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Evaluation of auto‑segmentation 
for EBRT planning structures using 
deep learning‑based workflow 
on cervical cancer
Jiahao Wang, Yuanyuan Chen, Hongling Xie, Lumeng Luo & Qiu Tang*

Deep learning (DL) based approach aims to construct a full workflow solution for cervical cancer 
with external beam radiation therapy (EBRT) and brachytherapy (BT). The purpose of this study was 
to evaluate the accuracy of EBRT planning structures derived from DL based auto‑segmentation 
compared with standard manual delineation. Auto‑segmentation model based on convolutional 
neural networks (CNN) was developed to delineate clinical target volumes (CTVs) and organs at 
risk (OARs) in cervical cancer radiotherapy. A total of 300 retrospective patients from multiple 
cancer centers were used to train and validate the model, and 75 independent cases were selected 
as testing data. The accuracy of auto‑segmented contours were evaluated using geometric and 
dosimetric metrics including dice similarity coefficient (DSC), 95% hausdorff distance (95%HD), 
jaccard coefficient (JC) and dose‑volume index (DVI). The correlation between geometric metrics and 
dosimetric difference was performed by Spearman’s correlation analysis. The right and left kidney, 
bladder, right and left femoral head showed superior geometric accuracy (DSC: 0.88–0.93; 95%HD: 
1.03 mm–2.96 mm; JC: 0.78–0.88), and the Bland–Altman test obtained dose agreement for these 
contours (P > 0.05) between manual and DL based methods. Wilcoxon’s signed‑rank test indicated 
significant dosimetric differences in CTV, spinal cord and pelvic bone (P < 0.001). A strong correlation 
between the mean dose of pelvic bone and its 95%HD (R = 0.843, P < 0.001) was found in Spearman’s 
correlation analysis, and the remaining structures showed weak link between dosimetric difference 
and all of geometric metrics. Our auto‑segmentation achieved a satisfied agreement for most 
EBRT planning structures, although the clinical acceptance of CTV was a concern. DL based auto‑
segmentation was an essential component in cervical cancer workflow which would generate the 
accurate contouring.

External beam radiation therapy (EBRT) and brachytherapy (BT) are both the critical treatment modalities for 
cervical cancer with early and locally advanced stages. The delineation of clinical target volumes (CTVs) and 
organs at risk (OARs) is the first step and important task that may affect the clinical outcomes in cervical cancer 
 radiotherapy1–3. Indeed, manual contouring of these planning structures is such a labor-intensive part of the 
workflow and maybe  inaccurate4–6. The workload pressures and most errors could be avoided if a rapid and 
accurate auto-segmented methods were available. With the development of machine learning (ML), particularly 
the advent of deep learning (DL) represented by convolutional neural networks (CNNs), auto-segmented tasks 
are thought to provide excellent assistance and superior  results7–10.

The U-Net model used for auto-segmentation of OARs in cervical cancer obtained highly consistency with 
those of expert contouring which was assessed by radiation  oncologists11. The DpnUNet model applied to CTV 
segmentation in cervical cancer achieved an acceptable clinical results with the mean dice similarity coefficient 
(DSC) of 0.8612. As a novel technique, however, there are still some limitations with uncommon clinical  practice13. 
In fact, DL based methods are usually to generate the expected outcomes because the tested datasets are typi-
cally related to the training and validating datasets. Therefore, the quality and reliability of DL models should be 
further verified using an independent cohort in the process of cervical cancer radiotherapy.

The geometric metrics and subjective assessment are always chosen as the standard analysis indicators of 
contour  comparison14–16. A few studies have reported the relationship between auto-segmentation and dosimetry 
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in head and neck which proved more accurate auto-segmentation carried out smaller dosimetric  differences17. 
However,whether or not the differences of DL based auto-segmentation would affect the clinical relevance of 
cervical cancer is rarely mentioned.

The purpose of this study used geometric and dosimetric metrics to evaluate the accuracy of DL based 
auto-segmentation and focus on the question of whether DL based approach could generate precise dosimetric 
endpoints compared to standard manual contours in a real-world independent cohort of cervical cancer patients.

Methods and materials
Experiments. The work flowchart of this study is illustrated in Fig. 1. Briefly, the evaluation was divided 
into 3 sections. Section 1, the accuracy of DL based auto-segmentation was assessed using geometric metrics. 
Section 2, the dosimetric comparison was performed between standard manual contours and auto-segmented 
contours form original EBRT plans. Section 3, the correlation analysis was explored followed by geometric and 
dosimetric metrics.

Clinical datasets. The independent cohort of this study was consisted of 75 cervical cancer patients who 
received EBRT at our department between August 2021 and December 2021. All patients were diagnosed 
with FIGO stage IA2-IVB and histology G1-G3, treated with prescription dose of 45 Gy-50.4 Gy (1.8 Gy/frac-
tion). The average age ± standard deviation of these patients was 55.60 ± 13.35 years old. For each patient, the 
contrast agent was required to intravenously inject before computed tomography (CT) scanning, meanwhile, 
the CT images were covered from the lower lumbar spine to the whole pelvic cavity and reconstructed with 
512 × 512 matrix size and 5 mm slice thickness using a Philips Brilliance Big Bore CT scanner system (Philips 
Healthcare,Best, the Netherlands).

CTVs delineation of 75 patients were defined manually by junior radiation oncologists including entire 
cervix, uterus, bilateral parametria, upper half of vagina, and lymph nodes following the guideline of Radiation 
Therapy Oncology Group (RTOG)  protocol18. Relevant OARs included for EBRT plans were spinal Cord, left 
kidney (Kidney L), right kidney (Kidney R),bladder, left femoral Head (Femoral Head L), right femoral Head 
(Femoral Head R), pelvic bone, rectum, and small intestine. The EBRT planning structures were performed 
on the Pinnacle Treatment Planning System (Pinnacle, V9.16.2, Philips Corp, Fitchburg, WI, USA). All of the 
manual contours were reviewed and approved by senior radiation oncologists specialized in cervical cancer to 
generate the standard delineation.

Deep learning based auto‑segmentation. We introduced a deep learning model based on  CNN19 to 
segment the CTVs and OARs for cervical cancer patients. As shown in Fig. 2, the network consists of three 
encoders and three decoders. The InProj was used to extract the features of medical image, and the OutProj 
performed the pixel-wise classification. Down-sampling and up-sampling were performed by each encoder and 
each decoder. All the weight filters of the 2D convolution (Conv2d) had a window size of 3 × 3 and a stride of 1. 
Batch Normalization (BN) was a process by which biased output distribution and used for the feature normaliza-
tion. For this network, rectified linear unit (ReLu) followed by every Conv2d was used as the feature activation 
function. Max Pooling could reduce the number of parameters and computation in the network. ConvTrans-

Figure 1.  The flowchart of manual and DL based auto-segmentation evaluation experiment. Original EBRT 
plans were designed and optimized based on the standard manual contours and the auto-segmentation 
structures were transmitted to original EBRT plans for dosimetric evaluation.
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pose2d was opposite of that used for Conv2d, whereby pixel size is increased using a 3 × 3 pixels filter. The skip 
connection was used to concatenate the encoder and decoder of the same level to facilitate the fusion of multi-
layer features. We used some general methods for data enhancement (cut and flip) to obtain a superior model. 
This model is an end-to-end segmentation architecture that can predict pixel class labels in CT images.

A total of 300 retrospective clinical CT scans diagnosed with cervical cancer who received radiotherapy were 
enrolled for training and validating this model, and the datasets were come form multiple cancer centers in order 
to verify the robustness of CNN model. The cross-entropy loss was selected as the loss function, and all of the 
training computations were performed using Intel-Core i7 processor with a graphics card.

Geometric metrics. The geometric accuracy of contours was compared using the Dice Similarity Coef-
ficient (DSC), 95% Hausdorff Distance (HD) and Jaccard Coefficient (JC). DSC and JC describe the relative 
overlap between segmentation A and B. HD is used to quantify the 3D distance between two segmentation sur-
faces. The 95%HD is the distance that indicates the largest surface-to-surface separation among the closest 95% 
of surface points.The definitions are as follows:

For the complete overlap, the value of HD is 0, and the values of DSC and JC are 1. For the incomplete 
overlap, the value of HD is large, and the values of DSC and JC are close to 0. In order to verify the recognition 
performance of DL based model in boundary of segmentation,no cropping of the superior or inferior borders 
for contours was performed for this study particularly in spinal cord, femoral head and pelvic bone.

Dosimetric metrics. The EBRT plans were calculated and optimized with these standard manual contours 
by using Pinnacle Treatment Planning System. Table 1 is presented the constraints and dosimetric metrics. For 
CTV, we mainly focused on  Dmean and  V100%. For serial organs and parallel organs, we mainly focused on  Dmax 
and  Dmean, respectively.  Dmean and  Dmax are defined as the average dose and maximum dose of structures receiv-
ing.  V100 is defined as the volume of CTV receiving 100% prescription dose.

Statistical analysis. IBM SPSS Statistics software (version 19.0, IBM Inc., Armonk, NY, USA) and Python 
software (version 3.6.5,Anaconda Inc.) were used for statistical analysis,where mean ± standard deviation (SD) 
was used for presenting and summarizing the results. For the test of agreement between manual and DL based 
methods, the Bland–Altman test was used to calculate the consistent limits for each EBRT planning structures. 
P > 0.05 means agreement of two segmented methods. For the difference, the Wilcoxon’s paired nonparametric 
signed-rank test was performed to compare the variables. P < 0.05 indicates that the difference is statistically sig-
nificant. The correlations between geometric metrics and dosimetric difference were evaluated with Spearman’s 
correlation analysis.

DSC = 2|A ∩ B|/(|A| + |B|)

HD = max(h(A,B), h(B,A)), h(A,B) = max
b∈B

(min
a∈A

�a− b�)

JC = |A ∩ B|/|A ∪ B|

Figure 2.  Architecture of DL based automatic segmentation network.
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Results
The geometric accuracy of the DL based auto-segmentation for EBRT planning structures is presented in 
Fig. 3. Automatic delineation produced the results for CTV with average DSC value of 0.77 ± 0.03, 95%HD of 
5.81 ± 1.83 mm and JC of 0.62 ± 0.04. The right kidney, left kidney, bladder, right femoral head and left femo-
ral head were generated the similar geometric performance between two methods with average DSC value of 
0.88–0.93, 95%HD of 1.03–2.96 mm and JC of 0.78–0.88. The quality of the automatically generated pelvic bone 
was barely satisfactory with average DSC value of 0.65 ± 0.05,95%HD of 18.14 ± 9.77 mm and JC of 0.49 ± 0.05.

The Bland–Altman test was not calculated for CTV because of abnormal distribution. The Fig. 4 showed 95% 
consistent limits for all of the OARs between two methods. The test of agreement for DL based auto-segmentation 
method can be evaluated according to the number of the points outside the 95% consistent limits (brown hori-
zontal dotted lines) and the maximum difference within the consistent limits (distance between blue and green 
horizontal lines). From the Bland–Altman plot, right and left kidney, bladder, right and left femoral head showed 
no significant inconsistency (P > 0.05) between two segmented methods.

Examples of delineations and dose distributions from manual and DL based auto-segmented methods are 
illustrated in Fig. 5. The comparisons of dosimetric parameters between two methods using Wilcoxon’s paired 
nonparametric signed-rank test are presented in Table 2. No significant dosimetric differences were found except 
for CTV, spinal cord and pelvic bone (P < 0.001). For all of the OARs, both the manual and automatic delineation 
were able to meet the clinical dose constraints. However, the dose-volume index (DVI) of CTV was hard to meet 
the clinical requirements with  V100 (%) of 94.27 ± 1.86  (D99% > Prescription).

Table 3 shows the results of Spearman’s correlation analysis between three geometric metrics and dosimetric 
differences (Δdose). No structures showed strong correlation except for the ΔDmean of pelvic bone and its 95%HD 
(R = 0.843,P < 0.001), and the correlation heatmap was used to further prove the weak link between all of the 
dosimetricdifference and its geometric metrics in the remaining EBRT planning structures (Fig. 6).

Discussion
Modern radiotherapy has become a systematized and programmed process resulting in a nearly reliance on 
human–machine interactions with the development of mechanical technology and computer science. Meanwhile, 
the growth of Artificial intelligence (AI) has the potential possibilities to change the way of radiation oncology 
because of its recognition and analysis in complex medical data. Various studies have investigated the advantages 
of AI based method during each stage of radiotherapy,such as AI platforms might improve the efficiency and 
quality of automated  segmentation20–22, predict and optimize the radiation dose of the  targets23,24, provide the 
clinical decision of radiation  toxicities25, and build the robust models to manage the treatment  outcomes26,27. 
However, these studies were always fragmented and we should establish the complete radiotherapy workflow 
using AI technology with validating every step for the real-world cohort.

Delineations of CTV and OARs are an essential step for precise  delivery28 which would affect the overall 
survival in the radiotherapy treatment planning process,even in standardizing clinical  trials29. However, the 
manual process always suffers from inter- and intra-observer variability in structure delineations. Automatic 
contouring of structures is highly desired in radiotherapy because of the minimized variability. The purpose of 
this study is to compare the performance of DL based autosegmentation against standard contours from senior 
radiation oncologists on independent datasets.

As for geometric metrics, we observed that DL based model generated structures with average DSC of 0.77 
for the CTV, 0.74 the spinal cord, 0.93 for the left and right kidney, 0.91 for the bladder, 0.88 for the left and right 
femoral head, 0.65 for the pelvic bone, and 0.71 for the rectum, respectively. The comparison of DSC and HD for 
other DL based model is presented in Table 4. Overall, the geometric similarity of kidney, bladder and femoral 
head were equivalent to or better than other published literature. Nevertheless, the DSC values of CTV, pelvic 
bone and rectum from our model showed poor results compared with other DL based models. Generally, the 

Table 1.  The constraints and dosimetric metrics for EBRT planning structures. CTV: clinical target volume; 
Kidney L/R: left/right kidney; Femoral Head L/R: left/right femoral head.

Structures Constraints Dosimetric metrics

CTV D99% > Prescription,
Dmax < 110%Prescription Dmean,  V100

Spinal Cord Dmax < 4000 cGy Dmax

Kidney L Dmean < 1200 cGy Dmean

Kidney R Dmean < 1200 cGy Dmean

Bladder D50% < 100%Prescription
D0.03 cc < 110%Prescription Dmean

Femoral Head L D15% < 3000 cGy,Mean dose < 2000 cGy Dmean

Femoral Head R D15% < 3000 cGy,Mean dose < 2000 cGy Dmean

Pelvic Bone Dmean < 3000 cGy Dmean

Rectum D50% < 100%Prescription
D0.03 cc < 110%Prescription Dmean

Small intestine D30% < 100%Prescription
D0.03 cc < 110%Prescription Not evaluated
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accuracy maybe decrease when using the independent testing datasets. Rhee et al.30 reported the DSC values of 
automatic CTV segmentation was 0.86 using internal test CT scans and the clinical acceptance decreased to 80% 
for external test CT scans. However, the mean 95%HD value of CTV used our model was 5.81 mm, which was 
comparable to DpnUNet  model12 and superior than 3D CNN and 3D V-Net  models31,32. These findings seemed 
to indicate that the discrepancy between these DL based models might caused by the difference of training data-
sets, and our DL based model showed a relative strong robustness for most EBRT planning structures enrolled 
the independent cohort. In this study, the boundaries of the spinal cord in cervical cancer were not clear (the 

Figure 3.  DSC, 95%HD and JC box plot from comparing DL based auto-segmented contours to standard 
contours for CTV and OARs.
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resolution of soft tissue in CT images was deficient and we didn’t modify the superior or inferior borders), the 
delineations generated by DL based model were always been overestimated or underestimated compared with 
standard contours. The small intestine was absent to assess because the contours of the small intestine in CT 
images was different from the location during EBRT process. Indeed, small intestine is an important organ for 
dosimetric evaluation especially in the EBRT combined with high-dose rate BT for cervical cancer, and the DL 
based performance of small intestine would be included in our further study with “dose prediction”.

Figure 4.  Bland–Altman plot for OARs. The brown horizontal dotted lines represents the upper and lower 
bounds of 95% limit agreement; the blue horizontal solid lines represent the average of the differences; the green 
horizontal dotted lines represent the location with difference equal to 0.
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The quality of auto segmented contours cannot be determined only by geometric values which was reported 
by  Kaderka33, and few studies have focused on dosimetric impact on the automatic CTV and OARs delineations 
for cervical cancer radiotherapy. For CTV dosimetric metrics, the most significant dose difference was  V100 with 
94.27% for DL based model and 99.98% for standard contour (P < 0.001), and the original dose distribution 
showed poor results in automatic CTV segmentation (Fig. 5). These data indicated the final CTV segmentation 
generated by DL based model remains necessary to be reviewed by senior radiation oncologists rather than 
geometric values. For the test of agreement, the DL based segmented method has been proven to obtain dose 
consistency for kidney, bladder and femoral head compared with expert contouring. For dosimetric metrics of 
OARs, no significant differences were found except for spinal cord and pelvic bone (P < 0.001). Point dose such as 
 Dmax in spinal cord was sensitive to the range of the segmentation in radiotherapy which means the performance 
of identifying boundaries in DL based model should be improved.

The heatmap of Spearman’s correlation analysis showed that there was no clear strong relationship between 
geometric metrics and dosimetric differences for most structures (Fig. 5). The only strong correlation was shown 
for the mean dose of pelvic bone and its 95%HD (R = 0.843, P < 0.001). This phenomenon cloud be explained 
that the dosimetric differences were generated by random noise because of the similar delineation between two 

Figure 5.  Results of delineations and dose distributions for CTV and OARs in CT slices. The green lines 
represent manual contours approved by the senior physician; the blue lines represent DL based contours; 
colourwash represent dose distributions with the range of 95% prescription to 100% prescription.

Table 2.  Dosimetric metrics of manual and DL based auto-segmented delineations in the original clinical 
treatment plans.

Structure Dosimetric parameters

Manual delineation Automatic delineation

Z PMean ± standard deviation

CTV
Dmean (cGy) 5058.71 ± 191.85 4972.37 ± 194.18  − 7.53  < 0.001

V100 (%) 99.98 ± 0.02 94.27 ± 1.86  − 7.53  < 0.001

Spinal Cord Dmax (cGy) 3270.17 ± 259.72 3616.79 ± 565.83  − 4.00  < 0.001

Kidney L Dmean (cGy) 175.41 ± 320.37 171.29 ± 306.65  − 1.67 0.096

Kidney R Dmean (cGy) 205.68 ± 318.12 201.80 ± 308.71  − 0.99 0.323

Bladder Dmean (cGy) 4345.07 ± 263.11 4338.67 ± 270.32 0.95 0.342

Femoral Head L Dmean (cGy) 1930.73 ± 74.68 1928.89 ± 97.26  − 0.48 0.631

Femoral Head R Dmean (cGy) 1897.44 ± 75.49 1901.13 ± 84.13  − 1.24 0.085

Pelvic Bone Dmean (cGy) 2802.99 ± 129.23 2968.00 ± 160.85  − 7.48  < 0.001

Rectum Dmean (cGy) 4490.24 ± 252.17 4523.57 ± 248.61  − 1.61 0.108
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methods such as kidney and bladder. Otherwise, the weak link was caused by the segmented reproducibility of 
DL based model such as CTV and femoral head. However, significant correlation between geometric metrics and 
dosimetric differences could still be observed due to the inaccurate delineation such as pelvic bone.

In this work, we investigated the performance of DLbased auto segmentation in cervical cancer for patients 
treated with EBRT. Indeed, as an assisted and efficient tool, automatic approach would relieve physicians from 
the labor-intensive tasks as well as increase the accuracy and reproducibility of structure delineation.Instead 
of incorporating a prior knowledge into the process of segmentation that describe as atlas-based segmentation 
(ABS)34, DL based auto segmentation explores the informative representations in a self-learning algorithm and 
utilizes hierarchical layers of extracted abstraction to accomplish high-level tasks efficiently. Furthermore, in 
spite of the superior performance of DL based methods on algorithm, the studies are confined mostly to the 
field of segmentation rather than to establish the workflow solution which have been mentioned above.In other 
words, DL based methods could play an important role in the complete process of radiotherapy such as “dose 
prediction”, “toxic prediction” , “efficacy prediction”, etc., segmentation/ “delineation prediction” is only a part 

Table 3.  The correlation between geometric metrics and dosimetric differences. DSC: dice similarity 
coefficient; HD: hausdorff distance; JC: jaccard coefficient; ΔDose: dosimetric differences between two 
segmented methods.

Structure ΔDose Geometric metrics Correlation analysis

CTV ΔDmean

DSC R =  − 0.198, P = 0.089

95%HD R = 0.089, P = 0.087

JC R =  − 0.195, P = 0.093

CTV ΔV100 (%)

DSC R =  − 0.245, P = 0.034

95%HD R = 0.180, P = 0.123

JC R =  − 0.245, P = 0.034

Spinal Cord ΔDmax

DSC R = 0.047, P = 0.688

95%HD R = 0.046, P = 0.694

JC R = 0.043, P = 0.711

Kidney L ΔDmean

DSC R =  − 0.076, P = 0.518

95%HD R = 0.162, P = 0.166

JC R =  − 0.074, P = 0.528

Kidney R ΔDmean

DSC R =  − 0.361, P = 0.001

95%HD R = 0.379, P = 0.001

JC R =  − 0.354, P = 0.002

Bladder ΔDmean

DSC R =  − 0.644, P < 0.001

95%HD R = 0.601, P < 0.001

JC R =  − 0.646, P < 0.001

Femoral Head L ΔDmean

DSC R =  − 0.341, P = 0.003

95%HD R = 0.225, P = 0.052

JC R =  − 0.349, P = 0.002

Femoral Head R ΔDmean

DSC R =  − 0.014, P = 0.902

95%HD R = 0.095, P = 0.418

JC R =  − 0.015, P = 0.899

Pelvic Bone ΔDmean

DSC R =  − 0.588, P < 0.001

95%HD R = 0.843, P < 0.001

JC R =  − 0.589, P < 0.001

Rectum ΔDmean

DSC R = 0.054, P = 0.648

95%HD R =  − 0.082, P = 0.482

JC R = 0.055, P = 0.641
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of this workflow. Certainly, this work was focus on the question of segmented accuracy which would be a basic 
part implemented in the workflow of cervical cancer radiotherapy.

Several limitations still exist in our study. First,this work was lack of subjective assessment such as radiation 
oncologist evaluation or Turing imitation  test35. Second,the diversity of CT scanner machines,image acquisi-
tion protocols, standard contouring,and even tumor staging hampered meaningful comparison of our results 
with other CNN models. Overall, increasing the amount of training data from different centers using different 
techniques could make the DL based model more robust, improving the segmentation accuracy.

Conclusion
This study has demonstrated through both geometric and dosimetric metrics that our DL based auto-segmen-
tation can achieve clinically acceptable contours for most of the EBRT planning structures in cervical cancer 
patients, although the dosimetric consistency of CTV was a concern. Automatic delineation will be an essential 
component in cervical cancer workflow which would generate the accurate contouring.

Figure 6.  The heatmap of Spearman’s correlation analysis between all the geometric metrics and dosimetric 
differences for EBRT planning structures.
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