteins (Figures S5B and S5C), including calprotectin

(Figure 5F). No correlation between calprotectin and age was

observed in any group of patients (Figure S5D). Calprotectin

concentration correlated with neutrophil counts (Figure 5G),

fibrinogen plasma levels (Figure 5H), and D dimers (Figure 5I),

the latter being fibrin degradation products reflecting a hyperco-

agulability state. When modeling calprotectin plasma levels

using multivariable linear regression to take into account poten-

tial confounding factors (age, sex, and comorbidities) and the

correlation with neutrophil count, fibrinogen, and D dimers,

these associations were still statistically significant (neutrophils,

p = 1.154e�04; fibrinogen, p = 5.688e�05; D dimers, p =

2.099e�03). We also uncovered a weak correlation between

IL-6 plasmaconcentration and levels of calprotectin (Figure S5E),

blood neutrophil count (Figure 5J), fibrinogen (Figure 5K), and D

dimers (Figure 5L), which disappeared after adjusted multilinear

regression. Finally, a logistic regression including age, sex, and

comorbidities together with biological parameters identified

plasma levels of calprotectin, CX3CL1, CXCL11, and CXCL13

as the parameters that best discriminate controls/patients with

mild COVID-19 from patients with severe disease.

These results indicate that high plasma levels of calprotectin

are seen in patients with severe COVID-19 but not in those

with mild disease. Importantly, this increase is independent of

confounding factors for prognosis, such as advanced age, co-

morbidities, or concurrent bacterial infection, which have only

minor effects on plasma calprotectin levels.

Spectral Flow Analyses Validate a Contrasted Innate
Immune Cell Signature in Mild versus Severe COVID-19
The hypothesis from the scRNA-seq-based identification of

CD37, CD63 (LAMP3), CD169 (SIGLEC-1), and CD184

(CXCR4) biomarkers of blood cell subsets, whose relative pro-

portions differ in patients with mild and severe COVID-19,

prompted us to add antibodies targeting these proteins to the

spectral flow cytometry panel. We applied this new panel to

samples from an independent validation cohort of 90 patients.

This cohort included 48 control patients and 42 COVID-19-pos-

itive patients, of whom 16 had mild disease and 26 had severe

disease (Figure 6A; Table S6). Non-supervised analysis and

UMAP visualization identified the main cell populations in the

three categories of patients combined (Figures S6A and S6B).

Analyzing patients individually confirmed the significant

decrease in B cell, CD4+ T cell, and CD8+ T cell fractions in
Figure 4. Single-Cell Analysis of Neutrophils by scRNA-Seq, Spectral F

(A) UMAP profile of neutrophils in the 9 samples analyzed as described in Figure

(B) UMAP profile of neutrophils within the 3 controls and the mild and the two se

(C) Violin plots of expression of the indicated genes in two statistically defined n

(D) Heatmap of DEGs in total neutrophils generated as described in Figure 3B.

(E and F) Spectral flow analysis of neutrophil subsets in pooled controls and eac

expression (E) and CXCR4 and CD11b expression among CD10LowCD101� neu

(G and H) Mass cytometry analysis of neutrophil subsets in 4 patients within each

(G) and the fraction of CD10LowCD101– neutrophils among total neutrophils in ea
severe patients compared with the control and mild disease

groups (Figure 6B), which may be a consequence of the

increased neutrophil fraction (Figure 6C) and absolute numbers

(Table S6). More specifically, within neutrophils, we observed a

shift in CD10LowCD101� neutrophils (Figures 6D and 6E) and

the subset of CD10LowCD101� neutrophils that express

CXCR4 (CD10LowCD101�CXCR4+ cells) (Figure 6F) we observed

previously in patients with severe disease. Finally, the fraction of

CD10LowCD16Low neutrophils was also higher in patients with

severe disease (Figure S6C), suggesting accumulation of imma-

ture neutrophils in the blood of patients with severe COVID-19.

scRNA-seq analyses of monocyte subsets indicated

differential changes in the distribution of non-classical

CD14LowCD16High monocyte fractions in the two patients with

severe disease (Figure 3C). Because samples were collected

from patients at various time points after admission to the ICU,

we wanted to find out whether the duration of ICU stay affects

monocyte subset distribution. In the 26 patients of this cohort

with severe disease (Table S6), we observed a significant corre-

lation between the time spent in the ICU and the fraction of the

non-classical monocyte subset, irrespective of the presence or

absence of concurrent bacterial infection (Figure 6G). The

mean time spent in the ICU was 5.46 days for patients with fewer

than 5% non-classical monocytes compared with 8.83 days for

those with 5% and more non-classical monocytes (Figures 6H

and 6I).

Then we examined other monocyte subsets. In the majority of

patients with mild disease, we observed a fraction of classical

monocytes that express CD169, which was decreased in pa-

tients with severe disease (Figures 6J, 6K, and S6D). CD169

expression correlated with IFNa plasma levels (Figure S6E). In-

dependent of the time spent in the ICU, patients with severe dis-

ease also showed a larger fraction of classical monocytes ex-

pressing high levels of CD141 compared with controls (Figures

6J and 6L) and of monocytes expressing low levels of HLA-DR

compared with controls and patients with mild disease (Fig-

ure S6F). Finally, the time spent in the ICU did not significantly

affect repartition of lymphocyte populations or neutrophil sub-

sets (Figures S6F and S6G).

Thus, patients with severe COVID-19 exhibited a transient

decrease in non-classical monocyte frequencies, a stable

decrease in HLA-DRLowCD141+ classical monocytes, and a ma-

jor increase in CD10LowCD101�CXCR4+/� immature neutrophils.

A High Calprotectin Level and Loss of Non-classical
Monocytes Correlate with COVID-19 Severity
We next investigated whether changes in circulating myeloid cell

phenotypes could be used to discriminate patients who develop
low Cytometry, and Mass Cytometry

2A.

vere cases with the cluster gates overlaid.

eutrophil clusters.

h individual patient sample at day 0 and day 10, based on CD10 and CD101

trophils (F) in the indicated samples (pooled controls).

group (pooled data) as in Figures 3F–3I, based on CD10 and CD101 expression

ch sample within the 3 groups (H). Kruskal-Wallis test, *p < 0.05.
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severe COVID-19. Within our previous cohort, we separated pa-

tients with mild (n = 12) from patients with moderate (n = 6) and

severe (n = 27) disease using clinical criteria. Patients classified

as having ‘‘moderate’’ disease demonstrated intermediate

changes between those of outpatients with mild disease and pa-

tients with severe disease in the ICU (Figure S7A). The fraction of

CD10LowCD101� neutrophils in patients with moderate disease

was intermediate but not significantly different from any group

(Figure 7A). However, the amount of calprotectin measured in

patients with moderate COVID-19 was significantly higher than

in outpatients with mild disease but still significantly lower than

in patients with severe COVID-19 (Figure 7B). In comparison,

IFNa levels were not significantly different between patients

with moderate and mild disease or patients with severe disease

(Figure S7B). The difference in non-classical monocyte fraction

was significant between patients with mild and moderate dis-

ease, dropping to levels comparable with patients with severe

disease (Figure 7C).

Thus, we hypothesized that the decreased non-classical

monocyte fraction could be used as a fast and simple

diagnostic test to distinguish moderate from mild COVID-19,

especially in patients in whom clinical symptoms may be sub-

stantially overlapping. This would facilitate rapid and accurate

identification of patients currently classified as having mild

disease at the cusp of potentially progressing to more severe

disease. We therefore employed a low-dimensional flow

cytometry approach that measures the fraction of classical

(CD14HighCD16Low), intermediate (CD14HighCD16High), and non-

classical (CD14LowCD16High) monocyte subsets among total pe-

ripheral blood monocytes and applied it initially to a learning

cohort of 98 patients, consisting of 16 patients with mild disease,

10 with moderate disease, and 16 with severe COVID-19, along

with 56 controls (Table S7). All hospitalized patients were

sampled within 10 days of admission to limit the potential effect

of time spent in the ICU (see Figure 6G); the mean time spent in

the ICU was 5.5 days at the point of sampling. The cohort also

included 56 controls. Patients with mild disease showed a

fraction of non-classical monocytes similar to that observed in

controls. In contrast, moderate patients showed lower levels of

non-classical monocytes, as observed in patients with severe

disease (Figure 7D). To measure the global performance of this

test, we used a receiver operating characteristic (ROC) curve

(Hajian-Tilaki, 2013). The point of the ROC curve corresponding

to the best sensitivity/specificity compromise indicated that a

non-classical monocyte fraction below 4% separated patients
Figure 5. Calprotectin Is the Most Abundant Immune Mediator Detect

Shown are plasma levels of calprotectin (S100A8/S100A9), interferon alpha (IFN

patients (controls, 40; mild disease, 18; moderate or severe disease, 25).

(A) Volcano plot of cytokine levels in patients with mild COVID-19 compared with

(B) Volcano plot of cytokine levels in patients with severe COVID-19 compared wit

and CX3CL1, shown in red, are most significantly associated with the severe for

(C) Circulating levels of CXCL8, IFNa2a, calprotectin, and IL-6 in individual samp

(D) Effect of comorbidities (Table S6) on calprotectin plasma levels in each group

(E) Volcano plot of cytokine levels in patients with severe disease with and witho

(F) Effect of bacterial infection on calprotectin plasma levels in each group.

(G–I) Spearman correlations between calprotectin plasma levels and neutrophil c

(J–L) Spearman correlations between IL-6 plasma levels and neutrophil count (J

Wilcoxon rank-sum test, *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
with moderate or severe COVID-19 from those with mild or no

disease with 76.9% sensitivity (95% bootstrap confidence inter-

val [BCI] [61.5%, 92.3%]) and 89% specificity (95% BCI [80.6%,

95.8%]) (Figure S7C).

We then applied these analyses to blood samples from an in-

dependent validation cohort of 24 hospitalized patients from a

different clinical center (10 controls, 3 patients with mild disease,

4 with moderate disease, and 7 with severe COVID-19) (Table

S7). A non-classical monocyte fraction below 4% of total circu-

lating monocytes, as defined in the learning cohort, also segre-

gated those with mild disease from those with moderate and

severe disease with high sensitivity (81.8%, 95% BCI [72.7%,

100%]) and specificity (92.3%, 95% BCI [83.3%, 100%]) (Fig-

ure 7E). These results confirmed the specificity and sensitivity

of our assay to discriminate patients with different COVID-19

severity.

Further confirming these observations, serial sampling of two

patients with severe disease who responded to anti-IL-6R anti-

bodies documented that their clinical recovery was associated

with reappearance of non-classical monocytes in the blood (Fig-

ure S7D). One patient who was initially referred with limited

symptoms (atypical thoracic pain) and was SARS-Cov-2 PCR

negative unexpectedly exhibited a low fraction of non-classical

monocytes (3.4%) accompanied by 10% HLA-DRLow classical

monocytes. The following day, pulmonary symptoms appeared

and the patient was hospitalized, requiring oxygen therapy,

and a lung CT scan revealed characteristic COVID-19-associ-

ated injury. Such cases suggest that loss of the non-classical

monocyte fraction could be a strong indicator of existing or im-

pending severe COVID-19.

Additional informative parameters could be added to this flow

assay to increase its specificity to identify transition to severe

COVID-19, including decreased expression of HLA-DR on the

surface of classical monocytes (Figure S7E), which is associated

with a decrease in the non-classical monocyte fraction below

4% (Figure S7F), and an increase in the fraction of CD16Low neu-

trophils (Figure S7G). Comparison of ROC curves indicated that

calprotectin plasma level and monocyte or neutrophil subset an-

alyses distinguished mild COVID-19 in outpatients from moder-

ate or severe disease in hospitalized patients whereas IFNa2a

plasma levels did not (Figure S7H).

Together with calprotectin plasma levels, flow identification of

a decrease in the non-classical monocyte fraction below 4% of

total monocytes could provide improved resolution for clinical

observations when categorizing patients at the border of mild
ed in the Plasma of Patients with Severe COVID-19

a2a), and 40 cytokines and chemokines in blood samples collected from 84

controls; IFNa2a is shown in orange.

h control patients; IFNa2a is shown in orange. Calprotectin, CXCL11, CXCL13,

ms.

les in each group.

.

ut comorbidities.

ount (G), fibrinogen (H), and D dimers (I).

), fibrinogen (K), and D dimers (L).
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and moderate/severe COVID-19. This would potentially identify

individuals at greatest risk of rapid decline and highlight the

need for pro-active management/intervention and intensive

monitoring. This assay could be reinforced by analysis of HLA-

DRLow classical monocyte and CD16Low neutrophil fractions.

Integration of Lung and Blood scRNA-Seq Reveals
Abnormal Myeloid Cell Populations Discriminating
Severe and Mild COVID-19
The lungs are major organs affected in patients with severe

COVID-19. To better understand how the distinctive cell signa-

tures found in the blood of patients with severe COVID-19 affect

immune cell compartments in the lungs, particularly the pres-

ence of immature neutrophils and HLA-DRLowmonocytes, we in-

tegrated our dataset using the Seurat V3 pipeline (Stuart et al.,

2019) with the published scRNA-seq dataset of cells from 12

bronchoalveolar lavage fluid samples (BALFs) of controls (n =

3) and patients with mild (n = 3) and severe (n = 6) COVID-19

(Liao et al., 2020; Database: GSE145926). This analysis provided

an unbiased global map of immune cells in the blood and BALF

of controls and patients with mild and severe COVID-19. Using

dimensional reduction, we identified 5 regions based on DEGs

across pooled data from all samples (Figures 7F and S7I),

including T cells (characterized by expression the NKG7,

CD8A, CST7, GZMB, and GZMA genes), B cells (IGLV3-19,

IGHV4-34, IGHG1, IGHA1, and JCHAIN), neutrophils (G0S2,

RSAD2, IL1R2, and IL1RN), alveolar macrophages (APOE,

MSR1, MARCO, and FBP1), and monocytes/macrophages

(FN1, CXCL10, CD68, and NUPR1). Validating this approach,

the alveolar macrophage region was mainly present in BALF of

control patients but decreased dramatically in patients with

mild and severe COVID-19,and only one cell from our blood

scRNA-seq matched in this region (Figures 7F and 7G). We

also observed changes in the monocyte/macrophage region of

BALF from patients with mild or severe disease versus controls

and dramatic neutrophil accumulation in patients with severe

disease (Figure 7G).

Monocytes/macrophages were increased in BALF of the mild

compared with the control and severe groups (Figures 7H and

7I), and these cells were characterized by expression of the inter-

feron-stimulated genes (ISGs) (SIGLEC-1, IFI44, and IFITM3)

(Figure 7J), with pathway analyses indicating upregulation of
Figure 6. Validation of the Severe COVID-19 Innate Immune Signature

(A) Spectral flow pipeline.

(B) Fraction of B cells, CD4+ T cells, CD8+ T cells, and NK cells among total cells

(C) Fraction of neutrophils in individual samples in each group.

(D) Neutrophil subsets identified by CD101 and CD10 expression in each group

(E) Fraction of CD10LowCD101� neutrophils among total neutrophils in individual

(F) Fraction of CXCR4+ neutrophils among CD10LowCD101– neutrophils as in (E).

(G) Spearman correlation of time spent in the ICU and non-classical monocyte fra

red dots. Mean time spent in the ICU was 5.46 days for patients with a low (%5%)

(H) Fraction of classical monocytes among white blood cells in each individual s

(I) Fraction of non-classical monocytes among total monocytes as in (H).

(J) Monocyte subset partition in each group (pooled data), with the severe group s

subsets identified by CD14 and CD16 expression. Bottom panels: HLA-DR and

(K) Fraction of monocytes expressing CD169 among classical monocytes as in (

(L) Fraction of monocytes expressing CD141 among classical monocytes as in (

Kruskal-Wallis test, *p < 0.05, **p < 0.01, ***p < 0.001.
the viral replication and type I IFN signaling pathways. In

contrast, the NOS biosynthetic process and monocyte chemo-

taxis were upregulated in BALF monocytes/macrophages of pa-

tients with severe disease (Figure S7J), which, similar to blood

monocytes, expressed lower levels of HLA-DRA and HLA-

DRB1 and higher levels of NFKBIA mRNA compared with con-

trols or patients with mild COVID-19 (Figure 7J). Finally, neutro-

phils were present at high frequencies in BALF from patients with

severe COVID-19 but not in BALF from controls or patients with

mild disease (Figures 7K and 7L). UMAP integration of samples

from patients with severe disease samples indicated that BALF

neutrophils, similar to blood neutrophils (Figure 7L), were char-

acterized by high expression of S100A8, S100A9, as well as

CXCR4, indicating an immature state (Figures 7M, 7N, and S7K).

Integration of blood and BALF myeloid cells identified, in pa-

tients with severe COVID-19, loss of HLA-DRA and HLA-DRB1

and high NFKBIA expression in monocytes/macrophages (not

including alveolar macrophages) together with accumulation of

neutrophils expressing high levels of S100A8/A9 and CXCR4.

DISCUSSION

This study presents evidence that patients who develop severe

COVID-19 exhibit high levels of calprotectin and inflammatory

cytokines and chemokines, correlating with emergency myelo-

poiesis generating ROS- and NOS-expressing immunosuppres-

sive myeloid cells (HLA-DRLow monocytes and immature sub-

sets of neutrophils).

The first line of defense in virus-infected patients typically in-

volves a protective innate response incorporating transient and

strong production of type I IFNs. By inducing expression of

ISGs, type I IFNs inhibit virus replication and promote an effec-

tive innate and adaptive immune response (Thevarajan et al.,

2020; Totura and Baric, 2012). This antiviral response may be

impaired in COVID-19 patients who suddenly develop clinically

life-threatening disease (Hadjadj et al., 2020). Severe COVID-

19 frequently develops in the context of advanced age and co-

morbidities, which provide a degree of underlying systemic

chronic inflammation (Furman et al., 2019). Such inflammation

could disrupt the timing of the type I IFN response relative to

the kinetics of virus replication (Terán-Cabanillas and Hernán-

dez, 2017), which has been shown to be critical in mousemodels
in individual samples (circles) in each group.

(pooled data).

samples within each group.

ction among total monocytes. Patients with a bacterial infection are shown as

and 8.83 days in those with a high (>5%) CD14lowCD16High monocyte fraction.

ample in each group.

plit in two groups based on mean time spent in the ICU. Top panels: monocyte

CD169 or CD11b and CD141 expression in the classical monocyte subset.

H).

H).
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of coronavirus infection (Channappanavar et al., 2019). An imbal-

ance between type I IFN and inflammatory responses could also

be favored by the highly efficient replication of SARS-CoV-2 in

human tissues (Chu et al., 2020) and by the IFN-neutralizing ef-

fects of structural and non-structural viral components shared

between SARS-CoV-2 and other virulent human coronaviruses

(Chen et al., 2014; Yang et al., 2015).

Patients with severe COVID-19 exhibit abnormal partition of

circulating monocytes and of neutrophils expressing the

S100A8 (calgranulin A/myeloid-related protein 8) and S100A9

(calgranulin B/myeloid-related protein 14) alarmin genes. Impor-

tantly, accumulation of neutrophils expressing high levels of the

S100A8/A9 genes was also observed in the BALF of these pa-

tients. The release of massive amounts of calprotectin, the het-

erodimer formed by S100A8 and S100A9 proteins, is a striking

event associated with severe COVID-19. This heterodimer pro-

motes cell migration and boosts NADPH (nicotinamide adenine

dinucleotide phosphate) oxidase activity. Calprotectin is a

TLR4 and RAGE (receptor for advanced glycation end products)

ligand that, upstream of tumor necrosis factor alpha (TNF-a)

(Vogl et al., 2018) and CXCL8 (Simard et al., 2014) synthesis

and secretion, promotes NF-kB activation (Riva et al., 2012)

and secretion of multiple inflammatory proteins, such as IL-6

(Wang et al., 2018). Thus, we propose that calprotectin may ac-

count for and possibly trigger the cytokine release syndrome that

characterizes severe COVID-19. Its production may be amplified

by tissue damage, generating a harmful hyperinflammation loop

(Kuipers et al., 2013) that precludes these peptides from exerting

more protective functions (Austermann et al., 2014; Freise et al.,

2019; Ulas et al., 2017; Vogl et al., 2018). Chronic inflammation

from comorbidities may synergize with SARS-CoV-2 infection

to induce systemic release of calprotectin, which translates

into upregulation of NF-kB and loss of HLA-DR on classical

monocytes and the presence of immature neutrophils,

converging to a state of chronic inflammation-induced immuno-

suppression. Abnormal neutrophils have been observed

previously in patients with severe COVID-19 (Wilk et al., 2020).

However, the authors concluded that these neutrophils transdif-

ferentiate from B cells. We have no supporting results suggest-

ing that this could be the case.
Figure 7. Low-Dimensional Flow Analysis of Non-classical Monocyte S

(A) Fraction of CD10LcowCD101� neutrophils among total neutrophils in individua

(B) Calprotectin plasma levels in patients with moderate disease (orange dots) c

(C) Fraction of non-classical monocytes among total monocytes in patients withm

groups.

(D and E) Fraction of non-classical monocytes among total monocytes in a learnin

n = 16) (D) and a validation cohort of 24 patients (controls, n = 10; mild n = 3; m

***p < 0.001.

(F–M) Integration of scRNA-seq data from blood and lung (BALF) cells of COVID-

from Liao et al. (2020) (controls, n = 3; mild, n = 3; severe, n = 6).

(F) UMAP analysis of integrated scRNA-seq from blood and lung samples.

(G) UMAP analysis of blood and lung samples in each patient category.

(H) UMAP analysis of integrated scRNA-seq data of monocytes/macrophages fr

(I) UMAP analysis of blood and lung monocytes/macrophages in each patient gr

(J) Violin plot of gene expression in lung monocytes/macrophages of control pat

(K) UMAP analysis of integrated scRNA-seq data of neutrophils from blood and

(L) UMAP analysis of blood and lung neutrophils in each patient group.

(M) Violin plot of gene expression in lung neutrophils of control patients and pati

(N) UMAP analysis of neutrophils with CXCR4 gene expression level projection (
Under healthy conditions, roughly 85% of total circulating

monocytes are CD14HighCD16LowHLA-DRHigh cells that are

rapidly recruited to inflamed tissues (Guilliams et al., 2018). As

in other severe illnesses (Lukaszewicz et al., 2009), expression

of HLA-DR on CD14High circulating monocytes is low in severe

COVID-19, which correlates with, and could be mediated by,

IL-6 overproduction (Giamarellos-Bourboulis et al., 2020). A

more specific feature of COVID-19 is the low fraction of

CD14LowCD16High non-classical monocytes. This fraction

commonly increases in patients with sepsis and inflammatory

diseases, including viral infections (Kratofil et al., 2017). The

decrease in non-classical monocyte fraction could involve the

ability of calprotectin to hasten trans-endothelial migration of

leucocytes (Fassl et al., 2015), unless these cells strongly adhere

to the endothelium or conversion of classical into non-classical

monocytes is stuck (Hanna et al., 2011; Hofer et al., 2015; Seli-

moglu-Buet et al., 2018). Whatever the mechanism, the lower-

than-normal frequencies of non-classical monocytes (Thevara-

jan et al., 2020; Hadjadj et al., 2020) suggest a SARS-CoV-2-

characteristic effect that is not observed in other viral infections.

Most importantly, this decrease generates a highly characteristic

biological signature of COVID-19’s aggressive form with the po-

tential to be measured easily using standard diagnostic flow cy-

tometry and provide information regarding the real-time immu-

nological severity of the infection.

The burst of calprotectin detected in COVID-19 patients may

trigger NF-kB-driven emergency myelopoiesis, generating

immature and dysplastic cells (Basiorka et al., 2016; Chen

et al., 2013). Given the considerable hematopoietic potential of

the lungs (Lefrançais et al., 2017), the burst of calprotectin could

also promote the contribution of lung megakaryocytes to dis-

ease pathogenesis in these organs. Whatever the mechanism,

the immature andmature cells released into the peripheral blood

by emergency myelopoiesis may be endowed with immunosup-

pressive functions, suggesting that myeloid-derived suppressive

cells (MDSCs), as detected in cancer, inflammation, and other

diseases (Veglia et al., 2018), might be important in COVID-19.

In addition to HLA-DRLow monocytes, whose phenotype is that

of monocytic MDSCs (M-MDSCs), CD10LowCD101�CXCR1+

immature cells are reminiscent of granulocytic MDSCs
ubsets in COVID-19

l samples within each group, separating moderate and severe COVID-19.

ompared with patients of the three other groups.

oderate disease (green bar plot) comparedwith patients of the three other three

g cohort of 98 patients (controls, n = 56; mild, n = 16; moderate, n = 10; severe,

oderate, n = 4; severe, n = 7) (E). Mann-Whitney test, *p < 0.05, **p < 0.01,

19 patients. Blood samples are described in Tables S3 and S4. Lung data are

om blood and lungs.

oup.

ients and patients with mild and severe disease.

lung samples.

ents with mild and severe COVID-19.

low expression, gray dots; high expression, dark blue dots).
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(G-MDSCs) (Aarts et al., 2019; Mastio et al., 2019; Veglia et al.,

2018). Thus, neutrophil precursors, such as the pre-neutrophil

(preNeu) population, which is CXCR4 positive (Evrard et al.,

2018), may be released prematurely into the blood from the

bone marrow and infiltrate the lung tissue in patients with severe

disease. Emergence of these populations could be a predictor of

the switch to severe disease. Further research will be required to

determine their specific role in disease development.

We observed that severe COVID-19 is specifically associated

with (1) a burst of circulating calprotectin that precedes cytokine

release syndrome, (2) low levels of non-classical monocytes in

the peripheral blood, and (3) emergency myelopoiesis, which re-

leases immature and dysplastic myeloid cells with an immune-

suppressive phenotype. Monitoring calprotectin plasma levels

and non-classical monocyte in the blood of patients could be im-

plemented routinely in the lab to discriminate patients with early

immunological signs consistent with developing more severe

disease, as suggested recently (Chen et al., 2020b). Finally, in

addition to the network of potential drug targets depicted

recently by analysis of SARS-CoV-2 interactions (Gordon et al.,

2020), our work provides a further rationale for testing several

clinical strategies, including blocking emergency myelopoiesis

with lenzilumab (NCT04351152), a recombinant anti-human

granulocyte-macrophage colony-stimulating factor (GM-CSF)

antibody (Patnaik et al., 2020); testing the oral quinoline-3-car-

boxamide tasquinimod (Fizazi et al., 2017) and related mole-

cules, such as ABR-215757 (paquinimod), which block binding

of S100A9 to TLR4 and RAGE (Kraakman et al., 2017; Raquil

et al., 2008); and preclinical anti-CD33 monoclonal antibodies

(Walter, 2018), which may prevent interaction of S100A9 with

myeloid progenitors (Eksioglu et al., 2017).

Limitations of Study
These analyses provide snapshots of the differences in innate

immune cell phenotype and calprotectin plasma levels between

outpatients with mild disease at the time of sampling, having no

or limited clinical symptoms and not requiring a CT scan or hos-

pitalization, and patients with moderate to severe disease whose

clinical situation requires hospitalization and, in most cases, ox-

ygen supply. Although all statistical analyses indicate that these

biomarkers efficiently discriminate these two clinical situations

and may help with urgent patient triage, a serial analysis is now

required to evaluate how these biomarkers can predict the

switch from mild to moderate or severe COVID-19 and inform

on the mechanisms involved in this switch.
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Cytoscape Shannon et al., 2003 https://cytoscape.org/

GraphPad Prism 7 GraphPad Software https://www.graphpad.com/

Ingenuity Pathway Analysis Krämer et al., 2014 https://digitalinsights.qiagen.com/

products-overview/discovery-insights-

portfolio/content-exploration-and-

databases/qiagen-ipa/

STAR aligner Dobin et al., 2013 https://github.com/alexdobin/STAR

Seurat v3 Stuart et al., 2019 https://satijalab.org/seurat/install.html
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RESOURCE AVAILABILITY

Lead Contact
Further information and request for resources and reagents should be directed to and will be fulfilled by the lead contact:

Florent_Ginhoux@immunol.a-star.edu.sg (F.Gi.).

Materials Availability
This study did not generate new unique reagents.

Data and Code Availability
All blood scRNA-seq data used in this study can be accessed by ArrayExpress Archive of Functional Genomics Data under the

accession number E-MTAB-9221. Integrated BALF scRNA-seq data can be accessed in GEO under the accession number

GSE145926.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Patients
This non-interventional study was approved by institutional review boards of Cochin-Port Royal (Paris, France) and Gustave Roussy

(Villejuif, France) hospitals and the ethical committee of Cochin-Port Royal Hospital (CLEP Decision N�: AAA-2020-08023), and con-

formed to the principles outlined in the Declaration of Helsinki. Controls (n = 72) were symptomatic patients who were seen at Hôtel-

Dieu or Gustave Roussy COVID-19 screening unit and were negative for SARS-CoV-2 RT-PCR on pharyngeal swab. Mild COVID-19

patients (n = 27) were defined by having limited clinical symptoms (fever, cough, diarrhea, myalgia, anosmia/ageusia) that did not

require CT-scan or hospitalization. Moderate cases (n = 16) were defined as symptomatic patients with dyspnea and radiological
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findings of pneumonia on thoracic CT scan, requiring hospitalization and a maximum of 9 L/min of oxygen. In the larger part of this

study, mild and moderate cases were analyzed together and grouped under ‘‘mild category.’’ Severe patients (n = 43) were those

hospitalized in the ICU with respiratory distress requiring 10L/min of oxygen or more, without or with endotracheal intubation and

mechanical ventilation.

METHOD DETAILS

Sampling
Whole human peripheral blood was collected into sterile vacutainer tubes containing EDTA or heparin. Except for single cell RNA

sequencing, tubes were centrifuged at 300 g for 5 min at room temperature and plasma was collected. Whole blood was mixed

at a 1:1 ratio withWhole BloodCell Stabilizer (Cytodelics), incubated at room temperature for 10min and transferred to�80�C freezer

to await analysis. These samples were secondarily thawed in a water bath set to +37�C. Cells were fixed at a ratio 1:1 with Fixation

Buffer (Cytodelics, ratio 1:1) and incubated for 10 min at room temperature. Red blood cells were lysed by addition of 2 mL of Lysis

Buffer (Cytodelics, ratio 1:4) at room temperature for 10 min. White blood cells were washed with 2 mL of Wash Buffer (Cytodelics,

ratio 1:5).

Spectral flow Cytometry
Cells were resuspended in 100 mL extra-cellular antibody cocktail and incubated at room temperature for 15 min. For intra-cellular

labeling, a step of permeabilization was performed using 200 mL of BD Cytofix/Cytoperm Kit (BD); cells were then incubated for

40 min at +4�C, washed in Perm Buffer (BD) and resuspended in intra-cellular antibody cocktail. After incubation, cells were washed

in Flow Cytometry Buffer (1% BSA, 0.5% Na-Azide and 0.5M EDTA in PBS) and resuspended to proceed to the acquisition. All an-

tibodies are listed in the Key Resources Table. Samples were acquired on CyTEK Aurora flow cytometer (Cytek Biosciences). Fcs

files were exported and analyzed using FlowJo software.

30 scRNaseq analysis of human blood cells
To fully capture peripheral blood cell heterogeneity, we analyzed fresh samples without cell sorting or freezing and without Ficoll

enrichment, minimizing time of incubation and processing. Sample preparation was done at room temperature. After red cell lysis,

single-cell suspensions were loaded onto a Chromium Single Cell Chip (10x Genomics) according to the manufacturer’s instructions

for co-encapsulation with barcoded Gel Beads at a target capture rate of �7000 individual cells per sample. To analyze neutrophils,

we added RNase inhibitor (RNase OUT Recombinant Ribonuclease Inhibitor Invitrogen, 40U/mL) into the loading buffer. Captured

mRNAs were barcoded during cDNA synthesis using the Chromium Single Cell 30 Solution v3 (10x Genomics) according to the man-

ufacturer’s instructions. Of note, we increased the PCR cycles by two during cDNA amplification. All samples (at Day 0 and Day 10)

were processed simultaneously with the ChromiumController (10x Genomics) and the resulting libraries were prepared in parallel in a

single batch. We pooled all of the libraries for sequencing in a single SP Illumina flow cell. All of the libraries were sequenced with an

8-base index read, a 28-base Read1 containing cell-identifying barcodes and unique molecular identifiers (UMIs), and a 91-base

Read2 containing transcript sequences on an Illumina NovaSeq 6000. Reads were aligned to the hg19 genome and were used

for subsequent analysis.

Analysis of scRNaseq and integration of dataset from bronchoalveolar lavage fluid of COVID-19 patients
Using the package Seurat V3 (Stuart et al., 2019), we normalized and scaled scRNA sequencing data. We next applied a principle

component analysis to the scRNA sequencing results yielding a number of significant PCs (Using Jackstraw plot analysis). In addi-

tion, the standard deviation differences from one PC to another was taken into account as described by the Seurat V3manual (Stuart

et al., 2019). To generate UMAP plots, min_distance was set as 0.3 and n_neighbors was set to 30. By dimensionality reduction,

distinct clusters were identified and described by performing the FindClusters feature. The resolution of this feature was reduced

to 0.3 to identify main cellular population only. Following this, differential genes were identified by performing the FindAllMarkers

function and selecting genes that were differentially expressed (logFC > / = +/� 0.25 and FDR < 0.05). This approach identified a

number of well characterized blood cell populations. Clustering and analysis of specific cell populations were performed in a similar

manner to as previously stated. Cells were clustered and separated based on well described markers (CD14/CD16 as describing

monocyte populations).

The bronchoalveolar dataset was downloaded from the NIH GEO database (Liao et al., dataset GSE145926) and integrated with

our own blood scRNaseq data using the Seurat V3 anchoring method (Stuart et al., 2019). Briefly, the datasets were normalized

independently and the highly variable genes were identified for each dataset using the Seurat pipeline. A corrected data matrix

with both datasets was then generated using the Seurat v3 anchoring procedure to allow for joint analysis. The matrix was scaled

and a Principal Component Analysis (PCA) was performed using the Seurat v3 pipeline. A UMAP was performed on the 30 first

Principal Components (PCs) (Becht et al., 2018). These principle components and subsequent clustering and analysis of scRNA

sequencing data was performed as previously described.

Comparisons between patient samples were performed by a variation of the FindMarkers function that compared the differentially

expressed genes from different samples, patient groups, and organs. Cutoff values were determined as previously described.
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RT-qPCR analysis
Total RNA was extracted with RNeasy Mini Kit (QIAGEN) and reverse transcribed with SuperScript IV VILOMaster Mix with ezDNase

Enzyme (Invitrogen). Real-time quantitative polymerase chain reaction (RT-qPCR) was performed using Power SYBR Green PCR

Master Mix in a BioRad CFX96 thermocycler using the standard SyBR Green detection protocol as outlined by the manufacturer

(Applied Biosystems). Briefly, 12 ng of total cDNA, 50nM (each) primers and 1 3 SyBR Green mixture were used in a total volume

of 20 mL. Human primer sequences are the following: GUS (F: GAAAATATGTGGTTGGAGAGCTCATT; R: CCGAGTGAAGATCCCCT

TTTTA); HPRT (F: GGACAGGACTGAACGTCTTGC; R: CTTGAGCACACAGAGGGCTACA); S100A8 (F: CAACACTG ATGGTGCAGTT

AACTTC; R: CTGCCACGCCCATCTTTATC); S100A9 (F: CTGAGCTTCGAGG AGTTCATCA; R: CGTCACCCTCGTGCATCTTC).

Cytokine and chemokine measurements
Plasma samples (Table S6) were centrifuged for 15 min at 1,000 g, diluted 1:4, then monitored using the Bio-Plex ProTM Human Che-

mokine Panel 40-plex Assay (Bio-rad, ref: 171AK99MR2) according to the manufacturer’s instructions. 40-plex cytokines and che-

mokines provided are: CCL1, CCL11, CCL13, CCL15, CCL17, CCL19, CCL2, CCL20, CCL21, CCL22, CCL23, CCL24, CCL25,

CCL26, CCL27, CCL3, CCL7, CCL8, CX3CL1, CXCL1, CXCL10, CXCL11, CXCL12, CXCL13, CXCL16, CXCL2, CXCL5, CXCL6,

CXCL8, CXCL9, GM-CSF, IFNa, IL-10, IL-16, IL-1b, IL-2, IL-4, IL-6, MIF, TNFa. Acquisitions and analyses were performed on a

Bio-Plex 200 system (Bio-rad) and a Bio-Plex Manager 6.1 Software (Bio-rad), respectively. Soluble Calprotectin (diluted 1:100)

and IFNa2a were analyzed using a R-plex Human Calprotectin Antibody Set (Meso Scale Discovery, ref: F21YB-3) and the ultra-sen-

sitive assay S-plex Human IFNa2a kit (Meso Scale Discovery, ref: K151P3S-1), respectively, following manufacturer’s instructions.

Acquisitions and analyses of soluble Calprotectin and IFNa were performed on a MESO QuickPlex SQ120 reader and the MSD’s

Discovery Workbench 4.0. Each plasma sample was assayed twice with the average value taken as the final result. Data represen-

tation was performed with software R v3.3.3 using tidyverse, dplyr, ggplot2, ggpubr, pheatmap, corrplot or Hmisc packages.

Mass Cytometry
Cells were barcoded using the 20-Plex Pd barcoding kit (Fluidigm). Briefly, they were washed in Barcode Perm Buffer, resuspended

in 800 mL of Barcode Perm Buffer and 100 mL of each barcode were transferred to the appropriate sample. Cell suspensions were

incubated for 30min at room temperature, washed twice with Cell Staining Buffer (Fluidigm) and pooled, suspended in 100 mL filtered

antibody cocktail, and incubated for 30 min at +4�C. All antibodies used are listed in Key Resources Table. After staining, cells were

washed with Cell Staining Buffer and permeabilized with 200 mL of Fix/Perm from Foxp3/Transcription Factor Staining Buffer kit

(eBiosciences), 40 min at +4�C. After incubation, cells were washed in Perm Buffer from Foxp3/Transcription Factor Staining Buffer

kit (eBiosciences), resuspended in 100 mL filtered antibody cocktail, incubated for 30 min at +4�C, washed in Cell Staining Buffer and

resuspended in 50 mL of CytoFix/Perm for 5 min at room temperature. Then, 400 mL of PBS containing 1.6% PFA + Iridium (1:4000)

were added for 35 min at room temperature. Finally, cells were washed in Cell Staining Buffer, resuspended in 50 mL and stored

at +4�C until acquisition. Cells were counted, washed and resuspended in Maxpar Cell Acquisition Solution at 0.5x 106 / mL and

mixed with 10% EQ Beads immediately before acquisition on Helios mass cytometer using noise reduction, event length limits of

10-150 pushes. An average of 500,000 events were acquired per sample at a flow rate of 0.03mL/min. Mass cytometry standard files

were normalized to a global standard determined for each log of EQ beads using CyTOF Software v.6.7.1014 (Fluidigm). Fcs files

were exported and analyzed using FlowJo software. UMAP was performed with n_neighbors of 15 and a min_distance of 0.2. Clus-

ters were identified by the detection of commonly used cell markers (T cells expressing CD4 or CD8, neutrophils expressing CD15,

and monocytes expressing CD14 and or CD16).

Routine multiparameter flow analysis test
Whole-blood samples (200mL) were labeled with anti-CD14-PC7 (clone RMO52); CD16-PB (clone 3G8); CD2-FITC (clone 39C1.5);

CD56-PC5.5 (clone N901); CD24-PE (clone ALB9); CD45-KO (clone J33) and HLA-DR-APC (clone Immu-357) antibodies, all pur-

chased from Beckman-Coulter. Red blood cells were lysed with 1 mL VersalyseTM (Beckman Coulter) before sample analysis

with a Navios Cytometer (Beckman Coulter) as described (Tarfi et al., 2019). Monocytes were selected as CD45High/SSCInt cells

among living cells and singlets before excluding T cells as CD2+/SSCLow, NK cells as CD56+/SSCLow/Int, B cells as CD24+/SSCLow,

immature and mature granulocytes as CD24+/SSCInt/High, CD16Bright residual granulocytes, and remaining CD14�CD16� cells cor-

responding mainly to basophils and NK cells not previously excluded. Monocyte subsets were detected on a CD45/SCC dot plot,

using a CD14/CD16 scattergram that separates CD14HighCD16Low (classical), CD14High/CD16High (intermediate) and CD14LowCD16-
High (non-classical) subsets. Finally, the proportion of monocytes HLA-DRLow was evaluated on a HLA-DR/CD14 scattergram.

QUANTIFICATION AND STATISTICAL ANALYSIS

Data analysis
Calculations and statistical tests were performed using R v3.3.3. Unless stated, p values are two-sidedwith 95%confidence intervals

for the reported statistic of interest. Individual data points representing the measurement from one patient are systematically calcu-

lated from the corresponding distribution. Wilcoxon rank-sum test was applied to assess differences in concentration between two

different groups. When indicated, the false discovery rate (FDR, p > 0.05) was controlled using the Benjamini–Hochberg procedure.
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Spearman correlations were computed using Hmisc R package and cytokine results were shown using R package Pheatmap. Sol-

uble factor fold ratios were calculated as log2 transformation of values of mild and severe patients versus median value of all control

patients, and were converted to z scores. Hierarchical clustering of the patients based on the z score of 42 soluble factors was per-

formed using euclidean distance and ward.D clustering. Gene ontology networks were made by subjecting the DEGs from previous

scRNA sequencing analysis to the Cytoscape addon ClueGO. The selected DEGs were specific to those with increased expression

by monocytes and neutrophils from mild or severe SARS-CoV-2 positive patients. Biological Process gene ontologies selected had

an FDR < 0.05. Other statistical analyses were performed using GraphPad Prism 7.

A generalized linear model was also used to analyze interactions between biological parameters. First, neutrophil count, calpro-

tectin, fibrinogen, IL-6 and D-dimers were normalized using log transformation. Then, calprotectin plasma level was modeled using

multivariable linear regression adjusted for the other parameters, and their interaction with the groups. Similar approach was per-

formed to model IL-6. Backward selection was applied to obtain a parsimonious model.

To identify themost discriminant markers, we used a logistic regression adjusted for the scaled log2-transformedmarkers. Param-

eters were penalized using the least absolute shrinkage and selection operator (lasso) to limit overfitting due to the high number of

markers. The regularization parameter was selected from 10-folds cross-validation using the glmnet R package (Friedman et al.,

2010). The final AUC estimate was corrected for optimism using the Harrell’s method (Harrell et al., 1996), and its confidence interval

was computed using the two-stage approach proposed byNoma and colleagues (Noma et al., 2020) with 2000 bootstrap samples for

each stage. In this analysis, we included age, sex and comorbidities together with biological parameters. Given the absence of vali-

dation cohort, AUC was corrected to limit overfitting bias. This correction indicated an AUC at 99.7% (95% confidence interval

[98.8%; 100.0%]). The final score corresponds to the following equation:

Score =
1

1+ expð0:272� 1:530 C1 � 0:013 C2 � 0:216 C3 � 0:212 C4Þ
With C1, C2, C3, and C4, the values of the calprotectin, CX
3CL1, CXCL11 and CXCL13 which are log2 transformed and

scaled according to the value training cohort: C1 = ðlog2ðCalprotectinÞ � 19:285 =2:278Þ , C2 = ðlog2ðCX3CL1Þ � 7:803 =0:892Þ,
C3 = ðlog2ðCXCL11Þ � 5:503 =1:691Þ, and C4 = ðlog2ðCXCL13Þ � 5:189 =1:372Þ.
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Figure S1. Spectral Flow Analysis of Peripheral Blood Cells in a Learning Cohort of Controls and COVID-19 Patients, Related to Figure 1 and

Table S2

A. Representative example of data pooling of individual UMAP profiles obtained from 3 patients of the same group. Here, neutrophil subsets are identified based

on CD10 and CD101 expression across cells from patients 1, 2 and 3, allowing the analysis of cell subset repartition within the group; B. Cell surface marker

expression identifying cell populations on UMAP analysis generated by data pooling from all the tested samples; C. UMAP profile from pooled data on neutrophils

in all patients or indicated group of patients; D-E. Percentage of CD10High (D) or CD16Low neutrophils (E) among total neutrophils in all individuals of indicated

groups; F. UMAP profile from pooled data on monocytes in all patients or indicated group of patients; G-H. Percentage of CD14+ (G) or CD11bHigh (H) monocytes

among total monocytes in all individuals of indicated groups; Kruskal-Wallis test, *p < 0.05; **p < 0.01; ***p < 0.001; ns, non-significant.
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Figure S2. Single-Cell Analysis of Peripheral Blood Cells, Related to Figure 2 and Tables S3 and S4

A. Heatmap of gene expression used to identify cell populations in scRNaseq experiments; B-C. Individual UMAP analysis of each control sample analyzed by

scRNaseq (B) and spectral flow cytometry (C).
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Figure S3. Monocyte Analysis by scRNA-Seq, Spectral Flow Cytometry, and Mass Cytometry, Related to Figure 3 and Tables S3, S4, and S5

A. Pathway analysis generated by comparing DEGs in monocytes of each SARS-CoV-2 positive patient to the same population in the three control patients

considered together using IPA software (mild patient in blue, severe #1 in red, severe # 2 in orange); B. The same DEGs were used to perform a gene ontology

network analysis using clueGO software, considering the two severe patients together; C. Combined (left panel) and individual (right panel) mass cytometry

analysis of p65/NF-kB expression in circulating CD34+ cells in each group. Kruskal-Wallis test, non-significant.
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Figure S4. Neutrophil Analysis by scRNA-Seq, Spectral Flow Cytometry, and Mass Cytometry, Related to Figure 4 and Tables S3, S4, and S5

A. Heatmap of the top 20 DEGs defining two neutrophil clusters. B. Pathway analysis generated by comparing DEGs in neutrophils of each SARS-CoV-2 patient to

the same population in the three control patients considered together using IPA software (mild patient in blue, severe #1 in red, severe # 2 in orange); C. The same

DEGs identified in neutrophils were used to perform a gene ontology network analysis using clueGO software, considering the two severe patients together.
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Figure S5. Calprotectin Is the Most Abundant Immune Mediator/Immune Protein Detected in the Plasma of Patients with Severe COVID-19,
Related to Figure 5 and Tables S5 and S6

A. RT-qPCR analysis of S100A8 and S100A9 gene expression in the three groups of patients, using HPRT as a control gene; B. Heatmap of cytokines, che-

mokines, IFNa2a and calprotectin plasma levels in 37 COVID-19 patients compared to 40 controls. SARS-CoV-2-positive patients included 14mild and 23 severe

patients. Associated bacterial infection at sample collection is indicated in purple. The heatmap shows z score-normalized concentrations, each column rep-

resents one patient and each row one protein; the color gradient from blue to red indicates increasing concentrations. Rows and columns are clustered using

correlation distance and average linkage; C. Volcano-plot representation of cytokine levels in severe SARS-CoV-2 patients with (n = 11) or without (n = 14)

bacterial infection at the time of sample collection; D. Spearman correlation between calprotectin concentration and age showing control patients in green,mild in

orange and severe in red; E. Spearman correlation between IL-6 and calprotectin concentrations (color code as in D).
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Figure S6. Validation of the Innate Immune Signature of Severe COVID-19, Related to Figure 6 and Table S6
A-B Non-supervised UMAP representation generated by pooling data from all the patient samples; cell identification (A) surface marker expression (B); C. Bar

plots representing the percentage of CD10LowCD16Low neutrophils among all neutrophils in individual patients from each group in the validation cohort (n = 90). D.

Spearman correlation between CD169 (SIGLEC-1) mean fluorescence intensity (MFI) and days spent by severe patients in ICU. E. Spearman correlation between

(legend continued on next page)
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CD169 (SIGLEC-1) mean fluorescence intensity (MFI) and plasma IFNa concentration; yellow, mild COVID-19 patients; red, severe COVID-19 patients. F.G. Bar

plots representing the percentage of HLA-DRLow classical monocytes, B cells, CD4+ and CD8+ T cells and NK cells (F) and neutrophils among CD45+ cells,

CD10LowCD101- neutrophils among all neutrophils and CD10LowCXCR4+ neutrophils among CD10LowCD101- neutrophils (G) in individual patients from each

group in the validation cohort (n = 90). Kruskal-Wallis test, *p < 0.05, **p < 0.01, ***p < 0.001; ns, non-significant.
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Figure S7. Changes in Innate Immune Cell Phenotype Are Detected in Patients with Moderate COVID-19, Related to Figure 7 and Tables S6

and S7

A. Bar plots representing the percentage of B cells, CD4+ T cells, CD8+ T cells, NK cells, total monocytes, CD169+, HLA-DRLow and CD141+ classical monocyte

subsets, total neutrophils among CD45+ cells, and CD10LowCD101- and CD10LowCD16Low neutrophil subset among all neutrophils in individual patients from

each group, with the moderate category (6 patients) highlighted. B. Plasma concentration of IFNa in moderate COVID-19 patients compared to the three other

groups. C. ROC analysis showing performance of a diagnostic test using percentage of non-classical monocytes among total monocytes to distinguish controls

andmild COVID patients frommoderate and severe COVID patients; D. Monocyte subset analysis in the peripheral blood of 2 severe patients, before (left panels)

and after (right panels) treatment with the indicated anti-IL-6 antibodies; E. Percentage of HLA-DRlow classical monocytes among classical monocytes in a cohort

of 22 patients and 17 controls grouped into 4 clinical categories; F. Correlation between the percentage of HLA-DRlow classical monocytes and non-classical

monocytes; G. Percentage of CD16low neutrophils among neutrophils in control and COVID-19 patients of the learning cohort described in Figure 7. H. ROC

curves evaluating the discriminating significance of calprotectin plasma level (yellow), nonclassical monocyte fraction (red), CD16low circulating neutrophils (blue)

and IFNa2a plasma level (white) between controls/mild patients and moderate/severe patients. AUC, Area Under the Curve; Mann Whitney test; I. Heatmap of

blood and bronchoalveolar lavage fluid scRNaseq cells integrated defining the 5 regions of cell populations; J. Pathway analysis (Cytoscape andClueGo) of DEGs

expressed at a higher level in bronchoalveolar monocytes/macrophages from mild versus severe patients. K. UMAP analysis of neutrophils with S100A8 (left

panel) and S100A9 (right panel) gene expression level projection (low expression = gray dots; high expression = dark blue dots). Kruskal-Wallis test, *p < 0.05;

**p < 0.01; ***p < 0.001.
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