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ABSTRACT

The control of gene expression noise is important
for improving drug treatment and the performance
of synthetic biological systems. Previous work has
tuned gene expression noise by changing the rate
of transcription initiation, mRNA degradation, and
mRNA translation. However, these methods are in-
vasive: they require changes to the target genetic
components. Here, we create an orthogonal sys-
tem based on CRISPR-dCas9 to tune gene expres-
sion noise. Specifically, we modulate the gene ex-
pression noise of a reporter gene in Escherichia
coli by incorporating CRISPR activation and repres-
sion (CRISPRar) simultaneously in a single cell. The
CRISPRar uses a single dCas9 that recognizes two
different single guide RNAs (sgRNA). We build a li-
brary of sgRNA variants with different expression ac-
tivation and repression strengths. We find that ex-
pression noise and mean of a reporter gene can be
tuned independently by CRISPRar. Our results sug-
gest that the expression noise is tuned by the com-
petition between two sgRNAs that modulate the bind-
ing of RNA polymerase to promoters. The CRISPRar
may change how we tune expression noise at the
genomic level. Our work has broad impacts on the
study of gene functions, phenotypical heterogeneity,
and genetic circuit control.

INTRODUCTION

Gene expression is noisy due to environmental fluctuations
and the stochasticity of biochemical reactions that involve
a small number of molecules. The gene expression noise im-
pacts all biological systems (1–3). It causes cell-to-cell vari-
ations in temporal and spatial manners, leading to a dif-
ference in cell states, phenotypes, and fates of an isogenic
population (2–4). The gene expression noise can be either
beneficial or deleterious. For example, the stochasticity in
gene expression can affect cell fate determination in both
prokaryotic (5) and eukaryotic cells (4,6,7). For prokary-

otic cells, gene expression noise can enhance the fitness of a
population under fluctuating or stressful environments (8–
10). In addition, the noise may introduce uncertainties and
disorders in a regulated biological process and lead to cer-
tain diseases (11,12). Furthermore, gene expression noise is
generally undesirable for synthetic genetic circuits because
it diminishes the precise control of the circuits (13). There-
fore, the tuning of gene expression noise so that it can be
harnessed in some cases but reduced in other cases, remains
an important question in synthetic biology and the study of
cellular noise (14).

Previous studies have tuned gene expression noise by
modulating transcription initiation, mRNA degradation,
and translation rate (15–17). For example, Murphy et al.
have tuned expression noise, while decoupling it from ex-
pression mean, in yeast by engineering GAL1 promoter and
its operators (15,16). Schmiedel et al. have used microRNA
to inhibit translation rate and increase mRNA degrada-
tion to reduce noise for a lowly expressed gene (17). Recent
work has controlled transcription and mRNA degradation
rates using inducers to tune noise (18). Besides modulating
the biochemical reaction rates, researchers have also found
that cell-to-cell variations are affected by the architecture
of gene regulatory networks (19,20). For instance, a previ-
ous study has shown that negative autoregulation can re-
duce the heterogeneity of gene expression (21). The previous
studies have indeed revealed design rules and principles for
the modulation of expression noise. However, these strate-
gies require the manipulation of endogenous genetic com-
ponents, such as promoters or regulatory networks. Can we
tune gene expression noise without changing the endoge-
nous genetic components? Such an orthogonal approach
for tuning noise may enable the flexible modulation of any
gene expression of interest.

Here, we develop a CRISPR activation and repression
(CRISPRar) tool that modulates the gene expression noise
of a reporter gene in E. coli. The CRISPRar tool uses an
identical functionalized dCas9 that recognizes two types of
single guide RNAs to achieve gene activation and repres-
sion simultaneously in the same bacterium. We design a
library of sgRNA variants that exhibit various activation
and repression strengths. Combining pairs of sgRNA in the
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same bacterium, we find that the CRISPRar tool can tune
the gene expression noise or mean independently. Based
on our results, we generate empirical rules underlying the
CRISPRar tool. Our work presents a novel and orthogonal
tool that can tune the gene expression noise and mean. The
work may have broad impacts on the study of phenotypical
heterogeneity, cell fate determination, and dynamic control
of synthetic genetic circuits.

MATERIALS AND METHODS

Bacterial strains and chemicals (M1)

All experiments were performed using a rpoZ knock-out
Escherichia coli MG1655 strain, which was a generous gift
from Dr Jesse Zalatan’s lab at University of Washington.
For the characterization of constitutive promoter strength
(Figure 1D and E), we cloned a mOrange gene under the de-
signed constitutive promoters from the Anderson promoter
collection (BBa J23100, BBa J23106 and BBa J23116. See
Figure 1D for sequences) in a pET15b vector. For the
CRISPRa and CRISPRr constructs, we used three compat-
ible plasmid vectors in the E. coli strain. The dCas9� was
expressed from a medium copy number plasmid (pBR322
ORI) with an arabinose-induced promoter. The sgRNA was
transcribed from a medium copy number plasmid (p15A
ORI) with the constitutive promoter. When two sgRNAs
were transcribed in the same direction for CRISPRar con-
structs, a 300 nt length spacing including two transcrip-
tion terminators was placed in between. The reporter RFP
gene was cloned in a low copy number plasmid (pSC101
ORI) under a weak constitutive promoter (BBa J23117).
The synthetic PAM targeting region (the colored region in
Figure 1B. See Supplementary Table S1 for the sequence)
was adapted from previous work (22) and cloned upstream
to the promoter of the RFP gene. All engineered strains
were maintained as glycerol stocks at –80◦C for long-term
storage or on LB agar plates at 4◦C for short-term storage.

Before each experiment, E. coli strains were grown
overnight at 37◦C in Luria Broth (LB) (VWR) with ap-
propriate antibiotics (kanamycin sulfate at 30 �g/ml, car-
benicillin at 100 �g/ml and chloramphenicol at 200 �g/ml
working concentration). The fresh overnight cultures were
diluted 1:1000 into the M9 minimal medium (VWR) sup-
plemented with 0.2% glucose and 0.2% casamino acids with
appropriate antibiotic selection and grown at 37◦C on a
shaker for 2 h. For the CRISPRa and CRISPRr constructs,
arabinose was also supplemented at 0.025% working con-
centration. Carbenicillin and chloramphenicol were pur-
chased from Sigma. Kanamycin sulfate was purchased from
Amresco. Arabinose was purchased from Sigma.

Measurement of mOrange using a platereader (M2)

Bacteria were pre-grown in M9 medium as described.
200 �l of bacterial culture was aliquoted into a black flat-
bottom 96-well microplate (Corning Costar). Time series of
OD600 and mOrange were measured using Tecan M1000Pro
platereader at 37◦C with shaking (orbital, 20 s every min)
for 14 h. The excitation and emission for the mOrange were
548 and 562 nm, respectively.

Measurement of expression mean and noise of RFP using flow
cytometry (M3)

Bacteria containing CRISPRa and CRISPRr constructs
were pre-grown in M9 medium as described. 200 �l of bac-
terial culture was aliquoted into a 96-well plate. The bacte-
rial cultures were incubated in the platereader at 37◦C with
the same shaking protocol as described before. After 14 h,
bacterial cultures were diluted into 4% PFA with 1:200 dilu-
tion and stored on ice before flow cytometry. Flow cytome-
try was performed on Thermo Fisher Attune NxT flow cy-
tometer equipped with an excitation filter at 561 nm and
emission filter at 620/15 nm. Pure 4% PFA was included
as a blank to gate-out unspecific signal based on FSC and
SSC. At least 20,000 events were collected. The mean (�)
and standard deviation (�) of RFP intensity in the sam-
ples were calculated from the measurements. The expression
noise (η2) was then calculated as η2 = σ 2

μ2 . Bacteria that only
contained dCas9� and RFP reporter without any sgRNA
were included as a control in each experiment for data nor-
malization.

Statistical test (M4)

All statistical tests were performed using six replicates. To
compare the statistical means of two groups, a one-tail t-test
was used with P < 0.05, because we compared the groups in
a specific direction (e.g. from lower to higher values). For a
group of three or more, the statistical means were compared
using a one-way ANOVA test. When comparing noise from
two categories (Figures 3B and C), we identified data points
that exhibited similar average expression intensity (±0.03
difference in 1/normalized mean RFP intensity) from each
category and performed a two-way ANOVA test.

Theoretical model and parameter estimation (M5)

To understand the tuning of gene expression noise using
CRISPRar, we used a simple model that assumed the pro-
moter of a gene could exhibit either ON- (Don) or OFF-state
(Doff). The transitions between Don and Doff were governed
by two reaction rate constants: kon and koff. The analyti-
cal solutions of expression mean and noise already existed
for the model (23). Specifically, the expression mean of a
protein could be approximated using mean = C × kon

kon+koff
,

where C was a constant in our model that depended on
translation rate, mRNA, and protein degradation rate. The
expression noise could be approximated as η2 = 1

mean +
koff
kon

· 1
τ ·(kon+koff )+1 , where � was the degradation rate con-

stant of the protein. When we compared the noise of two
groups (η2

1 vs.η2
2), one assumption we made was the mean

values were the same, which led to kon,1

kon,1+koff,1
= kon,2

kon,2+koff,2
→

koff,1

kon,1
= koff,2

kon,2
. As a result, we only needed to consider the

term 1
τ ·(kon+koff )+1 when comparing η2

1 vs.η2
2 if we assumed

the means were the same. In summary, the model allowed us
to approximate relative level of expression mean and noise
based on kon and koff.

For simplicity, we assumed that the CRISPRr and
CRISPRa only affected the kon and koff, respectively. Thus,
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Figure 1. Gene activation and repression using a functionalized dCas9 protein. (A) dCas9� can work as both expression activator and repressor. When the
dCas9� is close to the transcriptional start site (+1), it can repress the transcription of a gene (top). When the dCas9� is at an appropriate distance from
the transcriptional start site, the � subunit can stabilize the assembly of RNAP and enhance the transcription. (B) To characterize the effect of sgRNA
targeting positions on the transcriptional regulation of dCas9�, we create a library of nine sgRNA variants (R1–R3 and A1–A6. See Supplementary Table
S1 for the sequences). The sgRNAs guide the dCas9� protein to either the coding strand or the non-coding strand of the reporter plasmid. Diamond
shapes represent the PAM positions of the sgRNA variants. (C) The noise (linear scale) versus 1/normalized mean expression (log2 scale) shows a strong
linear correlation (R2 = 0.95), which agrees with an existing linear model (red line). The sgRNA variants of R1–R3 repress gene expression (colored as red
thereafter). In contrast, the sgRNA variants of A1–A6 activate gene expression (colored as green thereafter). Each error bar represents the standard error
of the mean (SEM) with n = 6. (D) List of constitutive promoters that control the expression of sgRNA. Red letters indicate mutated nucleotides from the
consensus promoter. (E) The strength of each constitutive promoter is measured using mOrange expression. The fold change is calculated by normalizing
mOrange intensity with that of the weak promoter. The error bars are SEM with n = 6.

we approximated kon = kon,wt (1 − kr[R]
Kr+[R] · int1) and koff =

koff,wt (1 − ka[A]
Ka+[A] · int2) where kon,wt and koff,wt were the

wild-type ON- and OFF-rate constants with no regula-
tion (assumed both constants were 1). [A] and [R] were
relative concentrations of two sgRNAs in the CRISPRar
constructs. We assumed that the sgRNA pool in a sin-
gle cell had a capacity of 1. The capacity was shared by
two sgRNAs based on the strength of the constitutive pro-
moter of the sgRNA. Two constants kr and ka were es-
timated using the experimental results from CRISPRa or
CRISPRr module (Figure 2B). For example, if the con-
centration of [R] was saturated for CRISPRr only, kon
became kon,wt (1 – kr). Thus, the expression fold change
measured in experiment for CRISPRr could be approxi-
mated as kon,wt(1−kr)

kon,wt(1−kr)+koff,wt
/

kon,wt

kon,wt+koff,wt
, allowing the estima-

tion of kr. A similar estimation was applied to ka. We as-
sumed that when the CRISPRa and CRISPRr targeted
the same DNA strands, they competed for the same bind-
ing sites. The competition was modeled using Michaelis-
Menten kinetics with competitive inhibition. Specifically,
Kr = Kro (1 + [A]

Ki
), Ka = Kao (1 + [R]

Ki
) and int1 = int2 =

1. When the CRISPRa and CRISPRr targeted different
DNA strands, one might reduce the activity of another
through interactions. The interactions were described us-

ing int1 = 1
1+Kint1[A] , int2 = 1

1+Kint2[R] , Kr = Kro and Ka =
Kao. The values of the parameters used in the model anal-
ysis were τ = 1, Kro = 0.01, Kao = 0.02, Ki = 10, Kint1 =
0.5, Kint2 = 2. The description of the parameters is summa-
rized in Supplementary Table S5.

RESULTS

Validate the basic noise vs. mean model using CRISPR-
dCas9

We first design a CRISPR-dCas9 system in a rpoZ knock-
out strain of E. coli and track the expression of a red fluores-
cent protein (RFP) from a low copy number plasmid. The
rpoZ gene encodes � subunit of RNA polymerase (RNAP).
The lack of the � subunit in E. coli does not affect the cell
viability (24) but allows us to activate gene expression us-
ing a dCas9 with a C-terminal fused � subunit (25,26). The
reporter RFP is regulated by a constitutive promoter that
contains a synthetic sequence region based on a previous
study (22) (Figure 1A. See Supplementary Table S1 for the
sequence). The synthetic region contains several PAM sites,
which allow us to control the binding distance of dCas9�–
sgRNA complex to the transcriptional start site. A prior
work (26) has shown that when a sgRNA is designed to
guide the dCas9� close to the promoter, the dCas9� can
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Figure 2. Quantification and combination of dCas9 activation and repression modules. (A) Three constitutive promoters and four sgRNA variants (from
Figure 1) are selected to form a library of CRISPRa and CRISPRr modules. The library has a total of 12 modules: six activation (three promoters combine
with A1 & A2) and six repression (three promoters combine with R2 & R3) modules. (B) We measure RFP expression regulated by each module using a flow
cytometer. The fold change is calculated by normalizing to a positive control that contains no sgRNA. We find that the expression mean of RFP is different
between A1, A2, R2 and R3. However, the expression mean of RFP is not significantly different between pStr, pMed and pWeak. The error bars are SEM
with n = 6. The n.s. represents no significant difference from ANOVA test (P > 0.3 for all cases). (C) We combine the six activation and six repression
modules to form 48 CRISPRar constructs. 36 of the constructs are unique combinations (six activation times six repression modules). Because two sgRNAs
are transcribed in sequential order from a plasmid, we add 12 more constructs by switching the transcription order of the sgRNAs (See Supplementary
Figure S1 for the list of all CRISPRar constructs). (D) We plot the expression noise (y-axis on linear scale) versus the inverse of the expression mean (x-axis
on log2 scale) for all 48 CRISPRar constructs. The expression noise of the CRISPRar constructs is less linearly correlated with the inverse of the expression
mean (R2 = 0.81). We separate the constructs into either high expression region (dark blue) or low expression region (light blue).

block the binding of RNAP, leading to gene repression (Fig-
ure 1A, top). When the dCas9� forms a complex with a
sgRNA at an appropriate distance from the promoter, the
fused � subunit can stabilize the assembly of RNAP, leading
to gene activation (24) (Figure 1A, bottom). As a result, this
system allows us to either activate or repress RFP expres-
sion by tuning the binding distance of an identical dCas9�
from the promoter using different sgRNAs.

We next validate a classical model of gene expression
noise using the designed CRISPR–dCas9 system. This
model states that the gene expression noise (η2), defined as
η2 = σ 2

μ2 where � is the standard deviation and � is mean
of gene expression within a bacterial population, is linearly
correlated with the inverse of the gene expression mean. To
test the model, we implement individual sgRNAs that tar-
get DNA sequences at distinct positions from the promoter.
We create a library of nine sgRNA variants that target either
coding or non-coding strand of the reporter plasmid (A1–
A6 and R1–R3 in Figure 1B. See Supplementary Table S1
for the sgRNA sequences). The sgRNA variants are tran-
scribed from a constitutive promoter (consensus promoter
in Figure 1D). The PAM sites of the sgRNA variants range

from 40 to 100 bp upstream of the transcriptional start site
(see Supplementary Table S1). The gene expression noise
and mean are calculated using the RFP intensity from flow
cytometry. We find that the expression mean of RFP can be
modulated by varying the target-position of the sgRNAs in
our system (Figure 1C). When the target-position is within
∼40–60 bp upstream from the transcriptional start site, the
expression mean of RFP is repressed (R1–R3 in Figures
1B and C). In contrast, when the target-position is more
than ∼60 bp upstream from the transcriptional start site,
the expression mean of RFP can be increased (A1–A6 in
Figure 1B and C). We find that the activation of the expres-
sion reaches the maximum level at ∼80 bp upstream from
the transcriptional start site (A3–A4 in Figure 1C). The ex-
pression mean declines when the sgRNA targets the DNA
sequences further from the transcriptional start site (A5–
A6 in Figure 1C). This observation agrees with the general
expectation that an optimal position is required for gene
activation by dCas9� (26). Furthermore, we find that the
expression noise is linearly correlated to the inverse of the
expression mean (R2 = 0.95 in Figure 1C). The linear corre-
lation suggests that the promoter behaves following the be-
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havior of a constitutive promoter with the first-order degra-
dation of RNA and proteins (27). The findings support the
feasibility of simultaneous expression activation and repres-
sion using identical functionalized dCas9 in E. coli. They
also demonstrate the power of the CRISPR–dCas9 sys-
tem in modulating gene expression noise and mean without
changing the target genetic module in E. coli.

Establish the control of CRISPRar tool using sgRNA target-
position and concentration

Even though CRISPR–dCas9 system has been tested us-
ing single sgRNAs, this study represents the first time when
repressing and activating CRISPR–dCas9 are combined
to target the same promoter in a single bacterium. Thus,
we investigate two control strategies before combining the
activation and repression (the combinations are referred
to as CRISPRar constructs thereafter). The two control
strategies are target-position and concentration of sgRNA.
For the control of sgRNA target-position, we select four
sgRNA variants from the characterized library (A1, A2,
R2 and R3 in Figure 1C) for two reasons. First, the selected
sgRNAs target either the coding (A1 and R2) or non-coding
(A2 and R3) strands. Second, the selected sgRNAs can form
a combination of two sgRNAs with ∼0–20 bp overlaps in
their target DNA sequences. We speculate that the over-
lapped target sequence is critical for achieving competition
between CRISPR activation (CRISPRa) and CRISPR re-
pression (CRISPRr). For the control of sgRNA concentra-
tion, we select three constitutive promoters from the An-
derson promoter collection (BBa J23100, BBa J23106 and
BBaJ23116, http://parts.igem.org) with different transcrip-
tion strength (For simplicity, we use pStr, pMed, and pWeak
to represent BBa J23100, BBa J23106, and BBa J23116 re-
spectively. Figure 1D). We clone the selected promoters up-
stream of a mOrange gene to quantify their strength. We
find that the three promoters exhibit different strength: the
strong promoter (pStr. BBa J23100) exhibits around 5-fold
and 12-fold higher mOrange intensity than the medium
promoter (pMed. BBa J23106) and the weak promoter
(pWeak. BBa J23116) respectively (Figure 1E). The charac-
terization of the underlying control mechanisms allows us
to implement CRISPRar in the subsequent experiments.

Based on the characterization of sgRNA-position and
concentration controls, we pair the three promoters with
the four selected sgRNA variants to form a combinato-
rial library of promoter-sgRNA modules. The library con-
sists of 12 modules in total (six CRISPRa modules and six
CRISPRr modules. Figure 2A). We next test the activity of
each module. We find that the RFP expression mean of each
sgRNA pair is different when the sgRNA-position varies
(A1, A2, R2 and R3. Figure 2B). However, the RFP ex-
pression mean is not significantly different when the sgRNA
concentration varies (pStr, pMed and pWeak. Figure 2B).
The results suggest that the amount of sgRNA is likely sat-
urated for activation or repression with all three promoters.
The quantification results also allow us to estimate several
key parameters of a mathematical model in subsequent ex-
periments (Figure 5 and see Method Section M5 for details
of the model).

Reveal the empirical rules of CRISPRar for the tuning of gene
expression noise

After the characterization of the CRISPRa and CRISPRr
modules, we create a library of CRISPRar constructs by
mixing the characterized modules. Here, we clone one ac-
tivating and one repressing promoter-sgRNA modules into
the same plasmid to form a total of 48 combinations (Fig-
ure 2C and Supplementary Figure S1). We find that noise
is less linearly correlated to the inverse of the mean (R2 =
0.81. Figure 2D) when compared to the regulation using sin-
gle sgRNAs (R2 = 0.95. Figure 1C). The deviation from the
linear correlation suggests that the promoter now operates
following a two-state (ON and OFF) model, as has been
shown in the past for regulated promoters (28,29). The devi-
ation of the CRISPRar constructs from the theoretical lin-
ear model also implies the decoupling of expression noise
from mean. This decoupling is necessary for the tuning of
noise independent from mean. To quantify the deviation, we
calculate the average distance (dave) from the experimental
points of the CRISPRar constructs (grey dots in Figure 2D)
to the predicted linear model (red line in Figure 2D). We
find that the CRISPRar constructs at low expression region
(light blue region in Figure 2D) show a larger deviation (dave
= 0.147) than the CRISPRar constructs at high expression
region (dark blue region in Figure 2D. dave = 0.056). This
result implies the decoupling of noise from mean is more
profound at the low expression region.

Next, we reveal three empirical rules for the tuning of
expression noise using CRISPRar (Figure 3). For empiri-
cal rule 1, we classify the CRISPRar constructs into two
groups based on whether the CRISPRa modules target non-
coding DNA strand or coding DNA strand (Schematic in
Figure 3A). We find that when the CRISPRa targets the
non-coding DNA strand, the expression mean is generally
higher than the CRISPRa that targets coding DNA strand
(Boxplot in Figure 3A). This empirical rule may be used to
control the expression mean of the CRISPRar constructs.

For empirical rule 2, we group the CRISPRar constructs
that have two modules targeting either the same DNA
strand or the opposite DNA strand (Schematic in Figure
3B). Linear fitting of the experimental data is used to visu-
alize the relationship between two groups. We find that the
constructs that target the same DNA strand generally ex-
hibit higher expression noise than the ones that target the
opposite DNA strand (the blue line is above the dark yel-
low line at all expression regions in Figure 3B). The result
suggests that the competition of CRISPRa and CRISPRr
at the same strand leads to increased expression noise (two-
way ANOVA with P-value < 0.05).

For empirical rule 3, we investigate the impact of sgRNA
concentrations on the tuning of expression noise. The two
sgRNAs in CRISPRar constructs are transcribed from two
different promoters. We assume that the concentrations of
two sgRNAs are roughly equal when the promoters have
the same strength (combinations of two pStr, two pMed, or
two pWeak. Schematic in Figure 3C). In contrast, when the
promoters have different strengths, we assume that the con-
centration of two sgRNAs is not equal (Schematic in Figure
3C). At a low expression region, the noise of the unequal
[sgRNA] group (dark yellow line in Figure 3C) is above the

http://parts.igem.org
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groups: CRISPRa that targets non-coding strand (left box) and coding strand (right box). The boxplot shows that the constructs with non-coding-strand
targeting CRISPRa generally have higher expression mean (smaller 1/normalized mean intensity) than the ones with coding-strand targeting CRISPRa.
(B) Empirical rule 2: the CRISPRar constructs are separated into two groups: same strand targeting (blue dots) and opposite strand targeting (yellow dots).
The same-strand targeting constructs (blue line) exhibit higher noise than the opposite-strand targeting constructs (yellow line). The error bars represent
the SEM from n = 6. An asterisk indicates P < 0.05 from a two-way ANOVA. (C) Empirical rule 3: the CRISPRar constructs are separated into two
groups: [sgRNAact] ≈ [sgRNArep] (blue dots) and [sgRNAact] �= [sgRNArep] (yellow dots). The noise of the [sgRNAact] ≈ [sgRNArep] constructs (blue
line) is below the [sgRNAact] �= [sgRNArep] constructs (yellow line) at low expression region. The error bars represent the SEM from n = 6. An asterisk
indicates P < 0.005 from a two-way ANOVA.

equal [sgRNA] group (blue line in Figure 3C). At a high
expression region, the noise of the unequal [sgRNA] group
is approximately the same as the equal [sgRNA] group. We
conclude that the tuning of expression noise based on the
sgRNA concentrations is more profound at the lower ex-
pression region (two-way ANOVA with P-value < 0.005).

The expression mean and noise of RFP can be tuned indepen-
dently using CRISPRar

The above empirical rules suggest that expression noise and
mean may be tuned independently using CRISPRar tool.
We illustrate the independent tuning of expression noise and
mean in two ways. First, we use CRISPRar constructs to
achieve the same expression mean, but different expression
noise of RFP. We identify a three-layer decision tree accord-
ing to the empirical rule: Layer 1 – low expression region;
Layer 2 – the opposite and same strand targeting; Layer 3.
equal and unequal [sgRNA] (Figure 4A). Targeting low ex-
pression region, which is likely a result of empirical rule 1,
ensures the decoupling of expression noise and mean is sig-
nificant. At a low expression region, the empirical rules 2
and 3 serve to generate distinguishable expression noise. In-

deed, we have identified a series of CRISPRar constructs
that exhibit the same mean but different noise (noise level:
S.M.1 < S.M.2 < S.M.3 < S.M.4. Figure 4B. See Supple-
mentary Figure S2 for more examples). We then evaluate
the features of the selected constructs (schematic in Figure
4B. See Supplementary Table S3 for the sgRNA pairs). The
features generally agree with the decision tree (Figure 4A).
We note that the decision tree is coarse-grained and does not
capture the observed quantitative difference between S.M.3
and S.M.4.

Second, we use CRISPRar constructs to achieve different
expression mean but the same expression noise of RFP. Be-
cause the noise is less sensitive to the change of mean at low
noise region (Supplementary Figure S3), we use CRISPRar
constructs that exhibit low noise (Figure 4C). We propose a
three-layer decision tree: Layer 1 – low noise region; Layer
2 – coding and non-coding strand CRISPRa; Layer 3 – the
opposite and same strand targeting (Figure 4C). The em-
pirical rule 1 ensures that the expression mean is likely to
be higher for CRISPRa that targets the non-coding strand
than the coding strand. The application of empirical rule
2 has two purposes. First, it selects CRISPRa that targets
the coding strand and CRISPRr that targets the opposite
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Figure 4. Independent tuning of expression noise and mean. (A) The application of the empirical rules to achieve increasing noise at a similar mean level.
At each layer of the decision tree, the groups on the left are likely to have less noise than the ones on the right. (B) We identify a series of CRISPRar
constructs that exhibit the same mean (black line) but different noise (red line. Noise level: S.M.1 < S.M.2 < S.M.3 < S.M.4. See Supplementary Table
S3 for the combinations of sgRNAs). (C) The application of the empirical rules to achieve increasing mean at a similar noise level. At each layer of the
decision tree, the groups on the left are likely to have lower expression mean than the ones on the right. (D) We identify CRISPRar constructs that exhibit
the same noise (red line) but different mean (black line. Mean level: S.N.1 ≈ S.N.2 < S.N.3 ≈ S.N.4. See Supplementary Table S3 for the combinations of
sgRNAs). For (B) and (D), the schematics of the constructs are shown below the graphs: green short lines represent activating sgRNAs, red short lines
represent repressing sgRNAs. The relative concentration of the sgRNAs is represented by the thickness of the short lines. The error bars are the SEM from
n = 6. An asterisk represents significant difference, P < 0.05. The n.s. represents no significant difference from ANOVA test (P > 0.8 for all cases).

strand, to achieve low expression noise. Second, the same-
strand targeting constructs likely have a higher expression
mean than the opposite-strand targeting constructs when
the noise levels are similar (Figure 3B). Similarly, we have
identified a series of CRISPRar constructs that exhibit dif-
ferent expression mean with similar noise (mean level: S.N.1
≈ S.N.2 < S.N.3 ≈ S.N.4. Figure 4D. See Supplementary
Figure S2 for more examples and Supplementary Table S3
for the sgRNA pairs). The observations are consistent with
the empirical rules in the decision tree (Figure 4C). In ad-
dition, we have created 48 additional CRISPRar combina-
tions that target a different promoter (see Supplementary
Table S2 for the sequences of the new promoter and sgR-
NAs). We have demonstrated the tuning of noise and mean
of gene expression following the same empirical rules but
with the new promoter (see Supplementary Figure S4–S6
for the results and Supplementary Table S4 for new sgRNA
pairs).

The CRISPRar tool may be used to study the impact
of noise on bacterial evolution and survival under stress.
To do this, the CRISPRar tool needs to remain stable in
long term experiments. We could gain some insights into
the long-term stability of CRISPRar by comparing the

growth rates of the constructs (Supplementary Figure S7).
For the same-mean-different-noise group (S.M. group in
Figure 4B), there is no significant difference in the growth
rates for three but one of the constructs. Due to the lack
of correlation between the growth rates and the constructs,
we speculate that the difference in the growth rate is the
results but not the cause of the noise modulation. How-
ever, the exact mechanism that links the noise of our sys-
tems to the growth rate requires further investigation. For
the same-noise-different-mean group (S.N. group in Figure
4D), the growth rate decreases with increasing mean as ex-
pected from the metabolic burden of gene expression. In
future work, to improve the stability of these constructs,
they would have to be integrated into the chromosome. In
our experience with prior (30) and this work, only a small
amount of dCas9 and sgRNA is required to exert a regu-
latory effect on gene expression. Therefore, moving from a
plasmid-based to a chromosome-based system should not
affect the functioning of the system. But, this speculation
needs to be tested experimentally. Integrating the constructs
into chromosomes, however, would reduce the ease of using
such CRISPR–dCas9 constructs for the modulation of gene
expression in different bacterial strains.
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The tuning of gene expression noise by CRISPRar is captured
by a theoretical model

To understand why CRISPRar tunes gene expression noise
and mean independently, we formulate a phenomenological
model. Specifically, we assume that the promoter of a gene
can exhibit either an ON- or OFF-state (Don or Doff in Fig-
ure 5A), corresponding to the assembly and disassembly of
RNAP at the promoter. The switching between the ON and
OFF states are described by reaction rate constants kon and
koff, respectively (Figure 5A, panel i). Since the CRISPRr
occurs by the steric hindrance of dCas9, we assume that the
CRISPRr module reduces only kon (Figure 5A, panel ii).
In contrast, we assume that the CRISPRa decreases only
koff (Figure 5A, panel iii) because the � subunit stabilizes
the subunits of RNAP (24). These assumptions serve as the
initial approximation of the system that we will re-examine
later using the simulation results.

This approximation of the CRISPRar constructs using
the state switching model allows us to use existing gene ex-
pression models in the literature (23). Based on the mod-
els, we obtain the analytical solutions that calculate rela-
tive mean and noise from approximated kon and koff val-
ues. To do this, we first approximate kon and koff of the
CRISPRar constructs using the results from the characteri-
zation of CRISPRa and CRISPRr modules (Figure 1E and
2B. See Method Section M5 for details). We assume that
CRISPRa and CRISPRr modules may interact in two ways.
First, when two modules target the same DNA strands, they
compete for the same binding sites. Second, when two mod-
ules target opposite DNA strands, one module reduces the
activity of another module (See Method Section M5 for de-
tails).

Next, we use the analytical result of the expression mean
(proportional to kon

kon+koff
) to investigate how relative mean

changes with respect to kon and koff (Figure 5B. See Method
Section M5 for details). We create a filled contour map
where the color encodes the relative expression mean on
the plane of kon and koff (Figure 5B). There are several re-
gions in the contour map that exhibit a similar mean level
(same color in the contour map in Figure 5B) when the
values of kon/koff are close. To compare the analytical and
experimental results, we project the estimated kon and koff
from the experimental groups that exhibit either ‘the same
mean, different noise’ (S.M. groups in Figure 4B) or ‘dif-
ferent mean, the same noise’ (S.N. groups in Figure 4D).
We find that ‘the same mean, different noise’ group does
not show wide-spreading in the mean level (red dots in Fig-
ure 5B). In contrast, ‘different mean, the same noise’ group
shows the change in the mean level (mean level: S.N.3 &
S.N.4 > S.N.1 & S.N.2. Black dots in Figure 5B). Despite
the simplicity of the model, it captures the general qualita-
tive dynamics of the CRISPRar constructs.

We also use analytical solutions to study how the noise
changes with respect to kon and koff. For the S.M. group
(the same mean, different noise), noise is proportional
to 1

τ ·(kon+koff )+1 (theoretical noise level in Figure 5C. See
Method Section M5 for details), where � is the degradation
rate constant of the reporter protein (assume � = 1 for sim-
plicity). We find that ‘the same mean, different noise’ group
exhibits the change of gene expression noise (noise level:

S.M.4 > S.M.3 > S.M.2 > S.M.1. Red dots in Figure 5C).
For the S.N. group (different mean, the same noise), noise is
equal to 1

mean protein expression + koff
kon

· 1
τ ·(kon+koff )+1 . We find that

‘different mean, the same noise’ group does not show dras-
tic spreading in theoretical noise level (black dots in Figure
5D). The findings again suggest that the simple model cap-
tures the qualitative dynamics of the CRISPRar constructs.
However, we note that the S.M.1 and S.M.4 (Figure 5C)
show some quantitative differences between the theoretical
model and experimental results (Figure 4B). We will discuss
the discrepancy between the modeling and experimental re-
sults in the Discussion section.

DISCUSSION

We have developed an orthogonal tool based on CRISPR-
dCas9 to tune gene expression noise in E. coli. The tool
consists of a functionalized dCas9 (i.e. dCas9�) and two
sgRNA variants. The dCas9� can serve as either an activa-
tor or a repressor depending on the target positions of the
sgRNAs (Figure 1). This property of the dCas9� allows us
to create a library of sgRNAs that exhibit different strengths
of CRISPR activation (CRISPRa) and CRISPR repression
(CRISPRr). To implement the tool, one CRISPRa and one
CRISPRr module are combined in a single bacterium. We
create one set of 48 CRISPRar combinations for each of two
different promoters (Figure 2 and Supplementary Figure
S4–S6). We extract three empirical rules to guide the tun-
ing of expression noise using the CRISPRar tool (Figure 3).
Our results suggest that the expression noise and mean can
be tuned independently using the CRISPRar tool. To illus-
trate the tuning of expression noise, we identify two sets of
CRISPRar constructs: one set exhibits the same expression
mean, but different expression noise; another set exhibits
the same expression noise, but different expression mean
(Figure 4). We have identified two decision trees based on
the empirical rules (Figure 4) and a theoretical model (Fig-
ure 5) to explain the tuning of gene expression noise using
the CRISPRar tool.

The extraction and demonstration of the empirical rules
provide some insights into the CRISPRar tool. First, we
find that the decoupling of expression noise and mean is
more profound at a low expression region than at a high
expression region. It is likely because the noise is intrinsi-
cally low when the expression level is strong, diminishing
the detection of expression noise over measurement noise.
Second, we find that the CRISPRar constructs targeting the
same DNA strand generally cause higher gene expression
noise than the other constructs. This observation is consis-
tent with our speculation that the competition of CRISPRa
and CRISPRr at the same promoter can increase the ex-
pression noise.

However, we do note some limitations in the empirical
rules and theoretical model. First, the empirical rules are
coarse-grained (Figure 3). They capture several qualitative
trends (Figure 4). But, the quantitative and precise dynam-
ics of the CRISPRar constructs require a fine-scale model
supported by measurements of molecular binding to pro-
moters. Second, we have assumed that the CRISPRr and
CRISPRa only affect kon and koff respectively in the simpli-
fied model, and that the overlapped target sequence is crit-
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Figure 5. Theoretical modeling to understand the tuning of gene expression noise. (A) The schematic of the theoretical model. (i) In the theoretical model,
the promoter of a gene can exhibit either an ON- or OFF-state corresponding to the assembly (kon) or disassembly (koff) of RNAP at the promoter. (ii) The
CRISPRr can block the assembly of RNAP and therefore reduce kon. (iii) The CRISPRa can stabilize the RNAP and reduce koff. (B) The analytical result
of expression mean is encoded into the colors of the filled contour map with respect to kon and koff. The kon and koff of S.M.1–4 and S.N.1–4 (Figure 4)
are estimated (see Method Section M5) and plotted onto the contour map. The black arrow indicates the increase of the mean. For (C) and (D), the color
in the filled contour maps represents the analytical results of expression noise when the expression mean is the same (C) or different (D). The estimated
kon and koff of CRISPRar constructs are plotted onto the contour maps. The red arrows indicate the increases in the noise.

ical for achieving the competition between CRISPRr and
CRISPRa. The simplifying assumption is necessary due to
the lack of measurements on how the assembly and disas-
sembly of RNAP would be influenced when both CRISPRr
and CRISPRa target the same promoter in the same bac-
terium. The competition between overlapped sgRNA has
been studied for Cas9-based gene editing. Jang et al. have
hypothesized that when two or more sgRNAs target the
same DNA strand, they are likely to compete for the bind-
ing site (31). They have shown that overlapping sgRNAs
causes a higher knock-in (KI) efficiency than single gRNAs.
They state that the exact mechanism underlying the obser-
vation is unclear. To understand the competition mecha-
nism of two CRISPR–Cas complexes at a promoter, the
measurements may require single-molecule resolution to
reveal the molecular-level interactions between CRISPRr,
CRISPRa and RNAP in a single bacterium. When such
data becomes available, we may be able to simulate the
detailed kinetics of the CRISPR–Cas competition using
stochastic chemical equations. Our simplification of the the-
oretical model likely underlies the quantitative discrepancy
between the modeling and experimental results for S.M.1
and S.M.4 (Figures 4B and 5C).

The basic concept of CRISPRar may be applied to other
organisms. In this study, we use the CRISPRar tool that
consists of one functionalized dCas9 protein with two dif-

ferent sgRNAs to tune expression noise in E. coli. To
achieve both activation and repression using the identical
dCas9� protein, we have to control the binding site of two
sgRNAs. To implement both CRISPRa and CRISPRr in
other organisms, such as mammalian cells, one may use
single sgRNA companied with two dCas9 proteins that
are functionalized by either a transcriptional activator (32)
or repressor (33). The potential use of one sgRNA in
mammalian cells may simplify the implementation of the
CRISPRar tool by avoiding the need for finding different
sgRNA positions on the target promoter. The CRISPRar
tool may be useful in recent efforts that control gene expres-
sion noise for the study of mammalian drug resistance (34).
Our CRISPRar tool represents the first orthogonal tool that
can tune gene expression noise without altering the endoge-
nous genetic components.
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