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Abstract

Review Article

INTRODUCTION
High‑throughput sequencing technologies, such as microarrays 
and next‑generation sequencing (NGS), enable hundreds of 
millions of DNA molecules to be sequenced at a time and 
become powerful tools in genomic studies. The genome‑wide 
association study (GWAS) has been a popular method to apply 
to genomic data to investigate the association between genetic 
variants (e.g., single‑nucleotide polymorphisms [SNPs]) and 
phenotypes (a particular trait or disease). GWAS is usually 
performed by comparing the DNA of participants having 
the phenotype with similar people without the phenotype 
(as controls).

One landmark publication in the history of GWAS, the largest 
GWAS ever conducted at the time of its publication in 2007, 
was presented by the Wellcome Trust Case Control Consortium 
and included 14,000 cases of seven common diseases (coronary 
heart disease, type 1 diabetes mellitus, type 2 diabetes mellitus, 
rheumatoid arthritis, Crohn’s disease, bipolar disorder, and 
hypertension) and 3,000 shared controls.[1] Since then, many 
more GWAS studies have been performed, which led to the 
discovery of thousands of risk variants involved in multiple 
traits/diseases. According to the GWAS Catalog, a free online 

database that compiles GWAS published data, more than 
250,000 SNP phenotype associations have been identified from 
more than 5,000 studies as of May 2021.[2]

The phenome‑wide association study (PheWAS), a 
complementary approach to GWAS, has been developed with 
the emergence of clinical electronic health records (EHRs) with 
linked genetic data. The major difference between the design 
of GWAS and PheWAS is the direction of inference: GWAS 
typically focuses on a single disease or a small set of diseases and 
studies their association with many possible genetic variants, 
whereas in PheWAS, a single genetic variant is tested across a 
large number of different phenotypes. In 2010, the first PheWAS 
study was published by researchers from Vanderbilt University, 
who used EHR billing codes (International Classification 
of Diseases, 9th revision [ICD‑9]) to define 776 case/control 
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data (training data) to make predictions or decisions. Both 
supervised and unsupervised learning methods are commonly 
applied to genomic data. Supervised learning provides machine 
learning algorithms with labelled training data, from which the 
model can learn to make correct predictions on the labels of 
new testing data. Unsupervised learning, by contrast, works on 
unlabelled data and uses a range of algorithms to find patterns 
in the data, such as clusters or outliers.

Deep learning has emerged in recent years as the leading class 
of machine learning algorithms.[8] It uses neural networks 
that are composed of hidden layers performing different 
operations to find complex representations of data. It is 
particularly powerful in handling large‑scale datasets with 
high dimensionality and has contributed to enormous progress 
in numerous fields, including image classification, natural 
language processing (NLP), speech recognition and so on.[9]

In this review, we discuss the challenges in handling GWAS/
PheWAS data and how these challenges may be overcome 
using data science and AI‑based technologies. We further 
highlight a few emerging new AI technologies, which will or 
have started to benefit genomic studies.

CHALLENGES AND SOLUTIONS
Risk prediction and identification of causal SNPs
The majority of previous GWAS/PheWAS studies have 
relied on traditional statistical methods, such as χ2 and t‑tests, 
which assign a P value to each SNP under investigation and 
subsequently assess its statistical significance by comparison 
to a predefined P value threshold (adjusted for multiple 
comparisons using methods such as Bonferroni, false discovery 
rate and permutation approaches). Linear or logistic regression 
methods, which have the advantage of being able to adjust 
for multiple covariates such as age and sex, have also been 
applied in many GWAS/PheWAS studies. However, very few 
diseases are caused by single genetic defects with large effects; 

phenotypes and studied their association with five SNPs with 
known disease associations.[3] This study replicated >50% of 
previously reported SNP‑disease associations and identified 
additional new associations. To date, the number of phenotypes 
defined in PheWAS studies has been expanded to more than 
1,600 and can be based on other diagnosis codes (e.g., ICD‑10) 
in addition to ICD‑9. A combination of GWAS and PheWAS 
offers great potential to uncover pleiotropy and elucidate the 
genetic architecture of complex traits.[3]

GWAS/PheWAS has greatly contributed to pharmacogenomics, 
which is the study of how human genetic information impacts 
drug response, with the aim of improving efficacy and reducing 
side effects.[4] For example, several pharmacogenomic 
GWASs identified and confirmed that the genetic variants in 
VKORC1 and CYP2C9 are the principle genetic determinants 
of stable warfarin dosing.[5] Another GWAS for clopidogrel 
effect identified the association of the CYP2C19*2 variant 
with diminished platelet response to clopidogrel therapy.[6] 
Recently, clinical decision support (CDS) systems based on 
genetic testing of these identified SNPs have been, or are 
being, implemented into EHR systems to trigger clinical 
recommendations and/or alerts at the point of care in many 
healthcare systems (e.g., Mayo Clinic, Vanderbilt University 
Medical Center, St. Jude Children’s Research Hospital).[7] An 
example of such CDS guidance is given in Figure 1.

However, the rapid accumulation of genomic data from 
DNA sequencing and clinical data from EHR systems poses 
significant challenges and opportunities for data scientists to 
extract biologically or clinically relevant information from 
the vast amount of genotype and phenotype data. In the past 
two decades, various data science techniques and artificial 
intelligence (AI)‑based technologies have been successfully 
applied in genomics.

Machine learning methods, which are part of AI technology, 
are tools that use algorithms to automatically learn from sample 

Figure 1: Screenshot shows an example of presenting genetic test results in an electronic medical record and clinical decision‑support guidance and 
suggestion. [Provided by Dr Elaine Lo, National University Health System, Singapore].



Lin and Ngiam: How data science and AI-based technologies impact genomics

Singapore Medical Journal ¦ Volume 64 ¦ Issue 1 ¦ January 2023 61

most complex diseases are caused by epistatic interactions 
of multiple genetic factors, with small effect sizes. These 
traditional methods are based on testing SNPs individually 
and in parallel, which ignore the potential interactions and 
correlation between different SNPs.[10]

Machine learning methods have been introduced in a 
number of GWAS studies to overcome the above limitation. 
Machine learning models built into different GWAS studies 
varied greatly in their complexity, ranging from relatively 
simple regression approaches to more complex ensemble 
models, as well as deep learning models.[11] For example, 
Deo et al. developed a gradient‑boosting model, which 
is an ensemble of multiple decision‑tree‑based models, 
and successfully identified several candidate causal genes 
affecting cardiovascular disease‑related traits, including 
cholesterol levels, blood pressure, and conduction system and 
cardiomyopathy phenotypes, and further validated three of the 
identified causal genes experimentally in a zebrafish model of 
cardiac function.[12]

When applied to the analysis of GWAS datasets, deep learning 
methods also achieved high accuracy in many studies. For 
example, deep learning models incorporating SNPs associated 
with obesity delivered a significant predictive performance 
in correctly classifying obese and non‑obese patients with an 
area under the curve (AUC) >0.99, demonstrating the ability 
of deep learning algorithms to capture the combined effect of 
SNPs and predict complex diseases.[13]

So far, a large percentage of the published deep learning 
methods have focused on risk prediction rather than the 
identification of disease and SNP associations. This may 
be partially a result of the interpretability problem of deep 
learning models — that is, many of the deep learning models 
behave like black boxes and fail to provide explanations of 
their predictions. There is a growing need to make the models 
more interpretable, especially in the healthcare domain where 
it is crucial to build trust in a model and be able to understand 
its behaviour. Explainable AI is an emerging field in machine 
learning that aims to open the black box of machine learning 
methods and review the processes underlying their decisions 
to make the results more interpretable.

One example of applying explainable AI in the context of 
GWAS was by Romagnoni et al. on a GWAS on Crohn’s 
disease.[14] The authors calculated the permutation feature 
importance (PFI) for each feature, based on the decrease in 
a model performance score (such as AUC) when a single 
feature value is randomly shuffled, and identified a few 
novel SNPs associated with Crohn’s disease based on PFI. 
Another example of explainable AI is the layer‑wise relevance 
propagation, which has been used to generate SNP relevance 
scores based on their contribution to the fully trained model 
and successfully discovered two very promising, novel SNP 
disease associations.[9]

An obstacle to applying machine learning methods, especially 
deep learning methods in GWAS/PheWAS studies, is the 
so‑called curse of dimensionality of the genomics data,[15] 
which usually represent a very large number of variables 
(e.g., genetic variants) and a relatively small number of 
patient samples. With the growing amount and availability of 
EHR‑linked genomic data and advancement of dimensionality 
reduction techniques, this may not be a problem in the future.

EHR-based phenotyping
One fundamental step of using the EHR data to perform 
GWAS/PheWAS is EHR‑based phenotyping, which is the 
process of identifying patients with certain characteristics 
of interest (e.g., exposures or outcomes). The descriptions 
of phenotypes may be as simple as patients with rheumatoid 
arthritis or far more specific and complex, such as patients 
with stage II thyroid cancer who are younger than 55 years of 
age and have bony metastases.

EHR‑based phenotyping is challenging because of the 
heterogeneity, incompleteness and complexity of EHR 
data, which contain large repositories of both structured 
data (demographics, diagnosis codes, procedure codes, 
laboratory values, medication exposures and so on) and 
unstructured data (progress notes, discharge summaries, imaging 
and pathology reports and so on).[16] Traditionally, rule‑based 
methods, which applies inclusion and exclusion criteria defined 
by clinicians based on consensus guidelines, have been adopted 
for EHR‑based phenotyping. One simple phenotyping example 
is the translation table (ICD codes to phecodes) to define 776 
phenotype cases and controls in the first PheWAS described 
earlier in this review. Combining diagnosis codes with other 
structured data fields, such as medications, procedures and 
laboratory values, tends to show better performance than a 
single code search, as demonstrated on phenotyping a number 
of diseases, including type 2 diabetes mellitus,[17] rheumatoid 
arthritis[18] and coronary artery disease.[19] 

Applying AI technologies to improve phenotyping 
accuracy
Unstructured data, which account for around 80% of the 
data in EHRs, including text from clinical notes, discharge 
summaries and radiology and pathology reports, contain 
a large chunk of phenotypic information.[20] Clinical NLP 
techniques (e.g., cTAKES) with the ability to parse the semantic 
relationships and extract structured concepts from free text have 
been applied in phenotyping, and when added to structured data, 
they showed significant improvement in phenotyping accuracy. 
Liao et al. demonstrated across several disease categories, 
from inflammatory bowel disease to multiple sclerosis, that the 
addition of NLP to structured data improved the sensitivity of 
phenotypes while preserving high positive predictive value.[21]

Machine learning methods have been applied to build 
phenotyping models. As an example, using both structured 
data (ICD codes and medication data) and NLP‑derived clinical 
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concepts, support vector machine (SVM) models were built 
for rheumatoid arthritis phenotyping and achieved higher 
accuracy (>93% precision and ∼80% recall) compared with 
the rule‑based method (75% precision and 52% recall).[22] 
This study showed that the performance of a SVM trained on 
their naïve dataset (with all features together and no feature 
engineering) was almost as good as the SVM built on a 
refined dataset, demonstrating the possibility of constructing 
a high‑performing classifier without any feature engineering. 
Compared with the rule‑based approaches, machine learning 
methods are more capable of capturing more complex 
phenotypes or working with a less‑standardised dataset, and 
can be easily scaled.

However, building and validation of supervised machine 
learning models require manually labelled gold standard 
training and test datasets, which take significant time and 
expert knowledge to create. Unsupervised learning methods 
to automatically derive phenotype candidates (patient clusters 
on specific medical conditions) with no or minimum human 
supervision have been proposed by a number of studies.  
Ho et al. used a non‑negative tensor factorisation technique 
called ‘Limestone’ to generate multiple phenotype candidates 
with no predefined phenotype definitions.[23] As reviewed by 
a medical expert, 82% of the top 50 automatically generated 
phenotype candidates are clinically meaningful, and only 
40 phenotype candidates are needed as features to obtain better 
predictive accuracy of patients at risk of heart failure than the 
original set of >600 medical features. Two upgraded versions 
of Limestone, named Marble and Granite, respectively, have 
been proposed and showed improved performance.[24,25]

Following the trend towards using deep learning approaches, 
phenotyping methods using various techniques have 
been reported, such as the de‑noising auto‑encoders by 
Miotto et al.,[26] as well as NLP methods based on the 
convolutional neural network algorithm to utilise clinicians’ 
notes or discharge summaries by Gehrmann et al.[27] and Yang 
et al.,[28] respectively.

Efforts to improve portability of EHR‑based phenotyping
Portability of the defined phenotype across healthcare systems 
is a challenging problem for EHR‑based phenotyping. The 
performance of the phenotyping tools has varied across test 
sites,[16] which may be partially a result of the various clinical 
data models used.

To standardise the format and content of observational data, 
several common data models (CDMs) have been proposed 
by collaborative research networks such as Observational 
Health Data Sciences and Informatics (OHDSI), Informatics 
for Integrating Biology and the Bedside (i2b2) and Patient‑
Centered Clinical Research Network (PCORnet).[29,30] 
Among them, the most well‑known is the Observational 
Medical Outcomes Partnership (OMOP) CDM that was 
offered by the OHDSI programme. It enables the capture of 

information (e.g., encounters, patients, providers, diagnoses, 
drugs, measurements and procedures) in the same way across 
institutions, and a large number of medical centres worldwide 
have transformed their EHR data into the OMOP CDM. 
Also, the ‘All of Us’ (AOU) programme in the United States, 
which is an effort to build one million patients’ EHR and 
genomic data, is standardising its EHR data around the OMOP 
data model.[31] This shared data model allows standardised 
applications, tools and methods to be applied on data across 
sites and offers a foundation for creating a broad phenotyping 
community for collaborative testing and refining of phenotype 
definition.[16]

The Electronic Medical Records and Genomics (eMERGE)  
network is a consortium of collaborating academic medical 
centres that works to develop generalisable EHR phenotype 
definitions in order to conduct GWAS/PheWas studies across 
shared clinical datasets.[32] Because of the importance of 
sharing and validating phenotypes in different healthcare 
settings, the phenotype knowledge base website, PheKB 
(http://phekb.org), was created as a repository of phenotypes 
that offers a collaborative environment to building and 
validating EHR‑based phenotypes.[33] As of May 2021, 
there are approximately 80 publicly available well‑defined 
phenotypes on PheKB, including both rule‑based and machine 
learning methods using structured and unstructured data.

Guide RNA design in CRISPR genetic editing
Genetic‑editing techniques to modify genomic sequences 
have been used to validate the association between genetic 
variants and phenotypes identified by GWAS/PheWAS and to 
uncover the underlying mechanisms. The Clustered Regularly 
Inter‑spaced Short Palindromic Repeats (CRISPR) and their 
associated endonuclease genes (e.g., Cas9) are a revolutionary 
gene‑editing technology that can modify DNA with greater 
precision than existing technologies.[34] In this system, a single 
guide RNA (gRNA) guides Cas proteins to specific genomic 
targets. Recognition and cleavage occur via complementarity 
of a 20‑nucleotide sequence within the gRNA to the genomic 
target (on‑target site). By simply altering the sequence 
of the gRNA, Cas can be easily re‑programmed to target 
different sites in the genome with relative ease. As a powerful 
gene‑editing tool, CRISPR are not only used to validate the 
GWAS/PheWAS findings, but also offer therapeutic potential 
in treating diseases associated with a genetic basis.[35]

Clinical applications of CRISPR
Currently, the clinical use of human germline genetic editing 
is still not allowed. Germline editing means the genes that are 
edited are heritable (in sperm, eggs or embryos) and can be 
passed on to the next generations.[36] The ban, however, does 
not apply to changes in non‑germline human cells (called 
somatic gene editing). Since 2016, increasing numbers of 
CRISPR therapeutics studies have entered clinical trials, 
most of which focus on ex vivo genome editing.[37] Ex vivo 
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genome editing is a therapeutic strategy in which the genome 
of particular cells is edited outside the patient’s body, and 
then the modified cells are transplanted back into the patient 
to exert a therapeutic effect. Ex vivo editing guarantees that 
genome‑editing tools only come in contact with the right 
target cells. This technique has been used in patients with 
beta thalassaemia and sickle cell  disease since 2019, with 
promising early results. Based on analysis of the bone marrow 
cells from the treated patients, it was seen that the edited cells 
have successfully taken up residence in the bone marrow.[38]

In contrast to ex vivo genome editing, in vivo genome‑editing 
approaches directly introduce the genome‑editing components 
into the patient via local or systemic delivery, and so the 
genome editing occurs inside the patient’s body. For example, 
an ongoing clinical trial in the United States is directly 
introducing CRISPR gene‑editing components into the eyes 
of patients born with Leber’s congenital amaurosis 10, a 
congenital vision disease, to fix the faulty photoreceptor gene 
in patients’ vision cells.[39] Compared with the ex vivo strategy, 
a substantial problem for the in vivo treatment strategy is the 
safe and effective delivery of genome‑editing components to 
target cells without provoking dangerous immune responses 
in patients or causing off‑target effects.

CRISPR technology has also been used in fighting COVID‑19.[40] 
It has been successfully used to develop rapid diagnostic tests 
for COVID‑19 with emergency authorisation by the US Food 
and Drug Administration (FDA).[41] One advantage of using 
CRISPR over the antigen rapid test (ART) method is that the 
former can easily adapt to new mutations by modifying the 
guide RNA to detect different variants of the SARS‑CoV‑2 virus, 
whereas ART methods rely on antibodies, which require more 
time for redesigning. Meanwhile, scientists have examined the 
CRISPR‑based system as a potential therapeutic strategy, using 
its targeted enzymatic activity to degrade SARS‑CoV‑2 RNA 
and prevent viral replication. Through the use of multiple gRNAs 
targeting multiple regions of the same virus or multiple strains 
of coronavirus, this system could possibly buffer against viral 
evolution and protect against future related pathogenic viruses.[42]

Prediction of gRNA on‑target efficacy and off‑target effect 
with machine learning methods
One major challenge for effective application of CRISPR 
systems is the optimal design of gRNA with high sensitivity and 
specificity. Previous studies have demonstrated that multiple 
mismatches as well as DNA or RNA bulges can be tolerated 
in gRNA target sequences, resulting in cleavage of unintended 
genomic sites (off‑targets).[43] As confirmed by Fu et al., one to 
five base mismatches could be tolerated by  gRNA (guide RNA) 
during the guiding process, which in turn causes unintended 
sequences to be erroneously edited.[44] The on‑target activity 
and off‑target effects of individual gRNAs can vary widely, 
and accurate prediction of these effects would facilitate the 
optimal design of gRNAs by minimising their off‑target effects 

(high specificity) and maximising their on‑target efficacy 
(high sensitivity).

Machine learning has been gradually applied to gRNA design. 
Various machine learning‑based gRNA design models have 
been developed and applied.[45] Most of these models take 
into account the sequence features and/or secondary structure 
features to guide gRNA design to improve gene‑editing results. 
For example, a collaborative project involving Microsoft, the 
Broad Institute of Massachusetts Institute of Technology and 
University of California Berkeley and others has developed 
two predictive modelling approaches, named Azimuth and 
Elevation, for on‑target and off‑target activity prediction, 
respectively, and these tools are currently provided on Microsoft 
Azure as a cloud‑based, end‑to‑end guide‑design service.[46,47]

One obstacle to building a good learning model to predict gRNA 
activity is the data heterogeneity and inconsistency issue. Current 
data are mostly collected from experiments using different 
cell types, different experimental platforms or even different 
types of Cas enzymes. gRNA activity depends not only on its 
own sequence, but also on the experimental conditions (e.g., 
in vitro vs in vivo), and effective integration of data is therefore 
required. A few studies have applied deep learning methods 
to predict gRNA effect.[48] DeepCRISPR, as an example, is a 
comprehensive deep learning framework to simultaneously 
predict gRNA on‑target efficacy and a whole‑genome off‑target 
cleavage profile.[49] In addition to the sequence feature, epigenetic 
features that may affect gRNA knockout efficacy were also used 
as input data to train the models. Although trained on limited cell 
type data, by taking advantage of the powerful deep learning 
framework, DeepCRISPR showed a generally good prediction 
ability when adapting to new cell types.

EMERGING MACHINE LEARNING AND AI TRENDS 
RELATED TO THE GENOMICS FIELD
Transfer learning in NLP
Transfer learning is a technique of training a deep learning 
model on a large dataset and then using the pre‑trained model 
to perform similar tasks that may be in a different domain on 
another dataset. This breakthrough technology has been applied 
in the field of computer vision (e.g., image classification) 
and has gained much success since 2012.[50] One of the main 
advantages of using a pre‑trained model as a starting point is 
the relatively small sample size required. As the model has 
been pre‑trained on a large‑scale dataset, the pre‑trained model 
just needs to be trained or fine‑tuned when it is applied to a 
similar task using a relatively smaller dataset. The knowledge 
that the pre‑trained model has learned from the large dataset 
during pre‑training can be transferred to a new task. This is 
especially useful for deep learning approaches because they 
usually have a huge number (millions) of parameters requiring 
a large dataset to train. The lack of training data may lead to 
overfitting and decrease in accuracy.
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Transfer learning was introduced into the field of NLP in 2018 
with Bidirectional Encoder Representations from Transformers 
(BERT), which is a highly successful model developed 
by the Google AI team.[51] BERT is a pre‑trained model 
trained on Wikipedia (2.5 billion words) and BooksCorpus 
(0.8 billion words) and has dramatically improved performance 
for many NLP tasks, such as text classification, sentence 
classification, semantic similarity between pairs of sentences, 
question answering task with paragraph, text summarisation 
and so on. Google has been leveraging BERT to better 
understand user searches. Researchers have started to apply 
BERT for improving the performance of biomedical and 
clinical text mining models in recent years, and several 
pre‑trained models have been built on top of BERT.

Bidirectional Encoder Representations from Transformers 
for Biomedical Text Mining (BioBERT) is a domain‑specific 
language representation model that has been pre‑trained 
on large‑scale biomedical corpora, including PubMed 
Abstracts (4.5 bill ion words) and PMC Full‑text 
articles (13.5 billion words) to understand complex biomedical 
texts.[52] When applied on three representative biomedical text 
mining tasks, including biomedical named entity recognition, 
biomedical relation extraction and biomedical question 
answering, BioBERT largely outperforms BERT and previous 
state‑of‑the‑art models. Our group in the National University 
Health System is currently leveraging it in several clinical 
projects, such as high‑risk pregnancy prediction, which 
involves text mining from clinician’s notes.

Two clinically trained BERT models, Clinical BERT and 
Discharge Summary BERT, which are specific for NLP tasks 
in the clinical domain have been built by Alsentzer et al.[53] 
These two models, ClinicalBERT and Discharge Summary 
BERT, were pre‑trained using all clinical note types or only 
discharge summaries, respectively, from approximately two 
million notes in the MIMIC‑III database and resulted in 
performance improvements over BERT and BioBERT on 
three clinical NLP tasks. Another clinical BERT specific to 
the clinical domain is ClinicalBERT developed by Huang 
et al.[54] ClinicalBERT has also been trained on clinical notes 
from the MIMIC‑III database and used to predict hospital re‑
admission. However, as the authors from both studies pointed 
out, MIMIC only contains notes from the intensive care unit 
of a single healthcare institution and may result in limitations 
in the built models. Thus re‑training on a larger collection of 
clinical notes is recommended for better performance.

Multi-view learning in multi-omics
In addition to genomics, high‑throughput data have now 
become widely available in other omics, such as proteomics, 
transcriptomics and metabolomics, which together are 
called ‘multi‑omics’ data. The flow of genetic information 
in the central dogma is complex and involves many levels 
of molecules and interactions. Multi‑omics data provide 

information on biomolecules from different layers and, when 
linked to clinical phenotypes, help in bridging the gap from 
genotype to phenotype. Studies integrating multi‑omics data 
have great potential in the exploration of complex biological 
systems and would lead to a better understanding of human 
health and disease, eventually aiding in better treatment and 
prevention.

However, integrating large‑scale multi‑omics data to discover 
functional insights into biological systems is a challenging 
task. To address these challenges, machine learning has been 
applied for multi‑omics data integration and analysis. Various 
machine learning approaches have already been explored for 
a wide range of applications.[8] Compared with traditional 
machine learning methods, which have difficulty in integrating 
the heterogeneous and noisy omics data, multi‑view learning, 
an emerging machine learning method, is more effective in 
studying heterogeneity of data and revealing cross‑talk patterns, 
and researchers have started to apply it to multi‑omics data.

In multi‑view learning, data from multiple omics sources can 
be encoded by multiple data views. Each view is an aspect of 
the whole complex biological phenomenon that is compatible 
and complementary to other views. Multi‑view learning 
algorithms applied to these data aims to capture the interactions 
within each omic, as well as the interactions across all omics, 
to get a comprehensive understanding of complex biological 
phenomena. Multi‑view learning enables data from multiple 
omics sources, such as gene expression, chromatin accessibility 
and protein expression, to be represented in a common space, so 
that they can be simultaneously clustered and a group of genes or 
a group of proteins that function together can be identified. More 
importantly, the functional linkage between genes, regulatory 
elements and proteins can be revealed (e.g., protein α binds 
to chromatin region β to regulate the expression of gene γ), 
which may be further linked with a specific subtype of diseases 
if phenotypic data are added.[55] A few studies have applied 
multi‑view learning methods to multi‑omics data from The 
Cancer Genome Atlas (TCGA) — a large multi‑omic repository 
of data on thousands of cancer patients. Their results showed that 
multi‑view learning outperformed the state‑of‑the‑art methods 
or single‑view approaches, and successfully identified different 
disease subtypes.[56,57]

Next-generation sequencing data pre-processing
With its ultra‑high throughput, scalability and speed, NGS 
enables researchers to sequence whole genomes/exomes and 
has become one of the major sources of genomic data used in 
both biological studies and clinical practice. However, the large 
volume of raw data generated by NGS also pose significant 
challenges in data storage and data pre‑processing. AI 
technology has been applied in NGS raw data pre‑processing 
and has shown promising results.[58]

For example, DeepVariant, developed by Google AI, is an 
analysis pipeline that uses a deep neural network to call 



Lin and Ngiam: How data science and AI-based technologies impact genomics

Singapore Medical Journal ¦ Volume 64 ¦ Issue 1 ¦ January 2023 65

genetic variants from next‑generation DNA sequencing 
data.[59] It transformed a variant calling problem into an 
image recognition problem by converting BAM files into 
images similar to genome browser snapshots and applied 
the TensorFlow deep learning method to call variants in 
sequencing data. DeepVariant was reported to be the most 
accurate pipeline in variant calling in the Precision FDA Truth 
challenge (2016) and outperformed the other variant callers, 
including the Genome Analysis Toolkit gold standard pipeline 
in a comparison conducted by Supernat et al.[60]

CONCLUSION
This review provided a summary of how AI‑based technology, 
especially deep learning methods, has been increasingly 
applied in the fields of genomics and pharmacogenomics and 
gained a lot of success. There remain significant challenges 
in using AI technologies in the near future because of 
legacy IT infrastructure and data constructs. There are also 
limitations in awareness of the capabilities that AI can bring 
to healthcare and the training needed to build AI models at 
scale. It is estimated that currently, only 20% of all datasets 
are sufficiently processed to be used for AI modelling. There 
are still technical and legal challenges to be overcome in 
order to facilitate the use of the remaining datasets. When 
these challenges are overcome, we may truly reap the benefits 
of automation afforded by the use of AI in healthcare.
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