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Big data and computational advancements for next
generation of Microbial Biotechnology.

The exponential growth of biological data is one of the
most significant trends observed in life sciences over the
last few decades. Rapid technological changes and price
reduction of new technologies have made omic
approaches much more affordable to undertake experi-
ments that generate vast quantities of data. In the same
way, the scientific community has adopted a culture of
openness which has encouraged researchers to create
open-source tools, protocols and deposit data to build
massive publicly available databases designed to gather
and share biological data.

We are now in a new era of biological sciences, the
era of Big (biological) data, and along with the astonish-
ing growth of biological data, modern computational
methods and algorithms essential for the progress of
experimental science have been developed to analyse
high-throughput experimental data in novel ways. How-
ever, some of these ‘novel’ methodologies, used nowa-
days to obtain biological knowledge leveraging large
amounts of data, have been recycled from the past.

Artificial intelligence (Al), a branch of computer
science devoted to building machines that are able to
perform tasks that typically require human intelligence,
has been around since the 1950s, but, it has recently
regained popularity when the biggest companies in the
world such as Google, Amazon and Uber have reno-
vated these algorithms to power their recommendation/
search engines and services.

Within the area of Al, the machine learning branch
leverages large data sets and applies accurate mathe-
matical models to teach itself to make more accurate
predictions and classifications instead of relying on expli-
cit programming. Thus, the main feature of machine
learning algorithms is that they are able to automatically
and quickly train themselves using provided data, and
then they can apply this knowledge to discover hidden
non-obvious patterns in large data sets.

To further complicate the concepts a little more, we
have a younger sub-category of machine learning, deep
learning, which uses multilayered neural networks (in-
spired by biological neural networks, called artificial neu-
ral networks) to learn from even larger amounts of data.
This multi-layered structure is what enables deep

learning algorithms to compute very complex and
abstract tasks using extremely large and complicated
sets of parameters to make inferences with minimal
human intervention. Using deep learning algorithms, we
are now able to solve tasks that simpler machine learn-
ing models were not able to solve in the past. In the
same way, deep learning is powered by Big data, and
their models tend to improve their performance as the
amount of training data increases. However traditional
machine learning models such as Support Vector
Machine and Naive Bayes classifiers reach a saturation
level that limits further improvements.

Although machine learning algorithms have been used
for several decades now for prediction and discovery in
different biological fields, these methodologies are still
young enough to keep expanding their practical applica-
tions. For instance, machine learning algorithms have
been applied since the 1980s for protein structure predic-
tion (Qian and Sejnowski, 1988), and later to recognize
specific sequences of DNA and RNA that bind proteins
(Ohler et al.,, 2002) and other DNA regions of interest
(Bucher, 1990; Heintzman et al., 2007), as well as for
gene discovery (Ma et al., 2014). In the area of transcrip-
tomics, machine learning algorithms were utilized for clus-
tering gene expression patterns using microarray gene
expression data (Pirooznia et al., 2008) and later to anal-
yse RNA-seq data (Thompson et al., 2016).

In the past few years, renovated algorithms that are
replacing statistical modelling components by using deep
learning models to improve their performance have
become the state of the art to perform variant calling
(Poplin et al., 2018): for accurately classifying disease-
causing variants, providing insights into the role of aber-
rant splicing in disease (Xiong et al., 2015); to predict
bacteria—host associations (Martinez-Garcia et al.,
2016); to recognize functional genomic elements such
as enhancers and promoters (Li et al., 2015; Liu et al.,
2016); and to predict the deleterious effects of nucleotide
polymorphisms (Quang et al., 2015).

More recently, new approaches using big biological
data and machine learning techniques, have been
applied to discover novel chemical scaffolds for drug
candidates. The ftraditional ’scale-up’ drug discovery

© 2021 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and repro-

duction in any medium, provided the original work is properly cited.


http://creativecommons.org/licenses/by/4.0/

108 Editorial

process is a labour-intensive and expensive path in
which scientists extensively test millions of molecules,
but only a handful of potential compounds progress to
preclinical or clinical testing. However, using machine
learning approaches, now we can quickly and systemati-
cally screen large compound libraries for new drug can-
didates. This kind of approach has already been
successfully used to identify more than 300 candidate
antivirals for SARS-CoV-2 (Huang et al., 2021) and was
validated using already identified compounds with activ-
ity against other viruses such as Ebola and Zika.
Another novelty of this approach, called biological activ-
ity-based modelling (BABM), is that it builds on the
hypothesis that compounds that show similar activity pat-
terns tend to share similar targets or mechanisms of
action and therefore the BABM approach does not
require any chemical structure information of the
screened compounds to make predictions. In this way
BABM can be applied to any substance with available
biological profiling, including macromolecules and natural
products. Virtual screening campaigns of natural prod-
ucts and microbial secondary metabolites libraries using
this and other machine learning approaches (Hannigan
et al., 2019) could be a real game changer in the fight
against multidrug-resistant microorganisms and also in
the search of novel anticancer agents.

Another striking example of machine learning applica-
tions that are helping to solve long-term scientific chal-
lenges is the AlphaFold2 deep learning algorithm
developed by Google’s DeepMind Technologies. Alpha-
Fold2 has reached a great level of popularity for obtain-
ing the highest level of accuracy achieved to date in the
latest CASP14 assessment that took place in November
2020. In the same way, the developers of AlphaFold2
claim that this algorithm is able to predict protein struc-
tures to near experimental accuracy in almost all cases
(Jumper et al, 2021). The possibility of being able to
unscramble the complete structure of proteins from their
amino acid sequence in a computational and systematic
way in the near future could be completely transforma-
tional for the area of Microbial Biotechnology in a way
difficult to predict. Right now, most of the protein func-
tions available in public repositories are obtained using
sequence homology analysis which is just a mere
approximation, as the function of the protein is actually
directly determined by its tertiary structure. The ability to
predict accurate protein structures from their amino acid
sequence would be incredibly valuable for drug discov-
ery, but it could even have a greater impact in other
areas of biochemical engineering, for example, to
enhance biocatalysts identifying key protein residues
and to better estimate their optimal kinetic parameters.

A very exciting feature of this second coming of Al
applied to Big biological data is that it also offers new

approaches for modelling biological processes by inte-
grating different data types (integrative multi-omics).
Machine learning approaches to mining multi-omics infor-
mation hold great promise in unravelling convoluted rela-
tionships where different biological layers interact with
each other in a nonlinear manner. In multi-omics data
integration, every type of -omics data corresponds to
one feature space (for instance, gene expression data
and DNA methylation data) and it is linked through differ-
ent layers of molecular feature spaces to elucidate
molecular pathways underlying different conditions.
Applying integrative multi-omics, subtle changes in gene
expression could be augmented using additional infor-
mation from methylation analysis, for example. These
novel Al approaches and methodologies could open new
opportunities for obtaining better prediction performance
and also to improve our understanding of the complex
molecular pathways and processes that take place in
microbial communities (Cai et al., 2021) and in bioreme-
diation studies (Gupta et al., 2020). For example, an in-
depth study of the adaptation of a microbial community
to a soil environment for bioremediation purposes would
be unattainable when analysing single-omics data. An
integrated study of the information collected through
metagenomics, transcriptomics, proteomics and metabo-
lomics analysis would be more efficient to understand
the fluctuations of the biological activities produced from
the complex mechanisms of adaptation of the organisms
to the new environment.

Although incredibly promising, there are still some
obstacles to solve when applying deep neural networks
to tackle biological problems. One of them is that as the
neural network grows in layers and complexity, then it is
virtually impossible to trace how all the parameters
(sometimes millions of parameters) combine to make
decisions. This is called the ‘black box problem’ and it
means that the internal logic followed by the algorithm to
generate the results has an unexplainable logic. The
possibility of understanding the black box behaviour of
artificial neural networks in the coming future would be a
revolution in the field of Al. The way has been paved
and a significant amount of work has already been done
recently in the area, trying to explain how deep learning
algorithms make decisions without "opening" their black
box.

The anticipated potential of Al has also awoken con-
cerns and wariness from different perspectives. Some of
these concerns are related to the idea that as we get
more value from computers and Al, scientists will
become less important. However, we actually cannot
build these complex models without human experts who
can first assess which type of data is needed to be col-
lected; second generate the appropriate data and finally,
to evaluate how the model is performing.
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Another important issue is that implementing success-
ful complex deep neural network algorithms is a non-triv-
ial task and it has been essentially restricted so far to
computational scientists and those with knowledge in the
areas of programming. Fortunately, several easy-to-use
software frameworks have been released and are now
available to a broad community of researchers. Ulti-
mately, with the recent focus of the scientific community
towards methodological openness which will further
bridge the gap between the general research community
and machine learning experts, machine learning will
become an essential toolkit of the scientists of the near
future.
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