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INTRODUCTION

Major depressive disorder (MDD) is an important psychiat-
ric illness with substantial impacts in many perspectives of 
function and life quality. The functional impairments were 
correlated with the clinical symptoms.1 The physical, psycho-
logical and social domains of life quality is inter-related to 
functional status.2 MDD symptoms would interfere with con-
centration, motivation and cognitive functions, which would 
cause patients to have daily functional impairments.3 There-
fore, it is important for scientists and clinicians to understand 
the pathophysiology of MDD. Many articles about the struc-
tural and functional pathophysiology of MDD mentioned the 
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possible roles of fronto-limbic network.4-7 The fronto-limbic 
network seemed to originated from the initial “limbic-cortical-
striatal-pallidal-thalamic tract” model for MDD.8 Recently an 
evolved MDD model mentioned the importance of ventrome-
dial prefrontal cortex, anterior cingulate cortex (ACC) and lat-
eral parietal cortex, which might be associated with self-refer-
ential problems and negative ruminations.9 

In the pathophysiology model, ACC seemed to play a sig-
nificant role in MDD. ACC was also responsible for important 
functions of MDD, such as the attention, problem solving, 
motivation, decision making.10-12 Two components of ACC, 
affective and cognitive subdivisions,11,13 might be associated 
with functional impairments in MDD. The affective subdivi-
sion was connected with limbic regions, such as the amygdala 
and brainstem, to modulate the emotions.14 The cognitive sub-
division was involved in cognitive processing of MDD.13 The 
cognitive and affective components of ACC might have im-
portant roles in the pathophysiology of MDD.15,16 Therefore 
the MDD pathophysiology biomarkers might include the 
ACC. In addition to the ACC, other regions of frontal lobe, 
such as dorsolateral prefrontal cortex (DLPFC),17-20 would be 
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crucial for the cognitive control of depression symptoms. The 
emotional responses and depression symptoms might be orig-
inated from the limbic regions, such as the hippocampus and 
amygdala.8,18,21-25 From the viewpoint of cognitive control of 
emotional responses, the fronto-limbic network or circuit 
would be the state-of-art model to explain the influences of 
cognition impairments and the exaggerated negative emotion 
responses from the limbic regions in MDD.

However, the promising neuroimaging biomarkers in 
MDD were still not conclusive according to the extent and 
focus of current study. In this article, I would focus on the lit-
erature review of neuroimaging in the study of pathophysiol-
ogy of MDD, including the magnetic resonance imaging 
(MRI), magnetoencephalography (MEG), near-infrared 
spectroscopy (NIRS), electroencephalography (EEG), posi-
tron emission tomography (PET), single-photon emission 
computed tomography (SPECT). The potentially promising 
biomarkers for the neuroimaging perspectives would be dis-
cussed and summarized to establish a possibly conclusive 
biomarker model for MDD. 

MDD biomarkers revealed by MRI and MRS
The MRI part of neuroimaging biomarkers would include 

the magnetic resonance spectroscopy (MRS), structural and 
functional MRI. The MRS can measure the neural metabo-
lites inside the brain, such as the N-acetyl aspartate and cho-
line. The MRS study of adolescent melancholic MDD depres-
sion patients had significant correlations between tryptophan 
metabolites and neurotoxic metabolites in the limbic regions, 
such as the striatal areas.26 A study using functional MRI inte-
grated classifiers showed better predictability and accuracy 
for the detection of biomarker areas involving the emotion 
processing area.27 The visual processing of emotional faces in 
MDD showed limbic activations, especially in the hippocam-
pus.28 The pre-school children MDD also had heightened re-
sponses to sad faces in the limbic regions, such as the amyg-
dala.29 The disrupted amygdala activity during face emotion 
identification in depressed children around 4–6 years old, 
which suggested the potential biomarker role of amygdala in 
endogenous depression.30 The genome-wide neuroimaging 
study showed a link between a potential candidate of specific 
genotype and hippocampus volume, which suggested the 
complex relationship between genotype and MRI biomarkers 
in a more comprehensive model for biomarkers in MDD.31 
The baseline brain activities would be fluctuated in the hippo-
campus of MDD patients with suicide ideation.32 The hippo-
campus was also the state-dependent biomarker region for 
antidepressant treatment in MDD.33 The recurrent MDD pa-
tients also had lower gray matter volume (GMV) in the left 
hippocampus.34 The hippocampus-related neural network, 

including the DLPFC, was also altered in the young subjects 
with family history of MDD, especially during a memory 
task.35 The hippocampus tail volumes were relatively larger in 
MDD and the hippocampus tail volumes would be associated 
with clinical remission after antidepressant treatment.36 

The frontal dysfunction has also been replicated in many 
MRI studies of MDD. A MRS study showed an increased 
choline/creatine ratio in the ACC of MDD patients, which 
might be a possible diagnostic aid tool.37 A review article of 
MRS study in MDD showed higher choline levels in the 
frontal lobe of depression patients.38 MDD could also be dif-
ferentiated from the panic disorder using regional homoge-
neity pattern in the left ACC.39 The meta-analysis of GMV 
studies in MDD also revealed the GMV alterations in bilat-
eral ACC.40 A meta-analysis of resting-state functional MRI 
studies suggested a possible pattern of diagnosis classification 
according to the hyperactivity/hyper-connectivity between 
ACC and other prefrontal regions for the external-directed 
cognition.41 The alterations in cortisol awakening responses, 
which would influence the hypothalamic-pituitary-adrenal 
axis homeostasis in MDD, were also associated with reduced 
GMV and increased stress-related brain activities in the 
ACC,42 which also corresponded to another GMV study in 
MDD with panic disorder.6 A machine-learning algorithm 
study showed the crucial roles of areas for the guilt-selective 
neural signature, such as the ACC, hippocampus and thala-
mus.43 The regional homogeneity of ACC might be associat-
ed with illness duration and depression severity in MDD pa-
tients.44 The higher fluctuations of resting-state brain activity 
in the subgenual ACC of MDD patients would be signifi-
cantly reduced after electroconvulsive therapy. In addition, 
the subgenual ACC activity would predict the treatment re-
sponses with the reductions in the connectivity between 
ACC, hippocampus and other prefrontal regions.45 In addi-
tion, the variants of ACC thickness would predict the re-
sponses to electroconvulsive therapy,46 which corresponded 
to that dorsal part of ACC (cognitive subdivision of ACC) 
volume could predict the long-term clinical outcome trajec-
tory47 and prediction of rostral ACC thickness for the treat-
ment response to transcranial magnetic stimulation in MDD.48 
The micro-integrity of cingulate bundle also predicted the 
treatment responses of MDD patients for antidepressants.49 
The blunted response of ACC during consummation phase 
and that of hippocampus during effort phase of functional 
MRI reward task also predicted the high risk for adolescent 
MDD.50 A review article suggested that the pharmaceutical 
interventions would relieve functional connectivity alterations 
in the fronto-limbic, default mode network and parieto-tem-
poral regions. The psychotherapeutic interventions have also 
been showed to influence the functional connectivity within 
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the fronto-limbic network. The electroconvulsive and mag-
netic stimulation therapy would also alter the ACC, DLPFC 
and default mode network.51 The depression severity was as-
sociated with elevated connectivity between fronto-limbic 
regions, such as ACC, amygdala and hippocampus, in a rest-
ing-state functional MRI study.52 The distinct differences of 
functional connectivity in the fronto-limbic network between 
suicide ideators and suicide attempters were also found in 
the resting-state functional MRI study.53 A meta-analysis of 
machine learning studies in MDD also confirmed the impor-
tance of ACC for the treatment prediction and the crucial role 
of fronto-limbic network for the pathophysiology of MDD.54 
A review of structural MRI studies in MDD also supported 
the important roles of fronto-limbic network for the patho-
physiology.55 The white matter tract study in MDD also showed 
the alterations in the micro-integrity of superior longitudinal 
fasciculus, which connected the frontal regions with the lim-
bic regions and temporal regions.56,57 It also supported the fron-
to-limbic model for the biomarker regions in MDD. The core 
region of the fronto-limbic network might be the ACC.58

The magnetic seizure therapy-related cortical inhibitions 
of frontal cortex were the significant indicators of remission 
for suicidal ideation.59 The prefrontal circuit dysfunction, 
such as the hypo-activations of DLPFC during the working 
memory updating and conscious negative emotion process-
ing tasks of functional MRI experiments.60 The prefrontal 
cortex-related cognitive control and emotion regulation abil-
ities would be associated with resilience factors in the treat-
ment response.61 The persistent alterations of anterior sub-
network of default mode network, which also included 
frontal regions, were observed in the MDD patients after an-
tidepressant treatment.62 The implantation of deep brain 
stimulation target and the transcranial repetitive magnetic 
stimulation in the left DLPFC would relieve the depression 
symptoms in the treatment-resistant MDD adolescents.63 
The DLPFC was also a popular treatment target of brain 
stimulation in MDD.64 The DLPFC and dorsal ACC cogni-
tive subdivision could form a cognitive control network. The 
attenuation of intrinsic activity in cognitive control network 
would predict the treatment response in remitted MDD pa-
tients.65 The transcranial magnetic stimulation in the DLPFC 
would also trigger higher activities of subgenual ACC in the 
treatment of MDD patients, which would modulate the cog-
nitive control network.66 The functional MRI-related global 
brain signal regression was more significant in the DLPFC in 
treatment-resistant MDD patients, which could be normal-
ized by ketamine infusion treatment.67 The non-remitted 
late-life MDD patients had significantly greater reductions in 
the GMV of orbitofrontal cortex (OFC) than remitted late-
life MDD patients and controls.68 The GMV of OFC also 

predicted the antidepressant treatment responses in MDD.34 
The deficient inhibition of return for emotional materials 
was also altered in the OFC and hippocampus-related activi-
ty and functional connectivity of MDD patients, which sug-
gested that OFC might be specific for remitted responses and 
hippocampus might be specific for depressive phase.69

However, some studies were still against the significant 
roles of fronto-limbic regions as biomarkers of MDD. A MRS 
study showed that N-acetyl aspartate levels showed no sig-
nificant changes in the DLPFC and amygdala of first-episode 
MDD patients after antidepressant treatment.70 A meta-anal-
ysis showed a lack of increases in the brain-derived neuro-
trophic factor after non-invasive brain stimulation in the 
DLPFC of MDD patients.71 In addition, the hippocampus en-
largement might not represent a sole predictor for the treat-
ment response to electroconvulsive therapy.72

In summary, for the MRI and MRS study in MDD, the most 
promising biomarkers might be the ACC. The other prefrontal 
regions, such as DLPFC and OFC, may cooperate with ACC 
to contribute to the inhibition of emotional response and emo-
tional memory via the cognitive control network. The emo-
tional response and memory might be originated from the 
limbic regions, such as the amygdala and hippocampus. The 
model of neuroimaging biomarkers in MRI and MRS may still 
exist in the architecture of fronto-limbic model. In addition, 
the prediction of treatment response seemed to be associated 
with fronto-limbic regions, especially for the ACC and hippo-
campus. However, there are still many efforts needed to clarify 
the highly promising biomarkers of MRI and MRS study in 
MDD, especially using the longitudinal study with random-
ized controlled design to investigate the specific biomarker re-
gions for different kinds of therapeutic interventions, such as 
the pharmacological treatment, psychotherapeutic interven-
tion and brain stimulation therapy. 

MDD biomarkers revealed by MEG
The MEG can measure the brain activities using the algo-

rithm to calculate the magnetic field caused by the electricity 
of brain activities to obtain the neuroimaging. The amount of 
MEG studies in MDD biomarker searching is relatively fewer 
than that of MRI studies. The electroconvulsive therapy might 
activate the parieto-temporal regions in the MEG of respond-
ing MDD patients, which suggested that the parietal lobe 
would influence the clinical response via the information 
processing and attention modulation.73 Another MEG study 
in drug-free MDD patients with high suicide risk showed the 
impaired phase-amplitude coupling in the limbic regions, 
such as the caudate and thalamus. The impaired coupling 
might influence the DLPFC to cause the alterations in the ex-
ecutive function and working memory.74 The higher scores of 
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Lempel-Ziv complexity on MEG have been reported in MDD 
patients when compared to controls.75 A multimodal imaging 
of MDD patients, including MEG, showed that the subgenual 
ACC and amygdala might be the biomarker of MDD patho-
physiology and ketamine treatment in MDD.76 Another study 
showed that alpha connectivity between subgenual ACC and 
DLPFC would predict the better response of antidepressant 
treatment.77 The resting-state MEG study showed that hyper-
interwines and hyper-integrates within the DLPFC and ACC 
might represent the MEG endophenotype of MDD.78 The 
ketamine treatment in MDD also would modulate the sub-
genual ACC-related connectivity network, including the lim-
bic regions.79 The MEG-individual component analysis study 
also supported that subgenual ACC would be the core of bio-
marker network, which included the hippocampus and amyg-
dala.80 The MEG dynamic causal modeling study demon-
strated that DLPFC might be incapable to inhibit the amygdala 
and the subsequent enhanced amygdala-ACC and ACC-
DLPFC bottom-up signals would be associated with MDD 
symptoms.81 In spite of possible inconsistences, the major ar-
chitecture of fronto-limbic biomarker network may be repli-
cated in MEG study, especially the crucial role of ACC has 
been proved again.

MDD biomarkers revealed by NIRS
The NIRS use the near-infrared region of spectrum to mea-

sure the blood oxygenation, blood flow and brain activities. 
The MDD with suicidal ideation showed smaller hemody-
namic changes in the DLPFC and OFC during verbal fluency 
test in the NIRS study. In addition, the hemodynamic changes 
in the DLPFC and OFC were negatively correlated with the 
severity of suicidal ideation. The DLPFC and OFC might rep-
resent the neural substrate for suicidal ideation.82 The blood 
flow in the frontal lobe would also be negatively associated 
the depression severity in another NIRS study.83 Another 
study of NIRS in the dexamethasone suppression test of 
MDD patients showed that value of the center of gravity at 
the frontal lobe would be significantly greater in the non-sup-
pressor group, which suggested that frontal lobe NIRS values 
might be representative of MDD patients with cortisol sup-
pression impairments.84 The emotional face recognition task 
in MDD also revealed the importance of left prefrontal cortex 
due to the alterations of median value and ratios of oxygenat-
ed hemoglobin/deoxygenated hemoglobin, which suggested 
the weaker hemodynamic oscillations in the prefrontal cortex 
of MDD patients.85 The emotional Stroop task in MDD also 
found that an evoked wave in the left upper frontal cortex 
might be inversely correlated with the severity of depression.86 
The antidepressant treatment seemed to influence the left in-
ferior frontal cortex and temporal gyri in MDD patients, which 

suggested that prefrontal hemodynamic alterations might be 
the predictor of clinical responses to antidepressant treatment.87 
A 1.5-years follow up study also confirmed the important role 
of frontal lobe in the state-dependent and trait biomarkers, 
which might be the inferior frontal cortex and middle frontal 
cortex respectively.88 Several studies of NIRS also supported 
the crucial role of frontal lobe or prefrontal cortex in the patho-
physiology of MDD and might represent the biomarker for 
depression.89-92 It seemed that most NIRS studies in MDD 
emphasized the role of potentially promising biomarker in 
the frontal regions. The fronto-limbic network in the NIRS 
field of MDD probably would be more focused on the frontal 
component within this network.

MDD biomarkers revealed by EEG
The EEG is a traditional tool to understand the electric ac-

tivities accompanied with brain activities. The cortical inhi-
bition EEG signals, such as the N100 and LICI, in the DLP-
FC and other frontal regions might predict the treatment 
response to the magnetic seizure therapy. It suggested that 
stronger baseline inhibitory neurotransmission may repre-
sent the indicators.59 The EEG can assess the arousal level 
due to dysregulation of inner tension and might assist to de-
cide which kind of patients might be responding to psycho-
stimulant treatment.93 In addition, the vigilance regulation 
pattern of EEG has been applied to identify the MDD pa-
tients.94 The MDD responders of repetitive transcranial mag-
netic stimulation showed higher baseline and post-treatment 
working memory-related fronto-midline theta power and 
connectivity than non-responders.95 The alpha, theta and 
gamma oscillation waves of EEG can provide information on 
depressive states and recovery. The gamma rhythms can dis-
tinguish MDD patients from controls and bipolar disorder 
patients. In addition, the gamma rhythms can predict the 
treatment response of pharmacological and non-pharmaco-
logical treatment.96 Reduced gamma rhythms in the rostral 
ACC has been suggested as the biomarker for MDD.97 The 
resting-state EEG gamma power and theta-gamma coupling 
in frontal region might predict the treatment response of re-
petitive transcranial magnetic resonance treatment and the 
accompanied increases of gamma power in the frontal region 
would occur after treatment.98 The antidepressant responders 
of MDD had greater theta current density in the rostral ACC 
and OFC than non-responders.99 The EEG alpha asymmetry 
with greater right-lateralized activities has also been pro-
posed as a kind of biomarker to identify MDD.100 The meta-
analysis of EEG sleep pattern in MDD showed that increased 
rapid eye movement density and shortening slow wave sleep 
might represent the EEG sleep biomarkers of MDD.101 The 
REM sleep prefrontal theta cordance of MDD patients was 
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also positively associated with the improvements in depres-
sion symptoms. In addition, the greater prefrontal theta cor-
dance of REM sleep EEG might represent the biomarker for 
antidepressant treatment in MDD patients.102 Depressed ad-
olescents also exhibited significantly increased slow wave ac-
tivities of frontal regions during sleep, which were positively 
correlated with morbid thoughts. It represented the cortical 
regions of intense use or restructuring might be influenced 
in MDD.103 The prefrontal theta cordance, alpha and delta 
hemispheric asymmetries might also predict the antidepres-
sant treatment in MDD.104 The theta cordance in the DLPFC 
and central brain regions also could predict the treatment re-
sponse of brain stimulation.105

In summary, due to the technique limitations of EEG, the 
findings would be localized on the cortex surface. The prefron-
tal cortex, such as ACC, DLPFC and OFC, might be crucial 
for the biomarker detection of MDD. The EEG biomarker 
characteristics of the prefrontal cortex included the theta den-
sity, theta cordance, alpha rhythm asymmetry, delta rhythm 
asymmetry, gamma rhythm and sleep EEG. The frontal part 
of fronto-limbic network has been proved in the EEG findings. 
However, the diversity of EEG parameters might be needed to 
be unified and processed to develop an applicable EEG model 
to identify MDD patients and the biomarker of treatment re-
sponse in MDD.

MDD biomarkers revealed by PET and SPECT
The PET and SPECT can detect the neurotransmitter level 

using the radioligand labeling the brain region with targeted 
neurotransmitter receptors. The neuroticism personality, 
which were highly associated with MDD, was positively cor-
related with fronto-limbic serotonin 5HT-2A receptor bind-
ing potential. The fronto-limbic serotoninergic dysregulation 
might be vulnerable to MDD.106 The glucose metabolism 
study showed different modulation of brain glucose metabo-
lisms by cognitive behavioral therapy and antidepressant.107 
A serotonin PET study showed that the serotonin transport-
er binding potential was significantly lower in the forebrain, 
brainstem and putamen of MDD patients with suicide at-
tempts. It also supported the serotoninergic dysregulation in 
MDD patients and suicide.108 Male MDD patients had signif-
icantly higher serotonin 5HT-1A binding potential over the 
raphe nuclei in the brainstem, DLPFC, ACC, other frontal 
regions, amygdala and hippocampus.109 The cerebral amyloid 
PET study showed that cerebral amyloidosis would occur in 
the hippocampus of MDD patients with mild cognitive im-
pairment.110 The ketamine therapy in MDD would be associ-
ated with subgenual ACC glucose metabolism changes, 
which might suggest the crucial role of ACC for the gluta-
mate modulation in the treatment of MDD.79 The decreased 

binding of serotonin transporter in the amygdala has also 
proposed as the potential biomarker for remission after anti-
depressant treatment.111 The binding potential of the neuro-
inflammation protein in subgenual prefrontal cortex and 
ACC might be increased in the unmedicated MDD patients, 
which also supported the crucial role of ACC from the view-
point of neuro-inflmmation hypothesis in MDD.112 The sub-
callosal ACC glucose metabolism was significantly higher in 
non-responders than remitters after cognitive behavioral ther-
apy and antidepressant treatment.113 The light therapy can 
decrease the serotonin transporter binding potential in the 
ACC of seasonal MDD during the winter season, which also 
supported the importance of ACC in the seasonal impacts of 
MDD via the serotoninergic regulation.114 The density of 
monoamine oxidase A, a kind of enzyme to metabolize the 
serotonin, was found to be greater in the prefrontal cortex 
and ACC of patients with postpartum MDD.115 It emphasized 
the crucial role of ACC and frontal regions in the pathophys-
iology of MDD, including the seasonal and postpartum sub-
types. The deep brain stimulation also reached remission in 
the treatment-resistant MDD patients with higher baseline 
prefrontal regional cerebral blood flow, which also suggested 
the predictive biomarker of prefrontal cortex for deep brain 
stimulation.116 

The SPECT guided transcranial magnetic stimulation in 
the left DLPFC also improved the MDD symptoms, which 
also supported the DLPFC as the treatment biomarker for 
MDD.117 The lower serotonin transporter binding potential 
in the midbrain using SPECT modality would also be associ-
ated with heritability of MDD.118 The attenuation of negative 
attention bias in MDD after antidepressant treatment might 
be associated with serotonin transporter occupancy in the 
amygdala of a SPECT study in MDD, which suggested that 
antidepressant can relieve limbic elevated activities.119 The 
distribution volume ratio of serotonin transporter would be 
lower in the basal ganglia and midbrain.120 Another study of 
cerebral blood flow using SPECT also observed the decreased 
blood flow in the prefrontal cortex, especially the ACC, DLP-
FC and OFC, which also supported the critical role of pre-
frontal cortex in the blood flow biomarker of MDD.121 Other 
studies of SPECT in MDD seemed to focus on the midbrain 
and found the alterations in serotonin transporter occupancy 
of midbrain.122-124

In summary, the PET studies seemed to emphasize the ACC 
and other prefrontal cortex, such as the DLPFC and OFC in 
the biomarker search of MDD, especially for validation of the 
neuroinflammation theory, deep brain stimulation, antide-
pressant treatment effects, psychotherapy effects, seasonal ef-
fects and postpartum effects. The findings of limbic regions, 
such as amygdala and hippocampus, combined with the find-
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ings in the brainstem and midbrain, could be validated for the 
biomarkers of cognition impairment, antidepressant treatment 
and psychotherapy effects. For the SPECT study, most findings 
seemed to be focused on the midbrain, especially for the sero-
toninergic biomarker search in MDD. The frontal regions of 
fronto-limbic network might play a role in the biomarker of 
decreased cerebral blood flows. However, most studies of PET 
and SPECT were based on the region-of-interest method, 
which might be associated with selection bias and would influ-
ence the interpretations of the study results. 

CONCLUSION

From the above literature review, the fronto-limbic network 
seemed the promising neuroimaging biomarkers in MDD, es-
pecially for MRI, MRS, MEG and PET study (Figure 1). The 
most promising region may be the ACC. The importance of 
frontal regions has also been confirmed in NIRS and EEG 
study. The frontal areas might inhibit the emotional responses 
from the limbic regions, such as amygdala and hippocampus. 
Further multimodal imaging study would be needed to eluci-
date the neuroimaging biomarker issue in MDD. 
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