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Abstract

Background: Vibrio cholerae O1 El Tor dominated the seventh cholera pandemic which occurred in the 1960s. For two
decades, variants of V. cholerae O1 El Tor that produce classical cholera toxin have emerged and spread globally, replacing
the prototypic El Tor biotype. This study aims to characterize V. cholerae O1 isolates from outbreaks in Thailand with special
reference to genotypic variations over time.

Methods/Findings: A total of 343 isolates of V. cholerae O1 from cholera outbreaks from 2007 to 2010 were investigated,
and 99.4% were found to carry the classical cholera toxin B subunit (ctxB) and El Tor rstR genes. Pulsed-field gel
electrophoresis (PFGE) differentiated the isolates into 10 distinct pulsotypes, clustered into two major groups, A and B, with
an overall similarity of 88%. Ribotyping, multiple-locus variable-number tandem-repeat analysis (MLVA), and PCR to detect
Vibrio seventh pandemic island II (VSP-II) related genes of randomly selected isolates from each pulsotype corresponded to
the results obtained by PFGE. Epidemiological investigations revealed that MLVA type 2 was strongly associated with a
cholera outbreak in northeastern Thailand in 2007, while MLVA type 7 dominated the outbreaks of the southern Gulf areas
in 2009 and MLVA type 4 dominated the outbreaks of the central Gulf areas during 2009–2010. Only MLVA type 16 isolates
were found in a Thai-Myanmar border area in 2010, whereas those of MLVA types 26, 39, and 41 predominated this border
area in 2008. Type 39 then disappeared 1–2 years later as MLVA type 41 became prevalent. Type 41 was also found to infect
an outbreak area.

Conclusions: MLVA provided a high-throughput genetic typing tool for understanding the in-depth epidemiology of
cholera outbreaks. Our epidemiological surveys suggest that some clones of V. cholerae O1 with similar but distinctive
genetic traits circulate in outbreak sites, while others disappear over time.
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Introduction

The bacterium Vibrio cholerae causes cholera, an acute infectious

diarrheal disease that can result in death without appropriate

treatment. More than 200 serogroups of V. cholerae are known to

date, but only serogroups O1 and O139 are know to cause

cholera of epidemic and pandemic proportions [1]. The O1

serogroup is divided into three serotypes, Ogawa, Inaba, and

Hikojima, and two biotypes, classical and El Tor. Classical

biotype strains have been responsible for the sixth cholera

pandemic which spanned from 1899 to 1923, while El Tor

biotype strains caused the seventh cholera pandemic, which

began to spread worldwide in 1961 [2].

Since the early 1990s, new variants of V. cholerae O1 El Tor that

possess traits of both classical and El Tor biotypes have emerged

[3]. Several studies reported that El Tor variants have replaced

prototypic El Tor strains in several Asian and African countries

[4–14]. For example, in Bangladesh, all El Tor isolates of V.

cholerae O1 obtained since 2001 have produced classical cholera

toxin [6]. In Kolkata, India, El Tor variant strains carrying the El

Tor rstR gene (CTX prophage repressor gene) and the classical

cholera toxin B subunit (ctxB) gene, have superseded the El Tor

type ctxB since 1995 [4,5], while in northern Vietnam, El Tor

variants carrying the El Tor rstR and the classical ctxB genes have

been reported since late 2007 [11]. Recently, the World Health

Organization reported that V. cholerae El Tor variant strains cause
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more severe episodes of cholera with higher fatality rates,

compared with prototypic El Tor strains [15]. Due to these

aspects of clinical manifestation and altered characteristics of

cholera agents in recent years, more detailed investigations of

cholera are required.

Several molecular typing tools have been used to depict genetic

relatedness among V. cholerae isolates obtained from outbreak sites.

In general, molecular markers of low variability can be used to

establish phylogenetic relationships among isolates that have

evolved over longer time spans, and highly variable markers

discriminate closely related organisms for the surveillance of

causative agents in cholera outbreaks. Ribotyping has been

successfully used to typify V. cholerae O1 isolates from various

countries [16] and is an appropriate tool for establishing

phylogenetic relationships among organisms that have evolved

over a longer time span. Pulsed-field gel electrophoresis (PFGE)

has also been used to characterize clonal diversity and relation-

ships among V. cholerae isolates. Although this is a powerful method

for the routine subtyping of V. cholerae in detecting clusters of

infection [17], it is not discriminatory enough to distinguish some

epidemiologically unrelated V. cholerae O1 isolates [18,19].

Multilocus variable-number tandem repeat (VNTR) analysis

(MLVA) has been developed for a variety of bacterial pathogens

[20]. This method is based on the variation in the number of

repeats at multiple VNTR loci, which is highly variable. Danin-

Poleg et al. [21] first reported the usefulness of MLVA to

distinguish isolates of V. cholerae. The initial analysis of five VNTR

loci revealed distinct populations in Bangladesh and India [22–

24]. MLVA is a sophisticated method that can be useful for

differentiating V. cholerae strains that would be indistinguishable by

other techniques [21]. However, the potential value of MLVA as

an epidemiological tool in the analysis of V. cholerae remains to be

assessed.

In the present study, we characterized various V. cholerae O1

isolates collected from cholera outbreaks in Thailand between

2007 and 2010 using PFGE, ribotyping, MLVA and other tools,

and investigated the origin(s) and appearance/disappearance of V.

cholerae O1 El Tor variants over time.

Methods

Bacterial isolation
A total of 343 V. cholerae serogroup O1 isolates (Table S1) from

cholera patients, their family members, and neighbors (n = 328), as

well as environmental samples (n = 15) were investigated. V. cholerae

strains 569B (classical biotype), N16961 (El Tor biotype), J16173

(Kolkata, India, 2004), and CE87 (Kolkata, India, 2004) were

kindly supplied by Gopinath B. Nair, National Institute of Cholera

and Enteric Diseases (NICED), Kolkata, India, and were used in

this study for reference.

Human and environmental samples were cultured on Thiosul-

fate Citrate Bile Salts Sucrose Agar (Eiken, Tokyo, Japan). After

overnight incubation, suspected V. cholerae colonies were confirmed

by slide agglutination test with specific monoclonal antibodies

(Denka Seiken, Tokyo, Japan) to identify the serogroup, O1 or

O139, and their serotype, Ogawa or Inaba. A single colony was

picked for each sample. Individual colonies were selected and

cultured for 18 h at 37uC on Tryptic Soy Broth (TSB) (Difco,

Detroit, MI). In addition, Loop-mediated isothermal amplification

(LAMP) [25] was performed to screen for toxigenic V. cholerae

among approximately 2,000 samples. Biotyping of the isolates was

carried out using the Voges-Proskauer (VP) reaction and

polymyxin B (50 units) [26]. Approval by ethical committee and

patient consent were not obtained as this was considered a

standard evaluation of an existing method, which has been

undertaken as part of normal public health practice by the

members of local public health authority. Furthermore the

samples that we used were unlinked and anonymised so as to

permanently protect patient confidentiality.

DNA preparation
DNA templates for PCR and MLVA were extracted with the

NucleoSpin Tissue Kit (Macherey-Nagel, Düren, Germany) and

quantified using the NanoDrop ND-1000 spectrophotometer

(Thermo Scientific, Illkirch, France). DNA samples were diluted

to a concentration of 10 ng/ml and used as templates for gene

detection and MLVA. For ribotyping, bacteria cultured in TSB for

18 h at 37uC were collected by centrifugation and suspended in

TE buffer (10 mM Tris-HCl, 1 mM EDTA [pH 8.0]), treated

with 10% (wt/vol) sodium dodecyl sulfate (SDS) and proteinase K

(New England Biolabs, Beverly, MA), and incubated at 37uC for

1 h. After incubation, 10% Cetyltrimethylammonium bromide in

0.7 M NaCl was added and incubated at 65uC for 10 min [27].

The aqueous phase was treated with phenol-chloroform, and the

DNA pellet was washed with 70% ethanol by centrifugation and

resuspended in TE buffer, pH 8.0.

PCR
PCR was carried out for detection of the rtxC [28] and rstR

genes [29] encoding the acyltransferase and the CTX phage

transcriptional regulator, respectively. Hexaplex PCR, which

detects the presence of the virulence and regulatory genes ctxA,

zot, ace, tcpA, ompU and toxR, was carried out to screen for

toxigenic/pathogenic V. cholerae from both human and environ-

mental samples [30]. The mismatch amplification mutation assay

(MAMA) was used to detect sequence polymorphisms in CT

genotype 1 (classical type CT) and genotype 3 (El Tor type CT)

based on the nucleotide position 203 of the ctxB gene [31]. The

presence or absence of ORFs in the Vibrio seventh pandemic island

I (VSP-I) and Vibrio seventh pandemic island II (VSP-II) clusters of

selected isolates was examined by PCR using primers described

previously [32–34] (Table S2).

Ribotyping
Genomic DNA from V. cholerae O1 isolates (2 mg) was digested

with BglI (New England Biolabs), and the fragments were

separated by electrophoresis in a 0.8% agarose gel and transferred

to ultra-pure nylon membranes (Roche Diagnostic GmbH,

Mannheim, Germany). E. coli ribosomal RNA specimens (16S

and 23S) (Roche Diagnostic) were reverse transcribed into cDNA

with SuperScript II reverse transcriptase (Invitrogen, Carlsbad,

CA) [16] and labeled by random priming with digoxigenin-dUTP.

Hybridization was performed with probes according to the

manufacturer’s instructions (Roche Diagnostic). The membranes

were then visualized by the addition of alkaline phosphate-

conjugated anti-digoxigenin antibody, and substrate disodium 3-

(4-methoxyspiro{1,2-dioxetane-3,29-[59-chloro]tricyclo[3.3.1.13,7]

decan}-4-yl] phenyl phosphate. The membrane was developed,

and results were recorded on x-ray film.

PFGE
PFGE analysis was performed according to a PulseNet

standardized protocol for V. cholerae subtyping [17] with minor

modifications. Briefly, organisms were transferred into Tris-EDTA

(100 mM each) buffer (pH 8.0) and adjusted to an OD of 0.8–1.0

at 610 nm. Agarose plugs were prepared by mixing equal volumes

of the adjusted bacterial suspension with 200 ml of melted 1.0%

V. cholerae O1 El Tor Variants in Thailand
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Pulse Field Certified agarose (Bio-Rad) and 10 ml of proteinase K

(20 mg/ml stock) (New England Biolabs). Organisms in the

agarose plugs were lysed in a lysis solution (Tris-EDTA (50 mM

each; pH 8.0), 1% sarcosine, 0.5 mg/ml proteinase K) for 1 h at

54uC. Washing was performed in six stages, twice with sterile

water and four times with Tris-EDTA buffer. One section of the

plug was equilibrated with NEBuffer 3 (New England Biolabs),

placed in 200 ml fresh buffers containing 40 U NotI and incubated

for at least 4 h at 37uC. Standard Lambda ladder (Bio-Rad) was

used as a DNA molecular mass marker. The digested chromo-

somal DNA was subjected to PFGE on a 1% Pulse Field Certified

agarose in 0.56 Tris-borate-EDTA at 14uC using CHEF-DRIII

system (Bio-Rad). The pulse time ranged from 2–10 s for 13 h and

from 20–25 s for 6 h at 6 V. PFGE banding patterns were

analyzed with computer software BioNumerics version 6.1

(Applied Maths, Kortrijk, Belgium), and a dendrogram was

produced using the Dice coefficient and the unweighted pair-

group method with arithmetic mean algorithm (UPGMA) with a

position tolerance of 1.3%.

MLVA/VNTR
We selected five VNTR loci that exhibited high diversity

indexes as reported previously [21]. These loci were amplified

using specific primers [22] and could be identified by those genes

in the order of occurrence: VC0147, VC0436-7, VC1650,

VC0171, and VCA0283. PCR products were purified using the

NucleoSpin Extract II Kit (Macherey-Nagel), sequenced using the

BigDye Terminator v3.1 Cycle Sequencing Kit (Applied Biosys-

tems, Foster City, CA) and loaded onto an ABI 3130xl automated

sequencer (Applied Biosystems) according to the manufacturer’s

instructions. Sequence data for each isolate were read using

BioEdit Sequence Alignment Editor v.7.0.5.3 (http://www.mbio.

ncsu.edu/bioedit/bioedit.html) [35]. The numbers of repeats in an

alignment were counted and listed sequentially for the five VNTR

loci to generate an isolate pattern. For example, the pattern 10, 6,

7, 18, 18 indicates ten repeats at locus VC0147, six at locus

VC0436-7, and so on. The resulting data were imported into

BioNumerics software version 6.1. Cluster analysis was performed

using the categorical and the UPGMA options. The diversity of

PFGE and MLVA types was assessed using Simpson’s diversity

index [36]. Confidence intervals (CI) were calculated as previously

described [37].

Results

Serotypes, biotypes, and types of virulence genes of
Vibrio cholerae O1 isolates

All V. cholerae O1 isolates used in this study were found to be

serogroup O1; 166 of 343 isolates belonged to serotype Ogawa,

while the remainder were serotype Inaba (Table 1). Polymyxin B

sensitivity, VP testing and PCR analysis for the rtxC gene indicated

that all isolates were biotype El Tor, and the hexaplex PCR assay

revealed that they contained a set of virulence genes and were

positive for the El Tor-specific tcpA gene; however, one isolate did

not carry rstR, ctxA, ctxB, ace, and zot genes. MAMA-PCR showed

that 341 isolates harbored the classical ctxB genotype and one

isolate carried the El Tor ctxB genotype (Table 1). PCR for the

allele-specific CTX prophage repressor gene (rstR) revealed that

the isolates produced amplicons of El Tor rstR only.

Thus, two major types were found among the 343 V. cholerae O1

isolates: V. cholerae O1 El Tor carrying the classical ctxB and the El

tor rstR genes and of serotype Ogawa (47.8%, type i), or serotype

Inaba (51.6%, type ii). In addition, two minor types were found: V.

cholerae O1 El Tor, serotype Ogawa, carrying the ctxB and rstR

genes of the El Tor type (0.3%, type iii), and non-toxigenic V.

cholerae O1 El Tor, serotype Ogawa lacking the CTX elements

(0.3%, type iv) (Table 1).

Variation, prevalence and relatedness of PFGE pulsotypes
and MLVA types among V. cholerae O1 isolates

PFGE of NotI digests of the 343 isolates differentiated into 10

pulsotypes (Figure 1). UPGMA clustering grouped the PFGE

patterns into two major groups, A and B, with 88% overall

relatedness. Group A comprised 7 pulsotypes (A1–A7) which

exhibited 92% similarity, while group B presented 2 pulsotypes (B1

and B2), showing 98% similarity. Pulsotypes A1 and A4 were

prevalent among the isolates of serotype Ogawa, whereas

pulsotype B1 was predominantly found in serotype Inaba. The

other 7 pulsotypes (5.0% of all isolates) were also classified. The V.

cholerae O1 El Tor serotype Ogawa carrying the El Tor ctxB gene

(type iii, Table 1) was excluded from the two groups (Figure 1).

One isolate of non-toxigenic V. cholerae O1 El Tor (type iv)

belonged to pulsotype A5.

Arbitrarily selected isolates from each pulsotype were subjected

to ribotyping and PCR. The PFGE group A isolates and strain

J16173 exhibited ribotype RIII, while group B isolates and strain

CE87 were classified as ribotype RIV (Table 2). PCR revealed that

group A isolates and strain J16173 carried the VC0502 gene,

which encodes a type IV pilin, on the VSP-II, whereas the ORF

was absent in group B isolates and strain CE87 (Table 2). The

isolates of both clusters lacked spanning genes VC0495–VC0496

on the VSP-II, but commonly possessed gene VC0514.

MLVA of the 343 isolates resulted in 44 different MLVA types,

with a Simpson’s index of diversity (SID) of 0.879 (95% CI; range

0.861–0.897) (Figure 2). On the other hand, PFGE differentiated

these isolates into 10 PFGE types with a SID of 0.614 (95% CI;

range 0.58–0.648). The discriminatory power of MLVA was

significantly higher than that of PFGE.

UPGMA clustering of the MLVA profile revealed the existence

of two major clusters, I and II (Figure 2). The 164 isolates of

serotype Ogawa in PFGE group A sharing a 50% similarity

contained 21 MLVA types with a SID of 0.739 (95% CI; range

0.677–0.800), whereas the 177 isolates of serotype Inaba in group

B sharing 60% similarity included 22 MLVA types with a SID of

0.772 (95% CI; range 0.729–0.815). MLVA clusters I and II

matched up with PFGE groups A and B, and with serotypes

Ogawa and Inaba, respectively. It should be noted here that we

found one V. cholerae O1 carrying the El Tor type ctxB which did

belong to neither the two known MLVA clusters I and II nor

PFGE group A and B.

Comparison of genotypic variations among isolates from
separated outbreak areas over time

We compared genotypic variations of the isolates obtained from

separate outbreak sites over a period of several years (Table 3). In

addition, we divided 43 MLVA types of El Tor variant isolates into

Group A/Cluster I and Group B/Cluster II. Nine of 11 outbreak

isolates in three provinces, Khon Kaen, Udonthani, and Lamphun

(Figure 3), were found to be MLVA type 2 in 2007. These outbreaks

were caused by the consumption of contaminated cockles. MLVA

type 7 was predominant in the 2009 outbreaks of the southern

coastal areas, including Patthalung, Songkla, Pattani, and Narathi-

wat provinces and MLVA type 4 was predominant in the 2009 and

2010 outbreaks of the central coastal areas of Thailand, including

Samutsakorn and Prachuapkirikhan provinces. These major

MLVA types 2, 7, and 4 were noted to accompany with others as

they are closely related, differing by only a single repeat (Table 3).

V. cholerae O1 El Tor Variants in Thailand
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The majority of Group B/Cluster II isolates were from Tak

province during 2008 and 2010. We obtained 108 isolates of V.

cholerae O1 in three districts (Mae Sot, Phob Phra, and Tha Song

Yang) of Tak province (Figure 3) during the epidemic period from

June through December, 2008. All isolates of the El Tor variant

were undistinguishable by PFGE (Table 3) but could be

differentiated into 15 types by MLVA. Among the eleven MLVA

types in Mae Sot, the majority were types 39 (48%) and 26 (28%);

types 38, 40, 34 and 32 were occasionally found in this district. In

Tha Song Yang, nine MLVA types were found, including types 26

(43%) and 29 (22%). MLVA type 41 was predominantly found in

Phob Phra. Thus, the isolates from the three districts of Tak each

exhibited a distinct predominant type.

Although 15 MLVA types of El Tor variant isolates were found

in Tak province in 2008, 13 of these disappeared during 2009 and

2010 (Table 3 and Figure S1). While new MLVA types 43 and 44,

which differ by only one repeat number from type 41, emerged in

Phob Phra during 2009; types 42 and 31 differed by two repeat

numbers. In the 2010 large outbreak in Tak, the Group B/Cluster

II isolates were completely replaced by the Group A/Cluster I

isolates (mainly MLVA type 16), except for the isolates from Phob

Phra district. MLVA type 41 was dominant in this district during

our surveillance.

Discussion

This study shows that the cholera outbreaks in Thailand

during 2007–2010 were exclusively caused by the V. cholerae O1

El Tor variant carrying the classical ctxB and El Tor rstR genes.

PFGE differentiated Thai El Tor variant isolates into nine

Table 1. Characterization of V. cholerae O1 isolates used in this study.

Province
Year of
isolation Source

No. of
isolates Serotype ctxB rstR rtxC ace zot ctxA tcpA toxR ompU Type

Lamphun* 2007 Human 1 Ogawa Cl{ El +{ + + + El + + (i)

Khon Kaen* 2007 Human 6 Ogawa Cl El + + + + El + + (i)

Udonthani* 2007 Human 4 Ogawa Cl El + + + + El + + (i)

Samutsakorn 2008 Human 1 Ogawa Cl El + + + + El + + (i)

Tak 2008 Human 1 Ogawa Cl El + + + + El + + (i)

Prachuapkirikhan 2009 Human 2 Ogawa Cl El + + + + El + + (i)

Samutsakorn 2009 Human 5 Ogawa Cl El + + + + El + + (i)

Tak 2009 Human 6 Ogawa Cl El + + + + El + + (i)

Songkla 2009 Human 7 Ogawa Cl El + + + + El + + (i)

Pattani 2009 Human 25 Ogawa Cl El + + + + El + + (i)

Patthalung 2009 Human 4 Ogawa Cl El + + + + El + + (i)

Narathiwat 2009 Human 2 Ogawa Cl El + + + + El + + (i)

Samutsakorn 2010 Human 11 Ogawa Cl El + + + + El + + (i)

Tak 2010 Human 83 Ogawa Cl El + + + + El + + (i)

Tak 2010 Env 3 Ogawa Cl El + + + + El + + (i)

Tak (import) 2010 Human 3 Ogawa Cl El + + + + El + + (i)

Rachaburi 2008 Human 1 Inaba Cl El + + + + El + + (ii)

Tak 2008 Human 98 Inaba Cl El + + + + El + + (ii)

Tak 2008 Env 8 Inaba Cl El + + + + El + + (ii)

Tak 2009 Human 29 Inaba Cl El + + + + El + + (ii)

Tak 2009 Env 2 Inaba Cl El + + + + El + + (ii)

Samutsakorn 2010 Human 8 Inaba Cl El + + + + El + + (ii)

Samutsakorn 2010 Env 2 Inaba Cl El + + + + El + + (ii)

Narathiwat 2010 Human 1 Inaba Cl El + + + + El + + (ii)

Tak 2010 Human 28 Inaba Cl El + + + + El + + (ii)

Tak 2008 Human 1 Ogawa El El + + + + El + + (iii)

Tak 2010 Human 1 Ogawa 2 2 + 2 2 2 El + + (iv)

Reference strains

India, J16173 2004 Inaba Cl El + + + + El + +

India, CE87 2004 Inaba Cl El + + + + El + +

N16961 (El Tor) 1971 Inaba El El + + + + El + +

569B (Classical) 1948 Inaba Cl Cl 2 + + + Cl + +

*Data from Okada et al [13].
{Cl, Classical allele; El, El Tor allele.
{+, Positive; 2, Negative.
doi:10.1371/journal.pone.0030863.t001

V. cholerae O1 El Tor Variants in Thailand

PLoS ONE | www.plosone.org 4 January 2012 | Volume 7 | Issue 1 | e30863



pulsotypes that share an overall similarity of 88%. UPGMA

clustering categorized the PFGE pulsotypes into two major

groups, A and B, which is in agreement with the results

obtained by MLVA. Arbitrarily selected isolates belonging to

group A (A1–A7) were determined to be ribotype III, whereas

group B (B1–B2) isolates were of ribotype IV (Table S3). As

neither of these two ribotypes were reported in Thailand before

[38,39], the V. cholerae O1 variant carrying classical ctxB and El

Tor rstR genes probably appeared in Thailand during recent

years.

Figure 1. Pulsed-field gel electrophoresis (PFGE) patterns among 343 Thai V. cholerae O1 isolates. PFGE banding patterns were analyzed
with computer software, BioNumerics version 6.1 and a dendrogram was produced using the Dice coefficient and UPGMA algorithm. V. cholerae O1
isolate pulsotypes of the El Tor variant were categorized into groups A and B, with an overall similarity of 88%.
doi:10.1371/journal.pone.0030863.g001

Table 2. Ribotyping and virulence-related gene analyses of arbitrarily selected V. cholerae O1 isolates from each PFGE pulsotype.

Vibrio seventh pandemic island cluster

VSPI VSPII

PFGE Sample ID no. Serotype Ribotype ctxB sequence VC0174-0186 VC0502 VC0514 VC0495-0496

A1 KK24 Ogawa RIII Classical ,15 kb +{ + 2

A2 MS83 Ogawa RIII Classical ,15 kb + + 2

A3 MS84A Ogawa RIII Classical ,15 kb + + 2

A4 MRM1A Ogawa RIII Classical ,15 kb + + 2

A5 TSY419 Ogawa RIII Classical ,15 kb + + 2

A6 TSY216 Ogawa RIII Classical ,15 kb + + 2

A7 TSY373 Ogawa RIII Classical ,15 kb + + 2

B1 PP34 Inaba RIV Classical ,15 kb 2 + 2

B2 R4051-225511 Inaba RIV Classical ,15 kb 2 + 2

C MS6 Ogawa Unknown El Tor ND* ND ND ND

Reference strains

H{ J16173 Inaba RIII{ Classical ,15 kb + + 2

H1{ CE87 Inaba RIV{ Classical ,15 kb 2 + 2

ND N16961 Inaba ND El Tor ,15 kb + + +

ND 569B Inaba ND Classical 1.3 kb 2 2 2

*Not Determined.
{+, positive; 2, negative.
{Data from Raychoudhuri et al [40].
doi:10.1371/journal.pone.0030863.t002

V. cholerae O1 El Tor Variants in Thailand
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PFGE pulsotypes and ribotypes of our Thai isolates were also

shown to be similar to the predominant types found in India

(Table 2, Figure S2). V. cholerae O1 ribotype RIII was first

identified in 1993, and remained predominant up to 2003 in

Kolkata, India [40,41] from where it spread across the country,

eventually reaching Africa [42–44]. RIV V. cholerae serotype Inaba

of pulsotype H1 appeared in India in 2004 and dominated until

2005 [40,41]. In addition, the presence of a hybrid CTX prophage

(classical ctxB and El Tor rstR) is a unique feature of recent Indian

isolates since 1995 [4]. PFGE groups A and B isolates were also

found to possess a truncated VSP-II region as seen in reference

strains J16173 and CE87 of Indian origin. This feature is unique in

a representative El Tor variant strain, CIRS101, which possesses

classical ctxB and El Tor rstR genes; other El Tor variant strains

harbor classical rstR and ctxB genes and complete VSP-II, for

example, MJ-1236, a Matlab type I hybrid variant from

Bangladesh that cannot be biotyped by conventional methods,

and B33, a Mozambique variant that can be biotyped as El Tor

[45,46].

Thai isolate MLVA profiles of 10,6,7,X,X (46.4%, 159/343)

and 9,3,6,X,X (51.6%, 177/343; X referring to anonymous repeat

number) relate to those of Indian, Bangladeshi and Vietnamese El

Tor variant isolates [47], so it is likely that the Thai isolates are

derived from a common ancestor of the El Tor variant from India,

which eventually spread into Thailand and neighboring countries

in recent years.

PFGE and MLVA exhibit a high discrimination power for the

differentiation of V. cholerae O1 isolates. In this regard, Chun et al.

Figure 2. Dendrogram showing genetic similarity between 343 isolates of V. cholerae O1 derived from MLVA. Sequence data of repeats
on the five loci for each isolate were counted and imported into BioNumerics software version 6.1. Clustering analysis was performed using the
unweighted pair group with arithmetic averaging (UPGMA) with a categorical similarity coefficient. V. cholerae O1 isolate MLVA types of the El Tor
variant were grouped into 2 major clusters, I and II.
doi:10.1371/journal.pone.0030863.g002

Table 3. MLVA types and pulsotypes of V. cholerae O1 isolates in different province of Thailand over time.

Group A/Cluster I Group B/Cluster II

Province District Year
MLVA type
(No. of isolates) Pulsotype

MLVA type
(No. of isolates) Pulsotype

Khon Kaen - 2007 2(5)*, 11(1){ A1 -{ -

Udonthani - 2007 2(3), 1(1) A1 - -

Lamphun - 2007 2(1) A1 - -

Samutsakorn - 2008 19(1) A1 - -

- 2009 4(4), 7(1) A4 - -

- 2010 4(8), 7(1), 13(1), 3(1) A1, A4 41(7), 43(2), 24(1) B1

Rachaburi - 2008 - - 24(1) B2

Prachuapkirikhan - 2009 4(2) A1 - -

Songkla - 2009 7(5), 11(1), 12(1) A4 - -

Pattani - 2009 7(14), 12 (5), 6 (2),
8 (1), 4(1), 9 (1), 10 (1)

A1, A4, A5 - -

Patthalung - 2009 7(2), 12(1), 20(1) A4 - -

Narathiwat - 2009 7(2) A4 - -

- 2010 - - 45 (1) B1

Tak Mae Sot 2008 - - 39(35), 26(21), 27(3), 41(4), 40(3),
32(2), 28(1), 38(1), 37(1), 29(1), 34(1)

B1

Tha Song Yang 2008 - - 26(10), 29(5), 28(2), 25(1), 27(1),
41(1), 30(1), 39(1), 33(1)

B1

Phob Phra 2008 - - 41(8), 37(2), 35(1) B1

Mae Ra Mad 2009 4(5), 5(1) A1, A4 - -

Phob Phra 2009 - - 41(24), 43(3), 44(1), 26(1), 42(1), 31(1) B1

Mae Sot 2010 16(40), 15(3), 8(2),
14(2), 17(1), 18(1), 21(1)

A2, A3, A4 - -

Mae Sot (Inmport cases) 2010 16(2), 15(1) A1, A4 - -

Mae Ra Mad 2010 16(6) A1, A4 - -

Tha Song Yang 2010 16(25), 8(1), 15(1) A1, A2, A3, A4, A5,
A6, A7

- -

Phob Phra 2010 16(4)" A1, A4 41(26), 26(1), 36(1) B1

*Bold type indicates the major MLVA type.
{Italic type represents the MLVA type showing one repeat number difference from all loci of MLVA type shows in bold type.
{Not isolated.
"These cases are related to a mass food poisoning in a Thai restaurant in the Mae Sot district.
doi:10.1371/journal.pone.0030863.t003
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[46] reported that 23 V. cholerae isolates from different sources over

the past 98 years were phylogenetically separated into 12 distinct

lineages of which one comprises O1 classical and El Tor bitypes.

Their genomics approach concluded that V. cholerae undergoes

extensive recombination by lateral gene transfer. Other investiga-

tors suggested that environmental selection pressure results in a

highly heterogeneous population of this bacterial species in a

cholera-endemic area, and that few strains appear to evolve into

pathogenic clones [48]. In the present study, we obtained 15

isolates of the V. cholerae O1 El Tor variant from several

environmental sources, such as wells, brooks, drinking/waste

water and algae. Notably, MLVA types were closely matched

between environmental and human isolates.

One dominant and several minor MLVA types were identified

among isolates during outbreak episodes in different geographic

regions over time. Most differences between these types were just

one repeat number from the tandem repeats of all loci examined

(Table 3 and Figure 2). In this regard, Kendall et al. [24] examined

the in vitro genetic relatedness of V. cholerae over time. Culturing of

three clinical isolates resulted in 18 different lineages with alleles

distinct from the original. Seven novel alleles showed an increased

number of repeats and 11 had a decreased number of repeats

compared with the original, suggesting that the appearance of a

dominant MLVA type and closely related MLVA subtypes is likely

during an outbreak. Determination of the extent of genetic

variation that occurs within multiple circulating MLVA types of V.

cholerae O1 El Tor can provide a more accurate assessment of

outbreak investigations in terms of transmissibility and pathogenic

capability.

MLVA typing among isolates revealed geographical and

temporal associations of causative V. cholerae in cholera outbreaks.

The 2007 cholera outbreaks in northeastern Thailand were

triggered by the consumption of cockles contaminated with V.

cholerae O1 MLVA type 2. On the other hand, outbreaks in the

southern Gulf areas outbreaks in 2009 were linked mainly with

MLVA types 7 and 12, while those in the central Gulf areas during

2009–2010 were linked with MLVA type 4. These MLVA types

were very closely related and presumably acquired an additional

repeat in the VNTR loci of V. cholerae O1 while inhabiting the

coastal areas.

In Tak province, more than 80% of the isolates were obtained

from Myanmar migrants, with the remainder from local Thai

residents, as reported by Swaddiwudhipong et al. [49]. Notably, 6

out of 8 isolates from coastal areas were also derived from

Myanmar migrants in addition to 2 isolates from Thai residents,

and 21 isolates of unknown origin. Although Tak province is far

from the coast, the isolates from these areas exhibited the same

MLVA types: 4 (in 2009) or 41 (in 2010) (Table 3). The

distribution of these MLVA types suggests that cholera epidemics

spread quickly by the movement of people across national

boundaries. The possibility of V. cholerae transmission to other

sites by unknown mechanisms should not be eliminated.

We note that MLVA type 41 continued to exist predominantly

in an outbreak site of Tak (Phob Phra district) for more than three

years (Figure 3, unpublished results). Long-term survival of V.

cholerae O1 of a particular MVLA type, such as type 41, may be

attained in watery environments or in humans who chronically

carry the organisms with no signs or symptoms of cholera [50].

Interventions that target critical steps in endemic settings and

transmission of causative V. cholerae should be taken into

consideration for the prevention and control of cholera outbreaks.

In this regard, we found a unique V. cholerae O1 carrying the El

Tor type ctxB gene from a Myanmar sick merchant stayed in Tak.

PCR analysis showed that the isolate did not possess the VC2346

gene, a specific marker for seventh pandemic clone [32]. Further

characterization of this isolate is now in progress in our

laboratories.

In summary, we have shown that a combination of PFGE,

MLVA and ribotyping provides insights into the genetic

background of V. cholerae O1 isolates from cholera outbreaks in

Thailand during 2007–2010. The results are particularly

relevant to the molecular epidemiology studies of V. cholerae to

trace the emergence, year-long survival, or disappearance of a

particular type (s) of isolate in terms of spatial and temporal

associations.
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Figure S1 Minimum spanning tree of 343 Thai isolates
and two reference strains of V. cholerae O1 typed by
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indicate the proportion of isolates obtained during the year.

MLVA types 22 and 46 (red circles) are reference strains J16173
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differing by 4 MLVA loci. Groups A and B of related PFGE types

are distinguished.
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Figure 3. Distribution of major MLVA types of V. cholerae O1 isolates during the 2007–2010 cholera outbreaks in Thailand. The
distribution percentage of predominant MLVA type (s) is displayed in relatively scaled pie charts. The size of each chart and the number in
parentheses indicate the ratio of each major MLVA type (corresponding to Table 3) to the other types. The color of each slice indicates the year of
isolation: 2007 (orange), 2008 (gray), 2009 (light blue), and 2010 (green). The color of the circle band denotes serotype: Ogawa (black) and Inaba
(blue).
doi:10.1371/journal.pone.0030863.g003
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