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Abstract: Local acidity and electrostatic interactions are associated both with catalytic properties
and the adsorption activity of various materials, and with the vital functions of biomolecules. The
observation of acid–base equilibria in stable free radicals using EPR spectroscopy represents a
convenient method for monitoring pH changes and the investigation of surface electrostatics, the
advantages of which are especially evident in opaque and turbid samples and in porous materials
such as xerogels. Imidazoline nitroxides are the most commonly used pH-sensitive spin probes and
labels due to the high sensitivity of the parameters of the EPR spectra to pH changes, their small size,
and their well-developed chemistry. In this work, several new derivatives of 4-(N,N-dialkylamino)-
2,5-dihydrioimidazol-1-oxyl, with functional groups suitable for specific binding, were synthesized.
The dependence of the parameters of their EPR spectra on pH was studied. Several showed a pKa

close to 7.4, following the pH changes in a normal physiological range, and some demonstrated a
monotonous change of the hyperfine coupling constant by 0.14 mT upon pH variation by four units.

Keywords: nitroxide; spin label; spin probe; EPR; local pH; surface electrostatics; near-surface layer

1. Introduction

Interfacial phenomena and local protonation effects play an important role in bio-
physics, biochemistry, and in the chemistry of heterogeneous systems [1]. Catalytic and
sorption properties of various materials are dependent on the local acidity and electro-
static interactions inside the pores [2]. Measurements of the local acidity and electrostatic
potential of the inner pore surfaces represent a problem of great practical interest. Sev-
eral methods have been developed for the characterization of the acid–base properties of
different surface locations [3].

EPR spectroscopy of ionizable nitroxides is a convenient method for the investigation
of the above-mentioned phenomena [2,4,5], and is fully applicable to opaque or turbid
materials [5,6]. Nitroxide spin probes are small enough to penetrate directly into the pores
and to be adsorbed onto the surface of the material under study. The protonation of basic
centers in specially designed spin probes affects the hyperfine coupling A-tensor and g-
factor matrix, as well as the rotational dynamics of the nitroxide molecule in the proximity
of charged surfaces, and this is reflected in the EPR spectra [7]. An analysis of these data
gives information about the acidic centers in the material and the local surface electrostatic
potential. Recently, EPR studies using pH-sensitive spin probes were successfully used for
the investigation of binary TiO2-SiO2 xerogels [8].

Imidazoline nitroxides are the most commonly used pH-sensitive spin probes and
labels due to the high sensitivity of the parameters of the EPR spectra to pH changes, their
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small size, and their well-developed chemistry. A large number of pH-sensitive nitroxides
of the imidazoline series have been prepared [1,4,9]. Some of them are highly sensitive to
pH changes in physiologically important regions. The development of a convenient method
for the synthesis of 4-(N,N-dialkylamino)-2,5-dihydrioimidazol-1-oxyls from 4H-imidazole-
3-oxides [10] allowed for easy variation of the substituents in position two of the heterocycle
to prepare useful spin probes. Examples illustrating the benefits of this strategy include
the synthesis of nitroxides with two pKa values showing high sensitivity in a broad range
of pH [11,12], e.g., Scheme 1, label 1, and pH-sensitive alkylating spin, labels 2a–c [13–15],
which were used to prepare the hydrophilic spin probes from glutathione [13,14], thiol-
specific pH-sensitive spin, label 3, for site-directed labeling of proteins and lipids [16,17],
and siloxane-derived spin, label 4, capable of binding to silica or alumina surfaces [7].
Despite the significant advances in this area, the broad variety of potential research objects
produces a request for new pH-sensitive spin labels capable of specific attachment. Here we
describe a new set of pH-sensitive imidazoline nitroxides with various functional groups in
the side chain. Some of them may find an application in material science or in biophysics.
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Scheme 1. Structure of the nitroxides 1–4.

2. Results and Discussion

The high reactivity of 2 in nucleophilic substitution reactions offers easy access to new func-
tional derivatives. Expectedly, 2b readily reacts with sodium azide to produce 5 with a nearly
quantitative yield. Nitroxide azides can be used for the spin labeling of acetylene-modified
molecules via Huisgen 1,3-dipolar cycloaddition [18,19]. In analogy to the literature [20], a
reaction of 5 with tetraisopropyl but-3-yne-1,1-diyldiphosphonate 6 in the presence of Cu(II)
salt and ascorbic acid after subsequent re-oxidation produced 7 (Scheme 2).

The addition of nitroxides with a terminal acetylene group to azide-modified
biomolecules, e.g., nucleic acids, is another way to use the Huisgen-click reaction for
spin labeling. Terminal acetylenes can also be attached via Pd-catalyzed coupling [21]. A
spin label with a terminal acetylene group was prepared from 8 in two steps (Scheme 3).
The oxidation of benzyl alcohol 8 with the activated manganese dioxide in methanol
smoothly led to the formation of the corresponding aldehyde 9, with the nitroxyl group and
the amidine moiety being unaffected. Alternatively, 8 can be oxidized to the aldehyde 9
with 1-oxo-2,2,6,6-tetramethylpiperidinium chloride 10 with similar yield. The aldehyde 9
readily reacts with Bestmann-Ohira reagent to produce 11 with a yield of 84% [22]. The
structure of 11 was confirmed with X-ray analysis data (Figure S1).
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Scheme 3. Synthesis of the nitroxide 11.

Unless the attachment of a pH-sensitive nitroxide to a primary amino group is suc-
cessfully performed via alkylation with 2b [7], the acylation reaction is more selective,
allowing for the binding of a single nitroxide to the site. Carboxylic acids can be easily
prepared from 8. Here we used a convenient one-pot process, where the reaction of 8 with
an oxoammonium salt 10 was followed by the Lindgren-Kraus-Pinnick procedure [23]
(Scheme 4). The carboxylic acid 12 was isolated with a 95% yield. To activate carboxylic
group for acylation, the nitroxide 12 was treated with SOCl2 in the presence of pyridine.
The chloroanhydride formed readily reacted with ethanol to give ester 14. The reaction of
13 with N-hydroxysuccinimide (NHS) produced spin label 15.

Another nitroxide with a carboxylic group on a longer spacer was prepared in one
step from 8 via acylation with succinic anhydride (Scheme 5).

The EPR spectra of nitroxides 7, 11, 12, 15, and 16 are strongly pH-dependent with
∆aN > 0.1 mT, and a pKa between 6 and 6.7 (Table 1). The titration curves demonstrate
optimal sensitivity in slightly acidic media [14,15], but the sensitivity is not optimal in
the normal physiological range of 7.35–7.45 [24]. Similar structures without aromatic
substituents are known to show higher pKa values [11].

To prepare 2-functionalized nitroxides with a pKa above 7, the reaction of 4H-imidazol-
3-oxide 17 with Grignard reagents was used (Scheme 6). The treatment of 17 with alkenyl-
magnesium bromides produced nitroxides with a terminal ethylene bond 18a,b. The
hydroboration of 18a,b with 9-BBN, followed by oxidation with hydrogen peroxide, was
performed using the protocol developed by Hideg for 2-allyl pyrrolidine nitroxides [25].
The reaction produced alcohols 19a,b, which were then treated with carbonyldiimidazole
(CDI) to give 20a,b. To demonstrate the feasibility of the carbonylimidazole pH-sensitive
spin labels for binding to primary amino groups, 20b was allowed to react with N,N-
diethyl-1,3-diaminopropane.
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Table 1. Titration data for the pH-sensitive niroxides: HFC constants for protonated and unprotonated
forms, changes in hyperfine splitting between these forms, ∆aN,, and pKa values.

Nitroxide
aN, mT

∆aN, mT pKa
R·H+ R·

5 1.434 1.539 0.105 6.42

7 1.429 1.531 0.102 6.24

8 1.424 1.529 0.105 6.54

11 1.436 1.539 0.103 6.21

12 1.417 1.522 0.105 6.50

15 1.422 1.531 0.109 6.49

16 1.466 1.575 0.109 6.64

18a 1.479 1.586 0.107 7.14

18b 1.468 1.565 0.097 7.20

19a 1.493 1.589 0.096 7.25

19b 1.472 1.567 0.095 7.28

20a 1.459 1.555 0.096 6.95

20b 1.448 1.545 0.097 7.24 ± 0.05

21 1.472 1.565 0.093 7.19

22 1.468 1.562 0.094 7.64

23 1.471 1.569 0.098 7.09

24 1.434 1.529 0.095 6.81 ± 0.05

25 1.482 1.587 0.105 7.50
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The nitroxide 21 was isolated with a 60% yield. The oxidative cleavage of the ter-
minal double carbon–carbon bond in 18b with osmium tetraoxide–oxone system yielded
carboxylic acid 22.

The addition of 2-(1,3-dioxolan-2-yl) ethylmagnesium bromide to 17 is another con-
venient way to create 2-functionalized pH-sensitive spin labels. The reaction produced
nitroxide 23 with a high yield. The dioxolane protection group in 23 was readily removed
under relatively mild conditions to give the corresponding aldehyde 24, which can be either
oxidized to carboxylic acid 25 using the Lindgren-Kraus-Pinnick procedure, or reduced
with sodium borohydride to 19a. The sequence 17→ 23→ 24→ 19a gives a remarkably
higher yield of the target nitroxide than the addition of allylmagnesium bromide with
subsequent hydroboration. A titration of the nitroxides 20, 22, and 25 showed that they
may be valuable spin labels and probes with high sensitivities to changes of pH within the
physiological range (see Table 1, Figure 1 and Supplementary Materials).
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An investigation of the surfaces of many inorganic and organo-inorganic materials
(catalysts, sorbents, etc.) requires nitroxides with a high sensitivity to acidity changes
within a broad range of pH. A good example of such a spin probe is two-pKa nitroxide 1,
which was successfully used in numerous studies [8,26–31]. A covalent attachment of
similar nitroxides to the surface of a catalyst or a sorbent may provide a useful method for
studies of the near-surface layer in these materials. Here we designed analogs of 1 with a
functional group in a substituent at the exocyclic nitrogen atom of the amidine moiety.

N-(4-(1,3-dioxolan-2-yl)benzyl)-N-methylamine 26 was prepared in two steps from
tereftaldicarboxaldehyde 27 (Scheme 7).
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Scheme 7. Synthesis of N-(4-(1,3-dioxolan-2-yl)benzyl)-N-methylamine (26).

A reaction of the 5-cyano-4H-imidazole-3-oxide 29 with 26 resulted in cyanide substitu-
tion with the formation of 30, and the latter was treated with an excess of ethylmagnesium
bromide (Scheme 8). The nitroxide 31 was isolated after a quenching of the reaction mixture
with water and oxidation. To hydrolyze the dioxolane ring, 31 was heated to reflux in
0.5 M aqueous HCl. The resulting aldehyde 32 was reduced with sodium borohydride to
the corresponding alcohol 34, or oxidized with sodium chlorite to carboxylic acid 33 as
described above for 23. Similarly to 11, the nitroxide 33 was converted into succinimidyl
ester 35 via a reaction of in situ generated chloroanhydride with NHS.
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Titration of the nitroxides 32–35 showed a gradual monotonous increase of HFC on
the nitroxide nitrogen atom by ca. 0.14 mT upon a pH change from 1.5 to 5.5 (see Figure 2,
Table 2, and Supplementary Materials). The shape of the titration curve perfectly corre-
sponded to a two-step acid–base equilibrium, and fitting with the Henderson-Hassellbalch
function (Equation (2), see experimental part) gave two pKa values for each nitroxide
(Table 1), corresponding to the sequential protonation of the basic centers, amidine group
and pyridine nitrogen.

Gels 2022, 8, x FOR PEER REVIEW 7 of 19 
 

 

 

Scheme 8. Synthesis of two-pKa nitroxides. Structure of the nitroxide 36. 

Titration of the nitroxides 32–35 showed a gradual monotonous increase of HFC on 

the nitroxide nitrogen atom by ca. 0.14 mT upon a pH change from 1.5 to 5.5 (see Figure 

2, Table 2, and Supplementary Materials). The shape of the titration curve perfectly corre-

sponded to a two-step acid–base equilibrium, and fitting with the Henderson-Has-

sellbalch function (Equation (2), see experimental part) gave two pKa values for each ni-

troxide (Table 1), corresponding to the sequential protonation of the basic centers, amidine 

group and pyridine nitrogen. 

0 1 2 3 4 5 6 7 8

1.40

1.45

1.50

a
N
, 

m
T

pH
 

Figure 2. Titration curves of nitroxides 34 (•) and 35 (▪). Figure 2. Titration curves of nitroxides 34 (•) and 35 (�).

Table 2. Titration data for the pH-sensitive niroxides: HFC constants for double protonated, mono-
protonated, and unprotonated forms, changes in hfi splitting, ∆aN, between these forms, pK values.

Nitroxide
aN, mT

∆aN, mT pK
R·H2

2+ R·H+ R

32 1.376 1.460 1.514 0.084
0.054

2.24 ± 0.02
4.73 ± 0.02

33 1.377 1.457 1.516 0.080
0.059

2.36 ± 0.02
4.86 ± 0.02

34 1.377 1.454 1.517 0.077
0.063

2.58 ± 0.02
4.85 ± 0.03

35 1.377 1.469 1.519 0.092
0.050

2.20 ± 0.01
4.89 ± 0.01

In accordance with the general concept of basicity, the pKa value of the amidine
fragment should be higher than that of the pyridine one. However, according to the
simulation, the protonation of the center with a more acidic pKa is accompanied by a
change in the hyperfine constant by 0.077–0.092 mT, which is typical of the amidine group
in 4-amino-2,5-dihydroimidazol-1-oxyls, while the higher pKa (4.73–4.89) corresponds to
a smaller change in the hyperfine constant (0.05–0.063 mT), which may correspond to
pyridine moiety protonation. Moreover, the basic pKa showed minor dependence on the
nature of the substituent at the exocyclic nitrogen, while the acidic pKa varies from 2.58 for
34 to 2.19 for 35. Meanwhile, a comparison of 34 and 35 shows that an increase in the
electron-withdrawing character of the substituent at the exocyclic nitrogen leads to an
increase of ∆aN in the more acidic region, and a decrease of that correspondent to higher
pKa. A comparison of the titration data for 1 and 36 [11] gives similar results. Data in
the literature show that pKa values for 4-amino-2,5-dihydroimidazol-1-oxyls are strongly
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dependent on substituents at exocyclic nitrogen and can go below four [32,33]. Thus, it is
obvious that the pyridine nitrogen and amidine group in 31–35 have similar basicity and
the contribution of different monoprotonated forms is varying depending on the electronic
effect of the substituents at the exocyclic nitrogen.

3. Conclusions

In this paper feasibility of the approach to synthesis of pH-sensitive spin labels of 4-
amino-2,5-dihydrioimidazol-1-oxyl series was once again demonstrated. We have showed
that various functional groups can be easily placed in the substituents both in position 2
and to exocyclic nitrogen to make the spin probe suitable for a specific purpose. The
potential of this synthetic scheme is still far from exhaustion.

4. Materials and Methods
4.1. General Information

The nitroxides and 4H-imidazol-3-oxides 2b, 8, 17 and 29 were prepared according to
the literature protocols [10,11,14]. 1,1′-Carbonyldiimidazole and Ohira-Bestmann Reagent
(dimethyl (1-diazo-2-oxopropyl)phosphonate, 10% solution in acetonitrile) were purchased
from TCI Europe N.V. (Zwijndrecht, Belgium); 2-(2-bromoethyl)-1,3-dioxolan and 9-BBN
0.5 M solution in THF were purchased from Acros Organics B.V.B.A. (Geel, Belgium).

The IR spectra were recorded on a Bruker Vector 22 FT-IR spectrometer (Bruker,
Billerica, MA, USA) in KBr pellets (1:150 ratio) or in neat samples (for oily compounds).
UV spectra were acquired on a HP Agilent 8453 spectrometer (Agilent Technologies, Santa
Clara, CA, USA) in ethanol solutions (concentration ~10−4 M). NMR spectra 1H and
13C were recorded on a Bruker AV-300 (300.132 and 75.467 MHz), AV-400 (400.134 and
100.614 MHz). 1H and 13C chemical shifts (δ) were internally referenced to the residual
solvent peak. The nitroxides were reduced to diamagnetic compounds with PhSH [34],
N2D4 [35], Zn/CF3COOH [36], or Zn/ND4Cl/D2O [37] prior to recording the 1H NMR
spectra. HRMS analyses were performed with High Resolution Mass Spectrometer DFS
(Thermo Electron, Brehmen, Germany). Reactions were monitored by TLC carried out using
UV light 254 nm or 1% aqueous permanganate. Column chromatography was performed
on silica gel 60 (70−230 mesh).

The X-ray diffraction experiment was carried out on a Bruker KAPPA APEX II (Bruker,
Billerica, MA, USA) diffractometer (graphite-monochromated Mo Kα radiation). Reflection
intensities were corrected for absorption by SADABS-2016 program [38]. The structure
of compound 11 was solved by direct methods using the SHELXT-2014 program [39] and
refined by anisotropic (isotropic for all H atoms) full-matrix least-squares method against
F2 of all reflections by SHELXL-2018 [40]. The positions of the hydrogen atoms were
calculated geometrically and refined in riding model. One of the geminal ethyl groups is
disordered due to thermal motion at approximate ratio 3:2. Crystallographic data for 11
have been deposited at the Cambridge Crystallographic Data Centre as supplementary
publication no. CCDC 2124865. Copy of the data can be obtained, free of charge, by appli-
cation to CCDC, 12 Union Road, Cambridge CB21EZ, UK (Fax: +44-122-3336033 or e-mail:
deposit@ccdc.cam.ac.uk; internet: www.ccdc.cam.ac.uk (accessed on 29 November 2021)).
The details are shown in Supplementary Materials.

4.2. Synthesis

2-(4-(Azidomethyl)phenyl)-2,5,5-triethyl-4-pyrrolidino-2,5-dihydro-1H-imidazol-1-oxyl (5)
A mixture of 2b hydrochloride [15] (320 mg, 0.82 mmol), sodium hydrocarbonate

(250 mg, 3 mmol), diethyl ether (30 mL), and water (20 mL) was vigorously stirred until
powder of 2b completely dissolved. The ether solution was separated and concentrated
in vacuum without heating. The residue was dissolved in DMSO (5 mL), a solution of
NaN3 (0.5 g, 7.7 mmol) was added, and the mixture was stirred at 60 ◦C for 10 h. The
mixture was diluted with water (20 mL) and saturated solution of NaCl (50 mL) and
extracted with diethyl ether. The extract was washed with saturated solution of NaCl and

www.ccdc.cam.ac.uk
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dried with Na2CO3, concentrated in vacuum, and the residue was separated using column
chromatography on silica gel, eluent chloroform, to give 5, yield 290 mg (95%), yellow
crystals, m.p. 63–65 ◦C (hexane). Elemental analysis, found: C, 65.33; H, 8.01; N, 22.47;
calcd. for C20H29N6O: C, 65.01; H, 7.91; N, 22.75%. IR (KBr) νmax: 2091 (N3), 1597 and 1574
(C=N, C=C).

Tetraisopropyl but-3-yne-1,1-diyldiphosphonate (6)
(In analogy to procedure by C. Li and C. Yuan [41]) Tetraisopropyl methylenediphos-

phonate (5 g, 14.5 mmol) was added dropwise to a stirred suspension of NaH (0.8 g 50%
content, 16.7 mmol) in dry THF (50 mL) under argon. After hydrogen evolution ceased,
propargyl bromide (1.1 mL, 14.5 mmol) was added dropwise under argon to the stirred
suspension. The mixture was stirred for 3 h, then the mixture was diluted with water
(50 mL) and pH was adjusted to neutral with hydrochloric acid. The mixture was extracted
with diethyl ether, the extract was dried with Na2CO3 and concentrated in vacuum. The
residue was separated using column chromatography on silica gel, eluent chloroform, to
give 6, yield 1.4 g (25%), colorless liquid. Elemental analysis, found: C, 50.35; H, 8.49;
P, 16.10; calcd. for C16H32O6P2: C, 50.26; H, 8.44; P, 16.20%; IR (neat) νmax (cm−1): 2122
(C≡C). 1H NMR (400 MHz; CDCl3, δ): 1.25 (24H, m, CH3), 1.93 (1H, t, J 2.3, ≡CH), 2.43
(1H, br tt, Jt1 24, Jt2 5.9, P−CH−P), 2.64 (2H, tdd, Jt 16, Jd1 5.9, Jd2 2.3, CH2), 4.7 (4H, m,
O−CH<); 13C{1H} NMR (150 MHz; CDCl3, δ): 15.87 (t, JP 4.8, CH2), 23.70 (dd, JP-1 5.8, JP-2
1.4, CH3), 24.05 (t, JP 3.5, CH3), 37.87 (t, JP 135.7, P2CH), 69.66 (s, ≡CH), 71.36 (dd, JP-1 5.7,
JP-2 6.5, OCH), 81.60 (t, JP 9.7, –C≡).

2-(4-((4-(2,2-Bis(diisopropoxyphosphoryl)ethyl)-1H-1,2,3-triazol-1-yl)methyl)phenyl)-2,5,5-triethyl-
4-pyrrolidino-2,5-dihydro-1H-imidazol-1-oxyl (7)

Ascorbic acid (140 mg, 0.79 mmol) was added to a mixture of 5 (241 mg, 0.65 mmol),
6 (259 mg, 0.67 mmol), EtOH (1.5 mL), H2O (1.5 mL), and saturated solution of CuSO4
in water (0.15 mL). The mixture was stirred for 2 h, then PbO2 (1 g, 4.17 mmol) was
added, the mixture was stirred for 1 h, then the precipitate was filtered off and washed
with ethanol. The combined solutions were evaporated in vacuum and the residue was
separated using column chromatography on silica gel, eluent chloroform, to give 7, yield
320 mg (65%), yellow oil. Elemental analysis, found: C, 57.23; H, 8.30; N, 10.98; P, 8.35;
calcd. for C36H61N6O7P2: C, 57.51; H, 8.18; N, 11.18; P, 8.24%; IR (neat) νmax (cm−1): 1595,
1576 (C=N, C=C). 1H NMR (300 MHz; CD3OD–CDCl3, reduced with Zn in ND4Cl/D2O,
δ): 0.76 (3H, t, J 7, CH3), 0.90 (3H, t, J 7, CH3), 1.04 (3H, t, J 7, CH3), 1.26 (24H, m, C(CH3)2),
1.45 (2H, m, CH2Me), 1.83 (1H, m, CH2Me), 2.12 (7H, br m, CH2Me and C-CH2CH2-C),
2.86 (1H (partly exchanged), tt, JP 23, JH 6, P–CH–P), 3.26 (2H, br t, JP 16.5, P2C−CH2−),
3.7 (4H, m, CH2−N−CH2), 4.69 (4H, septet, J 6, O−CH), 5.51 (2H, s, Ar−CH2), 7.32 (2H,
d, J 8, CH Ar), 7.39 (1H, s, OH), 7.52 (2H, d, J 8, CH Ar), 7.69 (1H, s, N−CH=); 1H NMR
(300 MHz; CD3OD–CDCl3, reduced with Zn/CF3COOH in CD3OD, 65 ◦C, δ): 0.85 (3H,
t, J 7, CH3), 0.89 (3H, t, J 7, CH3), 1.04 (3H, t, J 7, CH3), 1.19 (6H, d, J 6, C(CH3)2), 1.27
(6H, d, J 6, C(CH3)2), 1.33 (12H, d, J 6, C(CH3)2), 1.49 (2H, m, CH2Me), 2.02 (8H, br m,
CH2Me and C−CH2CH2−C), 2.99 (1H (partly exchanged), tt, JP 24, JH 6, P−CH-P), 3.26
(2H, m, P2C−CH2−), 3.7 (4H, m, CH2−N−CH2), 4.75 (4H, septet, J 6, O−CH), 5.56 (2H, s,
Ar−CH2), 7.37 (2H, d, J 8, CH Ar) and 7.60 (2H, d, J 8, CH Ar), 7.75 (1H, s, N−CH=); 31P
NMR (121.497 MHz; CD3OD-CDCl3, reduced with Zn in ND4Cl/D2O, δ): 20.44, 20.47.

2,5,5-Triethyl-2-(4-formylphenyl)-4-pyrrolidino-2,5-dihydro-1H-imidazol-1-oxyl (9)
Method A
Activated manganese dioxide (4 g, 46 mmol) was added to a stirred solution of 8 (0.4 g,

1.16 mmol) in methanol (50 mL). The mixture was stirred for 4 h, manganese oxides were
filtered off through celite 281, the solvent was distilled off in vacuum and the residue was
separated using column chromatography on silica gel, eluent chloroform, to give 9, yield
340 mg (85%), yellow crystals, m.p. 84–85 ◦C dec. (chroloform-hexane). Elemental analysis,
found: C, 70.20; H, 8.15; N, 12.31; calcd. for C20H28N3O2: C, 70.14; H, 8.24; N, 12.27%. IR
(KBr) νmax (cm−1): 1697 (C=O); 1593, 1570 (C=N, C=C); UV (EtOH) λmax (log ε): 229 (4.22),
253 (4.26).
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Method B
A powder of 2,2,6,6-tetramethylpiperidinium chloride (0.4 g, 2.03 mmol) was added to a

solution of 8 (0.5 g, 1.5 mmol) in chloroform (10 mL) and the solution was stirred for 2 h at room
temperature. The solvent was distilled off in vacuum, the residue was separated using column
chromatography on silica gel, eluent chloroform, to give 9, yield 440 mg (85%).

2,5,5-Triethyl-2-(4-ethynylphenyl)-4-pyrrolidino-2,5-dihydro-1H-imidazol-1-oxyl (11)
A solution of dimethyl (1-diazo-2-oxopropyl)phosphonate in acetonitrile (10%, 0.7 mL,

0.31 mmol) was added to a mixture of 8 (100 mg, 0.29 mmol), freshly annealed K2CO3
(84 mg, 0.61 mmol) and anhydrous methanol (5 mL). The mixture was stirred overnight,
methanol was distilled off in vacuum, the residue was triturated with ethyl acetate, the
precipitate was filtered off and washed with ethyl acetate, the combined solution was
concentrated in vacuum and separated by column chromatography on silica gel, eluent
diethyl ether–hexane 1:1 to give 11, yield 82 mg (84%), orange crystals, m.p. 156–158 ◦C
(hexane-ethyl acetate). Elemental analysis, found: C, 74.81; H, 7.97; N, 12.50; calcd. for
C21H28N3O: C, 74.52; H, 8.34; N, 12.41%. IR (KBr) νmax (cm−1): 3151 (≡C–H), 2094 (C≡C);
1587, 1554 (C=N, C=C).

2-(4-Carboxyphenyl)-2,5,5-triethyl-4-pyrrolidino-2,5-dihydro-1H-imidazol-1-oxyl (12)
A solution of 8 (0.5 g, 1.5 mmol) in CHCl3 (10 mL) was cooled to 0 ◦C and 2,2,6,6-

tetramethyloxopiperidinium chloride (10) (0.4 g, 2.0 mmol) was added in one portion. The
mixture was stirred for 2 h at 0 ◦C. Then 2-methylbut-2-ene (1.8 mL, 17.4 mmol) was added
to reaction mixture followed by addition of a solution of NaClO2 (0.9 g, 9.8 mmol) and
KH2PO4 (1.3 g, 9.8 mmol) in H2O (44 mL). The mixture was stirred for 2 h, the organic
layer was separated, washed with saturated aqueous solution of Na2CO3 (3 × 20 mL) and
concentrated in vacuum. The residue was separated by column chromatography on silica
gel using CHCl3–EtOH mixture (100:16) as an eluent to give light-yellow crystals of 12,
yield 463 mg (89%), m.p. 205–207 ◦C (AcOEt—i-PrOH 10:1). Elemental analysis, found:
C, 66.85; H, 7.87; N, 11.71; calcd. for C20H28N3O3: C, 67.01; H, 7.87; N, 11.72%. IR (KBr)
νmax (cm−1): 2974 (C–H), 1693 (C=O), 1591 (C=N), 1571 (C=C). UV (EtOH) λmax (log ε):
232 (4.41). 1H NMR (400 MHz; CD3OD–CDCl3, reduced with PhSH, δ): 0.78 (3H, t, J 7.3,
CH3), 0.85 (3H, t, J 7.3, CH3), 0.95 (3H, t, J 7.3, CH3), 1.00–1.12 (2H, m, CH2, Et), 1.36, 1.75
(2H, AB, CH2, Et), 1.85–1.99 (2H, m, CH2, Et), 2.00 (4H, m, 4CH2, Pyrr), 3.50–3.55 (4H, m,
CH2−N−CH2, Pyrr), 7.66 (2H, d, J 8, CH Ar), 8.01 (2H, d, J 8, CH Ar).

2-(4-(Ethoxycarbonyl)phenyl)-2,5,5-triethyl-4-pyrrolidino-2,5-dihydro-1H-imidazol-1-oxyl (14)
Pyridine (340 µL, 4.2 mmol) was added to a suspension of 12 (0.5 g, 1.4 mmol) acid in

dry CHCl3 (10 mL). The resulting solution was stirred at 0 ◦C, and SOCl2 (130 µL, 1.8 mmol)
was added dropwise. The stirring continued for 3 h, then ethanol (1 mL, 17 mmol) was
added in one portion. The mixture was stirred for 2 h, the solvent was removed in vacuum,
and the residue was separated using column chromatography on silica gel, eluent CHCl3–
EtOH 200:1, to give 14, yield 352 mg (65%), yellow crystals, m.p. 85–90 ◦C (hexane).
Elemental analysis, found: C, 68.60; H, 8.10; N, 10.80; calcd. for C23H32N3O3: C, 68.27; H,
8.35; N, 10.87). IR (KBr) νmax (cm−1): 2970 (C–H), 1718 (C=O), 1593 (C=N), 1571 (C=C).
UV (EtOH) λmax (log ε): 231 (4.45). 1H NMR (300 MHz; CDCl3-CD3OD, reduced with
Zn/CF3COOH in CD3OD, 65 ◦C, δ): 0.62 (3H, t, J 7.2, CH3), 0.68 (3H, t, J 7.4, CH3), 0.81
(3H, t, J 7.5, CH3), 0.88–1.12 (2H, m, CH2, Et), 1.17 (3H, t, J 7.1, CH3CH2O), 1.2, 1.60–1.84
(4H, m, CH2, Et2), 1.89 (4H, m, C−CH2CH2−C, Pyrr), 3.44 (4H, m, CH2–N–CH2, Pyrr),
4.15 (2H, q, J 7.1, CH2O), 7.44 (2H, d, J 8, CH Ar), 7.80 (2H, d, J 8, CH Ar).

2-(4-((2,5-Dioxopyrrolidinooxy)carbonyl)phenyl)-2,5,5-triethyl-4-pyrrolidino-2,5-dihydro-1H-
imidazol-1-oxyl (15)

Pyridine (100 µL, 1.2 mmol) was added to a suspension of 12 (0.138 g, 0.39 mmol) in
dry CHCl3 (5 mL), the resulting solution was stirred at 0 ◦C, and SOCl2 (30 µL, 0.4 mmol)
was added dropwise. The reaction mixture was stirred for 3 h, then N-hydroxysuccinimide
(44 mg, 0.39 mmol) was added in one portion. The mixture was stirred for 1 h, the solvent
was removed in vacuum, and residue was separated using column chromatography on
silica gel, eluent CHCl3–EtOH (100:1), to give 15, yield 102 mg (58%), yellow crystals, m.p.
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107–108 ◦C (Et2O—hexane 1:2). Elemental analysis, found: C, 63.09; H, 6.86; N, 11.92; calcd.
for C24H31N4O5: C, 63.28; H, 6.86; N, 12.30%. IR (KBr) νmax (cm−1): 2974 (C–H), 1774, 1743
(C=O), 1591 (C=N), 1571 (C=C). UV (EtOH) λmax (log ε): 235 (4.41).

2-(4-((3-Carboxypropanoyloxy)methyl)phenyl)-2,5,5-triethyl-4-pyrrolidino-2,5-dihydro-1H-imidazol-
1-oxyl (16)

Succinic anhydride (0.15 g, 1.5 mmol) was added to a solution of 8 (0.2 g, 0.6 mmol)
in CHCl3 (10 mL) and the reaction mixture was heated to reflux for 2 h. The resulting
solution was washed with H2O (10 mL), dried with Na2SO4, and the solvent was removed
in vacuum. The solid residue was triturated with ether, the crystalline precipitate of 16
was filtered off and washed with diethyl ether, yield 213 mg (80%), yellow crystals, m.p.
168–169 ◦C dec. (Et2O). Elemental analysis, found: C, 64.37; H, 7.52; N, 9.48; calcd. for
C24H34N3O5: C, 64.24; H, 7.71; N, 9.45%. IR (KBr) νmax (cm−1): 2969 (C-H), 1731 (C=O
ester), 1587 (C=N), 1569 (C=O carboxy). UV (EtOH) λmax (log ε): 220 (4.03). 1H NMR
(300 MHz; CDCl3-CD3OD, reduced with Zn/CF3COOH in CD3OD, 65 ◦C, δ): 0.66 (6H, m,
CH3), 0.81 (3H, m, CH3), 1.00, 1.24 (2H, m, CH2, Et), 1.56–1.81 (4H, m, 2 × CH2, Et2), 1.89
(4H, m, C−CH2CH2−C, Pyrr), 2.44 (4H, m, CH2CH2CO2H), 3.44 (4H, m, CH2–N–CH2,
Pyrr), 4.9 (2H, m, CH2O), 7.14 (2H, d, J 8, CH Ar), 7.31 (2H, d, J 8, CH Ar).

2-Allyl-2-ethyl-5,5-dimethyl-4-(pyrrolidino)-2,5-dihydroimidazol-1-oxyl (18a)
A solution of allylmagnesium bromide prepared from allyl bromide (1.69 mL, 20 mmol)

and Mg (0.5 g, 20.5 mmol) in diethyl ether (15 mL) under argon was added dropwise to
a stirred solution of nitrone 17 (0.83 g, 4.0 mmol) in THF (15 mL). The reaction mixture
was stirred for 1 h, then water (30 mL) was added dropwise under vigorous stirring. Then
manganese dioxide (5 g, 57 mmol) was added and the reaction mixture was stirred for
1 h. The manganese oxides were filtered off and the precipitate was washed with tert-
butylmethyl ether. The organic layer was separated, the water solution was saturated
with NaCl and extracted with tert-butylmethyl ether. The combined organic extracts were
concentrated in vacuum and the residue was separated using column chromatography on
Al2O3, eluent tert-butylmethyl ether–hexane (1:1) to give 18a, yield 630 mg (63%), yellow
crystals, m.p. 55–57 ◦C (hexane). Elemental analysis, found: C, 67.22; H, 10.23; N, 16.88;
calcd. for C14H24N3O: C, 67.16; H, 9.66; N, 16.78%. IR (KBr) νmax (cm−1): 2975 (C–H),
1645 (C=C), 1590 (C=N). UV (EtOH) λmax (log ε): 225 (4.17). 1H NMR (400 MHz; CD3OD,
reduced with N2D4, δ): 0.91 (3H, t, J 7, CH3), 1.47 (6H, d, J 2.2, CH3), 1.60–1.83 (4H, m,
CH2, Et), 2.01 (4H, m, CH2–CH2 (pyrr)), 2.39–2.63 (2H, m, CH2–CH=CH2), 3.56 (4H, s,
CH2–N–CH2), 5.08 (2H, m, CH2=CH), 5.97 (1H, tdd, Jt 7, Jd1 10.7, Jd2 17.2, CH2=CH).

2-Ethyl-5,5-dimethyl-2-(pent-4-enyl)-4-(pyrrolidino)-2,5-dihydroimidazol-1-oxyl (18b)
A solution of pent-4-enylmagnesium bromide was prepared from 5-bromopentene

(1.6 g, 12 mmol) and Mg (335 mg, 14 mmol) in THF (20 mL) under argon. This solution
was added dropwise to a stirred solution of 17 (1 g, 4.8 mmol) in THF (20 mL). The reaction
mixture was stirred overnight, then water (4 mL) was added dropwise under vigorous
stirring. The reaction mixture was vigorously stirred in air for 1 h, then organic layer was
separated, and the aqueous layer was extracted with Et2O–EtOH (100:1). The combined
organic extracts were dried with Na2SO4, solvents were distilled off in vacuum, and the
residue was separated by column chromatography on Al2O3 using hexane–CHCl3 mixture
(2:1) as an eluent to give 18b. Yield 931 mg (70%), yellow oil. Elemental analysis, found:
C, 68.93; H, 9.80; N, 15.00; calcd. for C16H28N3O: C, 69.02; H, 10.14; N, 15.09%. IR (KBr)
νmax (cm−1): 2973 (C–H), 1639 (C=C), 1594 (C=N). UV (EtOH) λmax (log ε): 225 (4.19). 1H
NMR (300 MHz; CDCl3-CD3OD, reduced with Zn/CF3COOH in CD3OD, 65 ◦C, δ): 0.65
(3H, m, CH3, Et), 1.16 (2H, m, CH2, Et), 1.23 (2H, s, CH3), 1.32 (4H, s, CH3), 1.36–1.64 (4H,
m, CH2–CH2–Allyl), 1.77 (2H, m, CH2–C=), 1.85 (4H, m, CH2–CH2–CH2–CH2), 3.23, 3.43
(4H, m, CH2–N–CH2), 4.60–4.76 (2H, m, CH2=), 5.48 (1H, tdd, =CH–, Jt 7, Jd1 10.3, Jd2 17,1).

2-Ethyl-2-(3-hydroxypropyl)-5,5-dimethyl-4-(pyrrolidino)-2,5-dihydroimidazol-1-oxyl (19a)
Method A
A solution of 9-BBN in THF (0.5 M, 8 mL, 4.1 mmol) was added dropwise to a stirred

solution of 18a (400 mg, 1.6 mmol) in THF (10 mL) under argon. The reaction mixture
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was vigorously stirred for 4 h, then cooled to 0 ◦C and cold (0 ◦C) aqueous NaOH (20%,
10 mL) and cold (0 ◦C) H2O2 (30%, 3 mL) were added dropwise successively. The mixture
was allowed to warm to room temperature upon stirring (ca. 2 h), organic layer was
separated, dried with Na2CO3, and the solvent was distilled off in vacuum. The residue
was dissolved in CHCl3 (25 mL), anhydrous Na2CO3 (1 g) was added, and mixture was
allowed to stand overnight in air. The solution was concentrated in vacuum and separated
by column chromatography on silica gel using CHCl3–EtOH mixture (100:4) as an eluent
to give 19a. Yield 150 mg (35%), yellow oil. Elemental analysis, found: C, 62.53; H, 9.49;
N, 15.45; calcd. for C14H26N3O2: C, 62.65; H, 9.76; N, 15.66%. IR (KBr) νmax (cm−1): 3386
(br., OH), 1592 (C=N). UV (EtOH) λmax (log ε): 225 (4.07). 1H NMR (400 MHz; CD3OD,
reduced with N2D4, δ): 0.94 (3H, t, J 7.2, CH3, Et), 1.43 (6H, s, CH3), 1.53–1.92 (6H, m,
CH2), 1.98 (4H, m, CH2-CH2-CH2-CH2), 3.52 (4H, s, CH2-N-CH2), 3.57 (2H, br. s, CH2O).
2-Ethyl-2-(5-hydroxypentyl)-5,5-dimethyl-4-(pyrrolidino)-2,5-dihydroimidazol-1-oxyl (19b) was
prepared similarly from 18b. Yield 42%, yellow crystals, m.p. 68–73 ◦C (Et2O). Elemental
analysis found: C, 65.17; H, 10.56; N, 14.08; calcd. for C16H30N3O2: C, 64.83; H, 10.20;
N, 14.18%. IR (KBr) νmax (cm−1): 3261 (br., OH), 1593 (C=N). UV (EtOH) λmax (log ε):
225 (4.1). 1H NMR (300 MHz; CDCl3–CD3OD, reduced with Zn/CF3COOH in CD3OD,
65 ◦C, δ): 0.62 (3H, m, CH3, Et), 1.06 (4H, br. m, CH2–CH2–(CH2)2OH), 1.21–1.28 (8H, m,
2 × CH3, CH2, Et), 1.40 (2H, m, CH2–CH2OH), 1.57 (2H, m, >C(Et)–CH2), 1.79 (4H, br. m,
C−CH2CH2−C, Pyrr), 3.20, 3.44 (4H, m, CH2–N–CH2, Pyrr), 3.26 (2H, t, J 6.5, CH2O).

Method B
Sodium borohydride (60 mg, 1.6 mmol) was added portionwise to a stirred solution

of 24 (400 mg, 1.5 mmol) in EtOH (10 mL) at 0 ◦C. The reaction was controlled with TLC,
Silufol UV-254, eluent CHCl3–EtOH (25:1). Inorganic residue was filtered off, the solution
was distilled off in vacuum, and the residue separated by column chromatography as
described above to give 19a. Yield 309 mg (72%).

2-(3-(1H-Imidazole-1-carbonyloxy)propyl)-2-ethyl-5,5-dimethyl-4-(pyrrolidino)-2,5-dihydro-
1H-imidazol-1-oxyl (20a)

Carbonyldiimidazole (80 mg, 0.49 mmol) was added to a solution of alcohol 19a
(114 mg, 0.43 mmol) in dry CHCl3 (5 mL) and the mixture was allowed to stand for 24 h.
The solution was washed with brine, dried with Na2SO4, and concentrated in vacuum.
The residue was separated by column chromatography on silica gel using CHCl3–EtOH
mixture (100:2) as an eluent, producing 20a as yellow oil. Yield 139 mg (90%). Elemental
analysis, found: C, 59.69; H, 7.72; N, 19.45; calcd. for C18H28N5O3: C, 59.65; H, 7.79;
N, 19.32%. IR (KBr) νmax (cm−1): 1760 (C=O), 1592 (C=N). UV (EtOH) λmax (log ε):
223 (4.17). 2-(5-(1H-Imidazole-1-carbonyloxy)pentyl)-2-ethyl-5,5-dimethyl-4-(pyrrolidino)-2,5-
dihydro-1H-imidazol-1-oxyl (20b) was prepared similarly, yield 80%, yellow oil. Elemental
analysis, found: C, 61.30; H, 8.26; N, 17.70; cacld. for C20H32N5O3: C, 61.51; H, 8.26; N,
17.93%. IR (KBr) νmax (cm−1): 1762 (C=O), 1593 (C=N). UV (EtOH) λmax (log ε): 226 (3.99).

2-(3-(3-(Diethylamino)propylcarbamoyloxy)propyl)-2-ethyl-5,5-dimethyl-4-(pyrrolidino)-2,5-
dihydro-1H-imidazol-1-oxyl (21)

N,N-Diethyl-1,3-diaminopropane (50 mg, 0.38 mmol) was added to a solution of
20a (126 mg, 0.35 mmol) in dry Et2O (5 mL), and mixture was allowed to stay for 24 h.
The solution was concentrated in vacuum, and the residue was separated by column
chromatography on Al2O3 using CHCl3 as an eluent to give 21 (Figure 3). Yield 82 mg
(60%), yellow oil. Elemental analysis, found: C, 62.21; H, 10.01; N, 16.51; calcd. for
C22H42N5O3: C, 62.23; H, 9.97; N, 16.49%. IR (KBr) νmax (cm−1): 1718 (C=O), 1593 (C=N).
UV (EtOH) λmax (log ε): 225 (4.19). 1H NMR (300 MHz; CDCl3-CD3OD, reduced with
Zn/CF3COOH in CD3OD, 65 ◦C, δ): 0.75 (3H, t, J 7.2, CH3), 1.11 (6H, t, J 7.3, 2 × CH3) 1.33
(6H, br., CH3), 1.40 (6H, br., CH3), 1.43–1.79 (8H, m, CH3CH2C, 1CH2, 2CH2, 5CH2,), 1.90
(4H, br. m, 10CH2, 11CH2), 2.87–3.03 (8H, m, 4CH2, 6CH2, 7CH2, 8CH2), 3.36, 3.52 (4H, m,
9CH2, 12CH2), 3.84 (2H, m, CH2O).
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2-(3-Carboxypropyl)-2-ethyl-5,5-dimethyl-4-(pyrrolidino)-2,5-dihydro-1H-imidazol-1-oxyl (22)
Osmium tetroxide (30 mg, 0.4 mmol) and oxone (1.77 g, 5.8 mmol) were added

successively to a solution of 18b (400 mg, 1.4 mmol) in DMF (20 mL) and the mixture was
stirred for 3 h. A powder of Na2SO3 (10 g, 63 mmol) was added in one portion. Inorganic
precipitate was filtered off and washed with EtOH, the combined solution was evaporated
to dryness in vacuum and the residue was separated by column chromatography on silica
gel using EtOH as an eluent to give 22, yield 90 mg (21%), yellow oil. M+ (cacld./found)
296.1969/296.1972. IR (neat) νmax (cm−1): 2977 (C-H), 1664 (C=O), 1592 (C=N). λmax
(EtOH)/nm: 225 (lgε 4.19).

2-(2-(1,3-Dioxolan-2-yl)ethyl)-2-ethyl-5,5-dimethyl-4-(pyrrolidin-1-yl)-2,5-dihydro-1H-imidazol-1-oxyl (23)
A solution of 2-(1,3-dioxolan-2-yl)ethylmagnesium bromide was prepared from 2-(2-

bromoethyl)-1,3-dioxolan (4.3 g, 24 mmol) and Mg (670 mg, 28 mmol) in 20 mL THF under
a stream of argon. This solution was added dropwise to a stirred solution of nitrone 17
(850 mg, 4 mmol) in 20 mL Et2O and 6 mL THF. The reaction mixture was stirred overnight,
then water (5 mL) was added dropwise under vigorous stirring. The reaction mixture was
allowed to air for 1 h, then organic layer was separated, inorganic residue was quenched
with Et2O–EtOH (100:1). An isolated organic layer was dried over Na2SO4, solvents were
removed in vacuum. The residue was separated using column chromatography on Al2O3
using CHCl3 as an eluent to give 23, yield 1.13 g (90%), yellow oil. Elemental analysis,
found: C, 62.08; H, 9.21; N, 13.43; calcd for C16H28N3O3: C, 61.91; H, 9.09; N, 13.54%. IR
(KBr) νmax (cm−1): 2972 (C-H), 1593 (C=N), 1143 (C–O). λmax (EtOH)/nm: 225 (lgε 3.90).

2-Ethyl-5,5-dimethyl-2-(3-oxopropyl)-4-(pyrrolidin-1-yl)-2,5-dihydro-1H-imidazol-1-oxyl (24)
A solution of oxalic acid (180 mg, 2 mmol) in water (6 mL) was added to a solution

of nitroxide 23 (250 mg, 0.8 mmol) in EtOH (4 mL). The reaction mixture was stirred
for 3 h under reflux, then ethanol was removed in vacuum, saturated aqueous KHCO3
(10 mL) was added to a residue. The product was extracted with CHCl3–i-PrOH mixture
(50:1) (3 × 15 mL). An isolated organic layer was dried over Na2SO4, the solvents were
removed in vacuum, the residue was separated using column chromatography on silica
gel using CHCl3-EtOH mixture (50:1) as an eluent to give 24, yield 161 mg (75%), yellow
oil. Elemental analysis, found: %: C, 63.08; H, 9.18; N, 15.63; calcd. for C14H24N3O2: C,
63.13; H, 9.08; N, 15.78. IR (neat) νmax (cm−1): 2972 (C-H), 1720 (C=O), 1593 (C=N). λmax
(EtOH)/nm: 225 (lgε 4.16).

2-(2-Carboxyethyl)-2-ethyl-5,5-dimethyl-4-(pyrrolidin-1-yl)-2,5-dihydro-1H-imidazol-1-oxyl (25)
Trimethylethylene (1 mL, 9.0 mmol) was added to a cooled (0 ◦C) solution of aldehyde

24 (200 mg, 0.8 mmol) in 10 mL CH3CN followed by addition of a solution of NaClO2
(480 mg, 5.3 mmol) and KH2PO4 (710 mg, 5.3 mmol) in H2O (20 mL). Progress of the
reaction was monitored by TLC (silica gel, CHCl3–EtOH (50:1), developing with 1% aq
KMnO4). CH3CN was removed in vacuum, the product was extracted from water by
CHCl3–i-PrOH mixture (100:1) (5 × 15 mL). An isolated organic layer was dried over
Na2SO4, the solvents were removed in vacuum, the residue was separated using column
chromatography on silica gel using CHCl3–EtOH mixture (5:2) as an eluent to give 25, yield
121 mg (57%), yellow oil, M+ (calcd./found) 282.1812/282.1811. IR (neat) νmax (cm−1):
2973 (C–H), 1729 (C=O), 1591 (C=N). λmax (EtOH)/nm: 223 (lgε 4.04). 1H NMR (300 MHz;
CDCl3-CD3OD, reduced with Zn/CF3COOH in CD3OD, 65 ◦C, δ) 0.75 (3H, m, CH3, Et),
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0.98–1.14 (2H, m, CH2, Et), 1.34, 1.40 (6H, m, 2 × CH3), 1.47–1.61 (2H, m, CH2CH2CO2H),
1.91 (4H, m, CH2–CH2–CH2–CH2, Pyrr), 2.14–2.27 (2H, m, CH2CH2CO2H), 3.36, 3.55 (4H,
m, CH2–N–CH2, Pyrr).

1-(4-(1,3-Dioxolan-2-yl)phenyl)-N-methylmethanamine (26)
p-Toluene sulfonic acid monohydrate (0.5 g, 74.6 mmol) was added to a solution of

terephthalic aldehyde 27 (10 g, 74.6 mmol) in 175 mL PhCH3. Water was distilled off with
Dean-Stark tube. The reaction mixture was then quenched with aqueous NaHCO3, dried
over Na2CO3, the solvent was remove in vacuum, and residue was dissolved in methanol
saturated with methylamine (20 mL). The resulting solution was added to the previously
maintained under vigorous stirring for 10 min in a solution of Ti(Oi-Pr)4 (14 mL, 47 mmol) in
methanol saturated with methylamine (30 mL). The mixture was stirred for 5 h, then NaBH4
(1.34 g, 33.6 mmol) was added portionwise, and mixture was stirred for 2 h. Water (7 mL)
was added dropwise, solvents were removed in vacuum, brine was added to a residue,
and the product was extracted by ether. Organic layer was dried over NaOH. Residue was
separated using column chromatography on silica gel using Et2O–EtOH mixture (10:1) as
an eluent, yield 12.24 g (85%), colorless oil. Elemental analysis, found: C, 67.84; H, 7.91;
N, 6.94; calcd for C11H15NO2: C, 68.37; H, 7.82; N, 7.25%. 1H NMR (300 MHz; CDCl3, δ):
2.38 (3H, s, CH3), 3.70 (2H, s, N–CH2), 3.95–4.09 (4H, m, –O–CH2–CH2–O–), 5.75 (1H, s,
O–CH–O), 7.29, 7.38 (4H, AA’BB’, C6H4)), 13C NMR (75 MHz; CDCl3, δ): 35.77 (N–CH3),
55.56 (N–CH2), 65.06 (O–CH2–CH2–O), 103.44 (O–CH–O), 126.31 (CH–C–CH2NHCH3),
127.89 (CH–C–CH), 136.32 (C–CH2NHCH3), 141.10 (C–CH). IR (neat) νmax (cm−1): 3325
(N–H), 1082 (O–C–O). λmax (EtOH)/nm: 210 (logε 3.94), 260 (logε 2.36).

5-((4-(1,3-Dioxolan-2-yl)benzyl)(methyl)amino)-4,4-dimethyl-2-(pyridin-4-yl)-4H-imidazole
3-oxide (30)

1-(4-(1,3-Dioxolan-2-yl)phenyl)-N-methylmethanamine 26 (6.72 g, 34.8 mmol) was
added to a solution of 5-cyano-4,4-dimethyl-2-(pyridin-4-yl)-4H-imidazole 3-oxide 29
(2.98 g, 13.9 mmol) in THF (25 mL) and the mixture was allowed to stand at r.t. for
24 h. The solvent was removed in vacuum, residue was triturated with ether and crystal-
lization from CH3CN to give 30, yield 3.97 g (75%), dirty-yellow crystals, m.p. 160 ◦C (dec.).
Elemental analysis, found: C, 65.81; H, 6.25; N, 14.41; calcd for C21H24N4O3: C, 66.30; H,
6.36; N, 14.73%. 1H NMR (400 MHz; CDCl3, δ) 1.66 (6H, s, 2 × CH3), 3.06 (3H, s, N–CH3),
3.86–4.16 (4H, m, O–CH2–CH2–O), 4.77 (2H, br. s, N–CH2–Ar), 5.75 (1H, s, O–CH–O), 7.26,
7.46 (4H, AA’BB’, C6H4)), 8.46, 8.70 (4H, AA’BB’, Py). 13C NMR (75 MHz; CDCl3, δ) 21.50
(2 × Me), 35.22 (N–CH3), 53.11 (N–CH2), 65.00 (O–CH2–CH2–O), 75.73 (Me2C), 102.82
(O–CH–O), 121.00 (3,5–Py), 126.77 (br., CH (C6H4)), 133.86 (Py, i), 136.36 (C–CH2NCH3),
137.47 (C–CH), 144.67 (C=N→O), 149.82 (2,6-Py), 172.33 (C=N). IR (KBr) νmax (cm−1): 1597
(C=N), 1082 (O–C–O). λmax (EtOH)/nm: 263 (logε 4.30), 389 (logε 3.78).

4-((4-(1,3-Dioxolan-2-yl)benzyl)(methyl)amino)-2-ethyl-5,5-dimethyl-2-(pyridin-4-yl)-2,5-dihydro-
1H-imidazol-1-oxyl (31)

A solution of ethylmagnesium bromide was prepared from ethyl bromide (2.73 g,
25 mmol) and Mg (630 mg, 26 mmol) in 35 mL Et2O under a stream of argon. This solution
was added dropwise to a stirred solution of nitrone 27 (1 g, 2.6 mmol) in 15 mL THF. The
reaction mixture was allowed to stand for 1 h. Then water (3 mL) was added dropwise
under vigorous stirring followed by MnO2 (3 g, 34.5 mmol) addition. Progress of the
reaction was monitored by TLC (silica gel, CHCl3–EtOH (100:3), developing with 1% aq.
KMnO4). The mixture was stirred vigorously for 2 h, the oxidant was filtered off and
the residue was washed by CHCl3 and MeOH. The solvent from filtrate was removed in
vacuum and the residue was separated by column chromatography on silica gel using
CHCl3-EtOH (100:3) as an eluent. The product 31 was isolated as a hydrochloride. Yield
797 mg (68%), yellow oil. Elemental analysis, found: C, 62.18; H, 6.83; N, 12.48; Cl, 6.70;
calcd. for C23H30ClN4O3: C, 61.94; H, 6.78; N, 12.56; Cl, 6.95%. IR (neat) νmax (cm−1): 1593
(C=N), 1082 (O–C–O). λmax (EtOH)/nm: 216 (logε 4.34).

2-Ethyl-4-((4-formylbenzyl)(methyl)amino)-5,5-dimethyl-2-(pyridin-4-yl)-2,5-dihydro-1H-imidazol-
1-oxyl (32)
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A solution of nitroxide 30 (1.8 g, 4.4 mmol) in 15 mL 0.5 M aq. HCl was refluxed for
4 h, then Na2CO3 added to the end of gas evolution. A product was extracted by mixture
of 20 mL CHCl3 + 1 mL i-PrOH three times, organic layer was dried over Na2CO3, the
solvents were removed in vacuum, and the nitroxide 29 was isolated from the residue by
column chromatography on silica gelusing CHCl3 as an eluent. Yield 1.14 g (71%), yellow
oil. Elemental analysis, found: C, 68.73; H, 6.88; N, 14.92; calcd. for C21H25N4O2: C, 69.02;
H, 6.90; N, 15.33%. IR (KBr) νmax (cm−1): 1701 (C=O), 1593 (C=N). λmax (EtOH)/nm: 252
(logε 4.29).

4-((4-Carboxybenzyl)(methyl)amino)-2-ethyl-5,5-dimethyl-2-(pyridin-4-yl)-2,5-dihydro-1H-imidazol-
1-oxyl (33)

Trimethylethylene (1.33 g, 19.2 mmol) was added to a cooled (0 ◦C) solution of alde-
hyde 29 (583 mg, 1.6 mmol) in 20 mL CHCl3 followed by addition of a solution of NaClO2
(1.02 g, 11.2 mmol) and KH2PO4 (1.5 g, 11.2 mmol) in H2O (50 mL). Progress of the reaction
was monitored by TLC (silica gel, CHCl3–EtOH (50:1), developing with 1% aq. KMnO4).
The organic layer was separated, the product was extracted from water by CHCl3—i-PrOH
mixture (20:1) (2 × 20 mL). A combined organic extracts were washed with brine, dried
over Na2SO4, the solvents were removed in vacuum, the residue was separated using
column chromatography on silica gel using AcOEt–EtOH mixture (10:1) as an eluent. Yield
285 mg (47%), yellow crystals, compound 33 was isolated as a crystal solvate 3 (33) ×
2 EtOH (ether–EtOH 100:2), m.p. 204 ◦C (dec.). Elemental analysis, found: C, 65.12; H, 6.42;
N, 13.12; calcd. for C67H87N12O11: C, 65.08; H, 7.09; N, 13.59%. IR (KBr) νmax (cm−1): 2474
(O–H), 1708 (C=O), 1597 (C=N), λmax (EtOH)/nm: 242 (logε 4.20).

2-Ethyl-4-((4-(hydroxymethyl)benzyl)(methyl)amino)-5,5-dimethyl-2-(pyridin-4-yl)-2,5-dihydro-1H-
imidazol-1-oxyl (34)

NaBH4 (54 mg, 1.4 mmol) was added portionwise to a cooled (0 ◦C) solution of
aldehyde 32 (511 mg, 1.4 mmol) in EtOH (20 mL). The reaction mixture was stirred until
the reaction was complete (TLC, Silufol UV-254, eluent AcOEt). The solvent was removed
in vacuum, the residue was separated using column chromatography on silica gel using
AcOEt as an eluent. Yield 308 mg (60%), yellow crystals, compound 34 was isolated as
a crystal solvate 2 (34) × 3 H2O (ether), m.p. 147–148 ◦C. Elemental analysis, found: C,
66.31; H, 7.12; N, 14.55; calcd. for C63H85N12O8: C, 66.47; H, 7.53; N, 14.76%. IR (KBr) νmax
(cm−1): 3178 (O-H), 1595 (C=N). λmax (EtOH)/nm: 220 (logε 4.30). 1H NMR (400 MHz;
CD3OD–CDCl3, reduced with Zn/CF3COOH in CD3OD, 65 ◦C, δ): 1.03 (3H, t, J 7.2, CH3
Et2), 1.29 (3H, br s, CH3), 1.79 (2H, q, J 7.2, CH2), 1.90 (3H, s, CH3), 3.20 (3H, br s, NCH3),
4.65 (2H, s CH2OH), 4.97 (2H, br s, N–CH2), 7.26 (2H, m, Ar), 7.46 (2H, m, Ar), 7.94 (2H, d,
J 6.5, Py), 8.73 (2H, d, J 6.5, Py)

4-((4-(((2,5-Dioxopyrrolidin-1-yl)oxy)carbonyl)benzyl)(methyl)amino)-2-ethyl-5,5-dimethyl-
2-(pyridin-4-yl)-2,5-dihydro-1H-imidazol-1-oxyl (35)

Pyridine (240 µL, 3 mmol) was added to a cooled (0 ◦C) suspension of acid 33 (228 mg,
0.6 mmol) in 10 mL of dry CHCl3 followed by addition of SOCl2 (90 µL, 1.2 mmol). The
reaction mixture was vigorously stirred for 3 h, then N-hydroxysuccinimide (138 mg,
1.2 mmol) was added and the mixture was allowed to stand for 24 h. The solvents were
then removed in vacuum, residue was separated using column chromatography on silica
gel using CHCl3–EtOH mixture (100:2) as an eluent to give 35, yield 123 mg (40%), yellow
crystals, compound 35 was isolated as a hydrochloride (hexane), m.p. 58 ◦C (dec.). Elemen-
tal analysis, found: C, 58.42; H, 5.47; N, 13.25; Cl, 6.56; calcd for C25H29ClN5O5: C, 58.31;
H, 5.68; N, 13.60; Cl, 6.88%. IR (KBr) νmax (cm−1): 2976 (C-H), 1770 (O=C-N-C=O), 1741
(C=O), 1593 (C=N). λmax (EtOH)/nm: 239 (logε 4.25)

4.3. EPR Experiments

EPR experiments were performed on X-band EPR (9.8 GHz) spectrometer Bruker
ER-200D. Titrations of the radicals (~0.2 mM) were performed in a buffer mixture of acetate-
phosphate-borate (0.5 mM of each) in a pH range of 2–10 starting from the acidic value.
Small aliquots of NaOH solution were used for titration to a higher pH. The observed hfi
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constants were measured as a distance between low field and central lines of nitroxide
triplet spectra.

Single proton exchange:

R·+ H+ � R·H+; pKa

was fitted with single pKa titration curve function:

aN (pH) =
aN(R·) + aN(R·H+)× 10pKa−pH

1 + 10pKa−pH

Double proton exchange implies the serial protonation,

R·+ H+ � R·H+; pKa1

R·H+ + H+ � R·H2+
2 ; pKa2

which results in the double pKa titration curve function:

aN (pH) =
aN(R·) + aN(R·H+)× 10pKa1−pH + aN

(
R·H2

2+)× 10pKa1−pH × 10pKa2−pH

1 + 10pKa1−pH + 10pKa1−pH × 10pKa2−pH

EPR settings. Microwave power, 5 mW; modulation amplitude, 0.08–0.12 mT.
SD for pKa, 0.05; for hfc, 0.005 mT.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/gels8010011/s1, Figure S1: “The molecular structure of 2,5,5-triethyl-2-(4-ethynylphenyl)-4-
pyrrolidino-2,5-dihydro-1H-imidazol-1-oxyl (11)”, IR and NMR spectra of synthesized compounds,
titration curves of pH-sensitive nitroxides.
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