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Abundant ion-channels, including various perceptual receptors, chloride channels,

purinergic receptor channels, and water channels that exist on the ocular surface,

play an important role in the pathogenesis of dry eye. Channel-targeting activators

or inhibitor compounds, which have shown positive effects in in vivo and in vitro

experiments, have become the focus of the dry eye drug research and development, and

individual compounds have been applied in clinical experimental treatment. This review

summarized various types of ion-channels on the ocular surface related to dry eye, their

basic functions, and spatial distribution, and discussed basic and clinical research results

of various channel receptor regulatory compounds. Therefore, further elucidating the

relationship between ion-channels and dry eye will warrant research of dry eye targeted

drug therapy.
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INTRODUCTION

Ion channels are crucial for sensing temperature and mechanical and chemical stimuli and
are important structures for transmitting information between cells (1–3). Dry eye (DE) is a
multifactorial ocular surface syndrome that mainly manifests as a series of sensory abnormalities
on the ocular surface, including pain, burning sensation, and increased sensitivity to foreign
bodies (4, 5). Abnormal physiological functions of the corneal epithelium and nerve endings
also contribute to DE pathogenesis (5–10). These abnormalities, along with the dysfunctional
expression and function of ion channels on the surface of the eye, further aggravate subjective
symptoms of discomfort from DE (11, 12).

Many ion channels exist in the cornea, conjunctival epithelial cells, and corneal nerve
fibers (4, 11). Their main physiological function is to maintain the internal and external
ecological balance of the cells, sense chemical, temperature, and pressure stimuli, and transmit
information (11). At present, many studies have revealed the key role of ion channels present
in ocular surface cells in the pathogenesis of DE, and some ion channel activators or inhibitors
have shown promise in the targeted treatment of DE (11–17). This review focused on the
research status and progress of studying ion channels related to the ocular surface and DE and
summarized the importance of ion channels in the DE to provide insights on DE-targeted drugs.
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FIGURE 1 | Ion-channels that exist in the cornea, conjunctival epithelial cells,

and corneal nerve fibers. The specific stimuli activating each receptor channel

class is shown (11, 18–20).

DISTRIBUTION OF DE-RELATED
ION-CHANNELS ON THE OCULAR
SURFACE

The stability of the ocular surface environment is an important
factor in the pathological mechanisms of DE (5–9). The
physiological state of the cornea, conjunctiva, and corneal nerve
plays a considerable role in the occurrence and development of
the DE, and the information transmission of related physiological
functions depends on various ion channels at the cellular level
(Figure 1) (11).

The trigeminal ganglion (TG) is distributed widely on the
ocular surface through the eye meridian, especially in the
cornea. There are multimodal nociceptors (∼70%), mechanical
nociceptors (15–20%), and temperature receptors (10–15%)
at nerve endings, which can sense mechanical, thermal, and
chemical stimuli within or near a harmful threshold (4, 11). At
present, many studies have reported that the expression of ion
channels is influenced by DE in corneal nerve endings, mainly
including transient receptor potential (TRP) channels (TRPV1,
TRPA1, and TRPM8), acid-sensing ion channels (ASICs), and
mechanically gated ion channels (piezo2) (11–17).

Many ion channel receptor proteins also appear in corneal
epithelial cells. At present, the ion channels related to DE
include TRPV1, TRPM8, TRPA1, cystic fibrosis transmembrane
conductance regulator (CFTR), chloride channels, among others
(11, 13–16). In addition, receptor proteins closely related to
the physiological functions of ion channels, such as purine and
purinergic receptors [G protein coupled adenosine receptors

(ARS), P2Y receptors (p2yrs), and ATP gated P2X receiver
ion channels (p2xrs)], show potential in DE-targeted therapy
(17). Aquaporins (AQPs), proteins involved in the balance and
stability of the water inside and outside the cells, also exist in
the corneal epithelium. Recently, it has been found that they are
closely related to the pathogenesis of DE (21).

Goblet cells in the conjunctival epithelium secrete mucin
(MUC5AC) and some non-mucin proteins, including
peroxidase, trefoil factor, and defensin. As an important
component of tear film formation, mucin maintains the
conjunctival and corneal epithelial microenvironment (22–25).
Studies have shown that purinergic gated ion channel proteins
are expressed in the conjunctival epithelium and goblet cells
and participate in the inflammatory response of NLRP3 (26).
Mergler et al. detected human conjunctival cells and found that
conjunctiva expressed TRPV1, TRPV2, and TRPV4 channels,
implying novel drug targets for DE therapeutics (27).

POLYMODAL NOCICEPTORS AND DE

Polymodal nociceptors are widely present in cornea and nerve
fibers. They can be activated by external stimuli, such as harmful
mechanical factors, heat, and chemical stimuli. Simultaneously,
they are also sensitive to endogenous chemical mediators and
inflammatory cells (11). In DEs, polymodal nociceptors can sense
changes of temperature, inflammatory stimulation, and osmotic
pressure caused by DEs, and regulate the wetting of the ocular
surface. According to these characteristics, the screening of TRP
family receptor block or activation-related compounds is of great
significance for the development of DE-related ocular surface-
targeted drugs. It has been reported that these receptors are
closely related to DE, as described in the following paragraphs.

Transient Receptor Potential A1 (TRPA1)
TRPA1, also known as ANKTM1, is an ion channel receptor of
TRP that participates in nociceptive temperature and mechanical
perception (28–30). TRPA1 activation causes calcium influx and
plays a role in persistent and allergic inflammation (30, 31).
Katagiri et al. found that TRPA1 mechanisms are involved in the
sensitivity of ocular responsive trigeminal brain neurons in the
model for tear defect DE (32).

TRP Cation Channel Subfamily V Member 1
(TRPV1)
TRPV1 participates in polymodal nociceptors’ sensory
conduction (33). Previous studies have confirmed that TRPV1
is an ion channel related to sensations including pain and
pruritus, and diseases like asthma (34–38). As a multi-sensory
receptor, TRPV1 is activated by capsaicin, acidity, heat damage,
and a hypertonic external environment (33). Eye irritation is
a common clinical symptom of DE, and the TRPA1 inhibitor
has shown great potential in easing peripheral nerve pain (39).
Masuoka et al. have reported that chronic lacrimal deficiency
sensitizes the response mediated by TRPV1 in corneal epithelial
cells, which may be related to hyperalgesia caused by noxious
stimulation in water-deficient DEs (40). In the DE model,
overexpression of TRPV1 in TRPM8+ sensory neurons leads
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to cold hyperalgesia in corneal and non-corneal tissues without
affecting their thermal sensitivity and promotes the release of
neuropeptide P to signal cold response nociception (41). The
increase in tear permeability and ocular surface inflammatory
reactions are important mechanisms for the pathogenesis of DE
(4–9). In addition, hyperosmotic stress (HOS) induces EGFR,
MAPK, and NF signaling pathways through the TRPV1 channel
and further mediates the increase of the pro-inflammatory
cytokine interleukin (IL)-6 and chemokine IL-8 (42). Hua
et al. found that the TRPV1 inhibitor capsaicin significantly
reduced inflammatory tumor necrosis factor (TNF)-α, IL-
1β, and IL-6 stimulated by human corneal endothelial cells
(HCECs) (43). They further reported osmo-protectors to
suppress inflammatory responses via the TRPV1 pathway in
HCECs exposed to HOS (43). The targeted drug regulation
of TRPV1 activity or its signal medium may be utilized as
a novel method to inhibit the inflammatory response of DE
syndrome. The mRNA expression levels of TRPA1, TRPV1,
ASIC1, and ASIC3 were upregulated in the TG ocular branches
of rigorously treated DE mice. After the intervention of the
DE disease (DED) mouse model with the TRPV1 blocker
(capsazepine), a reduction in the multimodal response of
the cornea to heat, cold, and acid stimulation, and a further
reduction in eye pain-associated anxious states were observed
(44). Another study found that 1.125% syl1001, a novel
short interfering RNA targeting TRPV1, can greatly improve
ocular surface disease index scores and is tolerated well (45).
Bereiter et al. clarified that TRPV1 plays an important role in
mediating the enhanced nociceptive behavior in DE, which is
beneficial for treating ocular surface stimulation pain in patients
with moderate to severe DEs (46). These data support the
effectiveness of blocking TRPV1 in treating tear deficiency and
relieving chronic eye pain in DED, and is a potential choice for
DED-targeted therapy.

ASIC3
ASICs are hydrogen ion–gated cation channels that are easily
activated and opened by extracellular H+ ions, instigate
Na+ ion influx, lead to cell depolarization and excitation,
and participate in the sensitization process of moderate
acid stimulation (47–51). Previous ASIC-related studies
have mostly focused on the protection of the optic nerve
and retinal injury. Inhibition of ASICs can reduce retinal
ischemia-reperfusion and optic nerve injury (52, 53). In
DE research, the possible role of the ASIC channel was
recognized during a recent study. ASIC3 was shown to
activate several corneal multimode sensory nerve fibers,
significantly increase the blink and tear rate, and mediate
acid stimulation and inflammatory pain on the ocular surface
(54). ASICs are present in corneal sensory neurons. An
acidic pH depolarizes these neurons to stimulate the action
potential. ASIC blockers eliminate nociceptive behaviors
caused by moderate acid stimulation (54). Even in the allergic
keratoconjunctivitis model, ASIC3 blocking can also significantly
reduce nociceptive behavior and reduce nociceptor sensitization
during inflammation (54).

MECHANO-NOCICEPTORS AND DE

In the corneal nerve fiber axons, 20–30% of the receptors are
mechanical nociceptors sensitive to mechanical pressure and
activated by pressure perception (11, 55). Piezo channel protein,
a member of the mechanically gated cation channel family, is
the main baroreceptor on the ocular surface (56). It can be
divided into two subtypes: piezo1/fam38a and piezo2/fam38b.
Bron et al. found that piezo2 expression occurred in ∼26%
of TG neurons and 30% of corneal afferent neurons (55).
Morozumi et al. confirmed that piezo1 and especially piezo2
are common in the corneal epithelium and optic nerves (57).
Piezo inhibitors can protect against optic nerve damage caused by
high intraocular pressure (57). Corneas of patients with DEs are
sensitive to temperature changes and mechanical stimulation. As
a common clinical symptom of DE, corneal pain may be related
to the influence of chronic inflammation on the corneal pain
conduction pathway. The piezo2 channel existing in the corneal
nerve is directly involved in alleviating acute corneal mechanical
injury, and local regulation of piezo2 helps ease the related pain
caused by ocular surface mechanical stimulation (58).

COLD RECEPTORS AND DE

Cold receptors account for 10.15% of corneal neurons. They are
sensitive to ocular surface temperature, continuously produce
action potentials, and are regulated by dynamic changes in
temperature (11). TRPM8 is a member of the cation channel
family of TRP. As a cold sensory receptor, TRPM8 mainly
senses temperature changes on the ocular surface and participates
in temperature sensing, thermoregulation, and sensing pain
caused by cold (11, 14, 16, 59). TRPM8 is also involved in
the pathophysiology of DE and has anti-hypersensitivity and
antipruritic effects (15, 60). On the ocular surface, evaporation
of tears and changes in temperature lead to the activation of
TRPM8, which further regulates basic tear secretion (61).

A study has found that in corneal refractive surgery and
moderate DE, cold-heat receptors seem to mainly be affected,
which can cause the major unpleasant feeling of DE (39).
The corneal cold-sensitive neurons were closely related to
the function of the TRPM8 channel in the injury response.
The enhanced functional expression of the TRPM8 channel in
primary sensory neurons of the trigeminal nerve could lead to an
increase in tear rate and DE sensation (62). The dry conditions
changed the sensitivity of neurons to menthol (its activator),
resulting in desensitization to a cold-induced response, which
could lead to reduced tear production that is harmful to patients
with DEs (63). Moreover, certain interactions exist between TRP
pathways. Khajavi et al. showed that the activation of TRPM8
can reduce TRPV1 activity, which may play a therapeutic role
in the treatment of TRPV1-mediated inflammatory hyperalgesia,
colitis, and DE syndrome (64). Arcas et al. reported the
direct agonistic effect of tacrolimus on TRPM8 activity, which
explains the anti-inflammatory effect of TRPM8 channels on
the ocular surface of DEs (65). In related clinical studies, it
was communicated that TRPM8 activation had a positive effect
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on DEs. A TRPM8 receptor agonist called cryosim-3 (C3, 1-
diisopropylphosphorylnonane) can significantly increase tear
secretion and improve DE symptoms (66). Yoon et al. also
confirmed that C3 can significantly improve the symptoms of DE
associated with menstrual pain, which is ineffective in routine
treatments (67). In addition, a warm compress containing
menthol can continuously increase the amount of tears and tear
film stability in patients with DEs (68).

However, it seems paradoxical that patients with DED
are more sensitive to cold compared to patients with non-
DED. The duration of DED, rather than age, is an important
factor in sensitivity to cold. Corneal cold receptor sensitivity
decreased with an increase in DED duration (69). Fakih et al.
found that severe DED mice had cold hyperalgesia, which was
consistent with the high expression of TRPM8 mRNA in the
TG. Chronic m8-b (TRPM8 antagonist) instillations significantly
reversed the corneal mechanical hyperalgesia and spontaneous
eye pain. M8-b also reduced the sustained spontaneous and
cold-induced ciliary nerve activity observed in DED mice, as
well as inflammation in the cornea and TG (60). In this
regard, Kaido et al. further studied the cold perception of the
TRPM8 pathway in DEs and found that activating TRPM8
only at the peripheral level was not enough to explain the
manifestations of DE-related symptoms of discomfort (70).
Higher brain levels may be involved in the occurrence and
progression of DE symptoms.

CHLORIDE CHANNEL-CFTR AND DE

CFTR is an important chloride ion and water secretion channel
(18, 71). In corneal epithelial cells, CFTR channel activation
is important for maintaining the balance of chloride transport
and promoting tear secretion (72). It has potential value in
the treatment of DEs. The protective effect of CFTR channel-
related activators on DEs has been observed in DE animal
experiments. Nandoskar et al. found that CFTR was also
present in lacrimal gland cells, in which CFTR was significantly
expressed in ductal cells, while the expression of CFTR
was significantly reduced in an autoimmune dacryoadenitis
rabbit model (73). There is an obvious imbalance between
the osmotic pressure and chloride ions in the ocular surface
of DED. However, the combined administration of CFTR
activator (genistein) and vitamin D (calcitriol) can reduce
HOS-induced TonEBP (Tonicity—responsive enhancer binding
protein), inflammatory gene expression, p-p38, and vitamin D
receptor (VDR) degradation in HCECs (74). Furthermore, CFTR
activators can significantly improve the ocular surface of mice
with DE and even accelerate the repair of damaged corneal
epithelium (75). Lee et al. screened a new CFTR activator,
isorhamnetin, and reported that it could significantly increase
the tear secretion in a mouse DE model, improve the ocular
surface injury in mice, and inhibit the expression of IL-1β, IL-
8, and TNF-α (76). Flores et al. also screened aminophenyl-
1,3,5-triazine, CFTRact-K089, and fully activated CFTR, which
can double tear secretion in a DE mouse model (77). In the
tear deficiency mouse DE model induced by lacrimal ablation,

it is interesting to note that 0.1 nmol CFT act-k089 can restore
the tear secretion level by administering drops three times a
day (77). Felix et al. conducted pharmacological experiments
on New Zealand white rabbits with CFTR activator cftract-
k267 and found that CFTR channel activation significantly
increased tear production. At the same time, no obvious
long-term toxicity affected the ocular surface after continuous
treatment for 28 days (78). These data further suggest the relative
safety and potential advantages of CFTR-related activators in
DE treatment.

AQPS AND DE

AQPs were previously thought to be selective only to water,
but recent studies have found that they have more complex
regulatory mechanisms and a range of permeability. They
also have characteristics of double water channels and gated
ion channels and play an important role in maintaining the
homeostasis of internal and external balance (21, 79). AQPs
are closely related to the transport of Na+ and K+ on the cell
membrane. They can maintain the osmotic gradient of corneal
cells, further maintain the water balance of corneal cells, and
play an important role in corneal transparency (21, 79). In the
corneal epithelium, aquaporins 3 and 5 (AQP3 and 5) have
been identified (19, 72, 80–82). Tear film hypertonicity and
ocular surface inflammation are the main pathogenic factors
of DE, and the AQP5 protein channel plays a role in the
pathological process. AQPs and anti-AQPs autoantibodies have
been confirmed to be involved in the pathogenesis of Sjögren’s
syndrome (83). Liu et al. reported that AQP5-/- mice can
spontaneously develop DE symptoms, in which AQP5 deficiency
changes the structure of lacrimal gland epithelial cells (84).Mucin
secreted by conjunctival goblet cells (mainly MUC5AC) is a key
condition for tear film stability. The co-immunoprecipitation of
conjunctival AQP5 and MUC5AC suggested a possible physical
interaction between the two molecules in response to acute
DE stress (85). Nakamachi et al. found that pituitary adenylate
cyclase-activating polypeptide (PACAP)–deficient mice can have
DE-like symptoms, such as corneal keratosis and reduced tears.
PACAP eye drops can increase the level of AQP5 in the tear
film and p-AQP5 in the infraorbital lacrimal gland. Inhibition
of AQP5 can reduce PACAP-induced tear secretion (86). In
the study of new DE alternative drugs, it was revealed that
the internal mechanism might be related to the upregulation
of AQP5. Yu et al. found that ambroxol significantly increased
tear secretion and upregulated the expression of AQP5 (87).
AQP5 can also be used as a predictor of DE. Mani et
al. detected that the expression of AQP4 increased and the
expression of AQP5 decreased in conjunctival cells of patients
after vitreoretinal surgery, indicating that the changes in these
factors may suggest the prognosis of surgically sourced DE
(88). Interestingly, Ren et al. found that hyperosmolarity-
induced AQP5 upregulation promoted inflammation and caused
corneal cell apoptosis (89), which seems to be a contradictory
result and may be related to the overall internal imbalance
of AQP5.
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FIGURE 2 | Ion-channels target activating or inhibiting compounds as substrates for these specific receptors affect subsequent ions and intra- and extracellular

information transmission.

PURINE AND PURINERGIC RECEPTORS
AND DE

Purine receptors are widely distributed in neuronal and
non-neuronal cells and mediate important signals such as
cell proliferation, differentiation, and death, and participate
in physiological and pathological activities such as immune
response, exocrine and endocrine, inflammation, pain, platelet
aggregation, and endothelial-mediated vasodilation (20, 90, 91).
Purine receptors mainly include G protein-coupled adenosine
receptors (ARS), P2Y receptors (p2yrs), and ATP-gated P2X
receptor ion channels (p2xrs).

There are few studies on G protein coupled adenosine
receptors (ARS) and P2X receptors in the field of DE (13).
A key adaptive response to tear film hyperosmolarity induced
by excessive evaporation is the reflective release of mucin by
conjunctival goblet cells. The P2X7 receptor/channel is also
activated during continuous extracellular hyperosmolarity. The

activation of P2X7 not only damages the viability of goblet cells
but also enhances exocytosis activity (26).

The P2Y receptor is a purinergic receptor, a G protein
coupled receptor of extracellular nucleotides, and participates
in physiology and pathophysiology, including inflammatory
response and neuropathic pain (92, 93). At present, the P2Y2
subtype in the P2Y receptor (p2yrs) family is closely related to
DEs (13). Research has found that the number of purinergic
receptors P2Y1, P2Y11, and P2Y13 in lacrimal gland MEC
(myoepithelial cells) of TSP1-/- mice (a mouse model of Sjögren’s
syndrome) decreased significantly, and the regulatory ability of
cholinergic agonists, VIP, and purinergic receptors decreased,
accompanied by increased expression of inflammatory factors
(94). Dogru et al. reported that the tear stability, quantity, and
ocular surface health of aged mice decreased with age, but the
mRNA expression level of the P2Y2 receptor in the conjunctiva
increased significantly, which may be used as compensation for
the decline of age-related tear function (95).
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Diquafosol is a purinergic P2Y2 receptor agonist that
stimulates the conjunctiva to secrete water and mucin. It has
achieved positive results in basic and clinical research in the
field of DE. The diquafosol tetrasodium (DQS) was found to
stimulate meibocytes to release lipids through the P2Y2 receptor
and possibly facilitate holocrine secretion in isolated rabbit
Meibomian gland cells (96). Diquafosol significantly reduced the
levels of reactive oxygen species, apoptosis, and inflammation
in corneal cells caused by DE in in vivo and in vitro DE
models (97). In a one-year clinical study, the researchers used
diquafosol to treat 580 patients with DEs for 12 months and
found that it significantly improved the kerato-conjunctival
staining score, tear film break-up time, and Dry Eye-related
Quality of Life Score (DEQS) (98). This demonstrated that
diquafosol 3.0% ophthalmic solution was tolerated well and was
effective in the long-term treatment of DED. Utsunomiya et al.
further confirmed that diquafosol was more effective in patients
with DEs with foreign body sensation and problems when
reading and using visual display terminals (99, 100). In a large
randomized, double-blind clinical study, diquafosol improved
the ocular surface Rose Bengal staining score more than sodium
hyaluronate ophthalmic solution (101).

CONCLUSIONS

As an important intercellular information-mediated pathway,
ion channels play an important role in various physiological and
pathological processes. As the main component of the ocular
surface, many ion channels with various functions exist in the
corneal nerve, corneal epithelium, and conjunctival epithelium.
DE is a common ocular surface disease, and the ion channels play
an important role in its pathogenesis. This review summarized
the current research status and progress of TRP channels, AQPs,
CFTR chloride channels, and purine and purified receptors

closely related to DE. Notably, the development of antagonists
and activators for these key channels may help with their further
popularization and clinical applications. However, from other
studies, we have recognized that there may also be possible
biological functional variability behind relevant antagonists or
activators, which may be related to the overall stability of
the internal environment and the interaction between different
channel signals. The eye surface receptor protein family has
a wide range of members, and its corresponding physiological
functions are also diverse. Selection of the best receptor channel,
finding the best specific receptor channel targeted drugs, and
reducing the impact on other physiological functions will be the
focus areas of ion channel research. Therefore, pharmacologists
need to screen channel-targeted compounds that are more stable,
simple, and have fewer side effects to provide more choices for
the over-the-counter treatment of DE. In conclusion, a new and
broad treatment protocol for treating DEs by developing ocular
surface ion receptor channel-targeted therapy is in our future
(Figure 2).
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