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Hereditary spastic paraplegias (HSPs, SPG1-46) are inherited neurological disorders characterized by lower extremity spastic
weakness. Loss-of-function SPG20 gene mutations cause an autosomal recessive HSP known as Troyer syndrome. The SPG20
protein spartin localizes to lipid droplets and endosomes, and it interacts with tail interacting protein 47 (TIP47) as well as the
ubiquitin E3 ligases atrophin-1-interacting protein (AIP)4 and AIP5. Spartin harbors a domain contained within microtubule-
interacting and trafficking molecules (MIT) at its N-terminus, and most proteins with MIT domains interact with specific
ESCRT-III proteins. Using yeast two-hybrid and in vitro surface plasmon resonance assays, we demonstrate that the spartin
MIT domain binds with micromolar affinity to the endosomal sorting complex required for transport (ESCRT)-III protein
increased sodium tolerance (Ist)1 but not to ESCRT-III proteins charged multivesicular body proteins 1-7. Spartin colocalizes
with Istl at the midbody, and depletion of Istl in cells by small interfering RNA significantly decreases the number of cells
where spartin is present at midbodies. Depletion of spartin does not affect Ist1 localization to midbodies but markedly impairs
cytokinesis. A structure-based amino acid substitution in the spartin MIT domain (F24D) blocks the spartin-Istl interaction.
Spartin F24D does not localize to the midbody and acts in a dominant-negative manner to impair cytokinesis. These data
suggest that Istl interaction is important for spartin recruitment to the midbody and that spartin participates in cytokinesis.

INTRODUCTION

The hereditary spastic paraplegias (HSPs) are a group of
inherited neurological disorders characterized by lower ex-
tremity spastic weakness (Soderblom and Blackstone, 2006;
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Diirr, 2008; Salinas et al., 2008). Classically, the HSPs have
been divided into two forms: “pure” when lower extremity
spasticity and weakness are the only features and “compli-
cated” when additional neurological symptoms are present
(Harding, 1983). More recently, a genetic classification
scheme has come into wide use, with >40 distinct genetic
loci reported (SPG1-46) and 20 genes identified (Dtirr, 2008).
The involved proteins have been subdivided into several
functional groups that may be relevant for cellular patho-
genesis. These groups include neuronal cell recognition and
pathfinding, myelination, mitochondrial function, and intra-
cellular trafficking and transport. Of these, the majority of
proteins mutated in the HSPs seem to be involved in intra-
cellular membrane and protein trafficking and distribution
(Soderblom and Blackstone, 2006).

Troyer syndrome (SPG20; OMIM 275900) is an autosomal
recessive, complicated HSP that presents in early childhood
and is characterized by spastic dysarthria, cognitive impair-
ment, short stature, and distal muscle wasting in addition to
lower extremity spastic weakness (Cross and McKusick,
1967; Proukakis ef al., 2004; Bakowska et al., 2008; Manzini et
al., 2010). To date, there are only two known homozygous
mutations associated with Troyer syndrome. The first mu-
tation is a single base-pair deletion in the Old Order Amish
resulting in a 29-amino acid substitution at the C terminus
and premature truncation of the 666-amino acid protein by
268 residues (Patel ef al., 2002). The second is a two base-pair
deletion in an Omani kindred that results in an amino acid
substitution followed by a stop codon in the first coding
exon (p.M122VfsX1; Manzini et al., 2010). Because cell lines
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derived from Troyer syndrome patients have no detectable protein (AIP)4 and AIP5 as well as the lipid droplet protein
truncated spartin protein, loss of function represents the tail interacting protein (TIP)47 (Eastman et al., 2009; Ed-
likely pathogenesis (Bakowska et al., 2008; Manzini et al., wards et al., 2009; Hooper et al., 2010).

2010). MIT domains of many other proteins interact with com-

Spartin harbors several distinct domains including an N- ponents of the endosomal sorting complexes required for
terminal MIT (contained within microtubule-interacting and transport (ESCRT) machinery, specifically C-terminal MIT-
transport molecules) domain, a —P-P-x-Y- motif, and a less interacting motifs (MIMs) of ESCRT-III proteins (reviewed

well characterized plant-related region at the C terminus in Hurley and Yang, 2008). The ESCRT machinery is a series
(Ciccarelli et al., 2003). Several studies investigating the dis- of multiprotein complexes (ESCRT-0, -I-II, and -III) that
tribution of both overexpressed and endogenous spartin assemble at target membranes. It has been implicated in
have reported localizations to a variety of subcellular struc- several physiological and pathological processes in eu-
tures, including endosomes, midbodies, lipid droplets, and karyotes, including multivesicular body (MVB) formation,
mitochondria (Lu et al., 2006; Robay et al., 2006; Bakowska et membrane abscission during cytokinesis, and human immu-
al., 2007; Eastman et al., 2009; Edwards et al., 2009). Spartin is nodeficiency virus budding (McDonald and Martin-Serrano,
monoubiquitinated (Bakowska et al., 2007) and interacts 2009; Hurley and Hanson, 2010), and defects in the ESCRTs
with the homologous to the E6-AP carboxy terminus do- are associated with neurodegeneration (Lee et al., 2007).
main (HECT) ubiquitin E3 ligases atrophin-1-interacting ESCRT-0, -1, and -II contain ubiquitin-binding domains, sort
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Figure 1. Spastin binds to MIM1 of the ESCRT-III protein Istl. (A) Top, yeast two-hybrid interactions between the spastin MIT domain bait
(residues 110-195) and the indicated ESCRT-III prey constructs were assayed using the HIS3 reporter (sequential 10-fold yeast dilutions are
shown). Bottom, amino acid sequence alignment of the C-terminal MIM domains of CHMP1B and Ist1l. Hydrophobic residues are in green,
positively charged residues are in blue, and negatively charged residues are in red. Conserved residues important for MIM-MIT domain
interactions in several other studies are boxed. (B) Spastin MIT bait was tested for yeast two-hybrid interactions as described in A with the
indicated Istl prey constructs. Boundary amino acid residues are indicated. BD, binding domain. (C) Wild-type spastin and mutant spastin
F124D MIT baits were tested for yeast two-hybrid interactions with the Istl prey. Schematic diagrams of the Ist1 and spastin (M87 isoform)
protein structures are at the top, with amino acid numbers shown. (D) SPR analysis of wild-type or mutant spastin F124D MIT domain
(analyte) binding to immobilized Ist1-CTR or CHMP1B-CTR, as shown.
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ubiquitinated cargo into MVBs, and also may interact with
ubiquitinated proteins in the course of their other functions.
ESCRT-III seems to comprise the core machinery mediating
membrane scission events in all ESCRT-dependent path-
ways (Wollert et al., 2009). C-Terminal MIM1 (Obita et al.,
2007; Stuchell-Brereton ef al., 2007) and MIM2 (Kieffer ef al.,
2008) motifs in ESCRT-III proteins mediate the recruitment
of Vps4, which is responsible for the ATP-dependent disas-
sembly of ESCRT-III after membrane scission. These MIMs
also coordinate the interaction of ESCRT-III proteins with
the microtubule-severing enzyme and SPG4 gene product
spastin (Yang et al., 2008; Connell et al., 2009) as well as
deubiquitinating enzymes and other proteins (Rigden et al.,
2009, and references therein; Hurley and Hanson, 2010).
Spartin and spastin are the only known HSP proteins with
an MIT domain, and both inhibit bone morphogenic protein
signaling (Tsang et al., 2009), indicating that they may have
common interactions. To gain insight into the cellular func-
tion of spartin, we explored whether it interacted with the
ESCRT machinery via its N-terminal MIT domain. Because
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Figure 2. Spartin MIT domain binds selec-
tively to Istl. (A) Yeast two-hybrid interactions
between the spartin MIT domain bait and the
indicated ESCRT-III prey constructs were as-
sayed using the HIS3 reporter (sequential 10-
fold yeast dilutions are shown). (B) Spartin
MIT bait was tested for yeast two-hybrid inter-
actions as described in A with the indicated
Istl prey constructs. Boundary amino acid res-
idues are indicated. Schematic diagrams for
Istl and spartin are shown at the top, with
amino acid residues numbered. BD, binding
domain. (C) Structural model of spartin MIT
domain with Istl MIM. Spartin is colored in
cyan and Istl in orange. Residue Phe24 (F24) in
the spartin MIT domain is shown in green. (D)
Crystal structure of spastin MIT in complex
with CHMP1B, from Yang ef al. (2008). Spastin
is colored in cyan and CHMP1B in orange.
Residue Phel24 (F124) in the spastin MIT do-
main is colored in green. (E) Structural align-
ment model for the spartin (cyan) and spastin
(orange) MIT domains. Spartin residue F24 is Spar Ist1
colored in green and spastin residue F124 is in
yellow. (F) Wild-type and mutant spartin F24D
MIT baits were tested for yeast two-hybrid
interactions with Istl. BD, binding domain. (G)
SPR analysis of wild-type or mutant spartin
F24D MIT domain (analyte) binding to immo-
bilized Ist1-CTR or CHMP1B-CTR.
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Spartin-Ist] Interaction during Cytokinesis

MIT domains interact with ESCRT-III subunits that are
present at both endosomes and midbodies, localization of
spartin to these structures might be predicted. The SPG4
protein spastin harbors an MIT domain with moderate se-
quence similarity to that of spartin and binds with high
affinity to the ESCRT-III subunit charged multivesicular
body protein (CHMP)1B (Reid et al., 2005; Yang et al., 2008;
Connell et al., 2009). The spartin MIT domain, however,
binds neither to CHMP1B nor to any of the other “tradi-
tional” human ESCRT-III proteins CHMP1-7. Recently, the
human orthologue of yeast increased sodium tolerance (Ist)1
was characterized as a novel ESCRT-III-related protein con-
taining MIM1 and MIM2 motifs (Bajorek et al., 2009a; Agro-
mayor ef al., 2009) and an ESCRT-III core (Xiao et al., 2009;
Bajorek et al.,, 2009b). After a systematic analysis of all
known traditional ESCRT-III proteins and Istl, we report a
highly selective, high-affinity interaction of the spartin MIT
domain with Istl. We also demonstrate that Istl recruits
spartin to midbodies. Ist1 plays a role in cytokinesis (Bajorek
et al.,2009a, Agromayor et al., 2009), and the colocalization of
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Istl and spartin at midbodies suggested that spartin also
might play a role in cytokinesis, which we describe in this
study.

MATERIALS AND METHODS

DNA Constructs

The human Ist1 (also known as KIAA(0174) coding sequence (GenBank acces-
sion NM_014761) was cloned into the EcoRI site of the mammalian expression
vector pGW1-HA. Amino acid numbering for Istl throughout the text refers
to isoform 2 (UniProtKB/Swiss-Prot P53990-2), which has an MIM1 sequence
identical to that of the canonical isoform 1 (P53990-1). The eukaryotic expres-
sion construct for HA-tagged spartin was described in Bakowska et al. (2007).
The pBHA-spartin (1-107) and pBHA-spastin (110-195) yeast two-hybrid bait
vectors and the pGAD10 and pGADT? prey vectors for CHMP1-7 also were
described previously (Bakowska et al., 2005; Yang et al., 2008). The full coding
sequence and indicated deletion constructs for Istl were cloned into the EcoRI
or EcoRI/Xhol sites of pGAD10 (Clontech, Mountain View, CA). Site-directed
mutagenesis was performed using QuikChange (Stratagene, La Jolla, CA).

Yeast Two-Hybrid Assays

Yeast two-hybrid assays using the L40 yeast strain were performed as de-
scribed previously (Yang et al., 2008).

Antibodies

Mouse monoclonal antibodies were used against B-tubulin (IgG1, clone D66;
Sigma-Aldrich, St. Louis, MO), actin (clone AC-40; Sigma-Aldrich), phospho-
lipase C (PLC)y-1 (clone B-6-4; Millipore, Billerica, MA), and hemagglutinin
(HA)-epitope (ab9110; Abcam, Cambridge, MA). Rabbit polyclonal antibodies
were used against spartin (Bakowska et al., 2007) and Istl (KIAA0174; Gene-
Tex, Irvine, CA). Mouse polyclonal anti-CEP55 antibodies were obtained from
Abnova (Taipei City, Taiwan). The goat polyclonal anti-glyceraldehyde-3-
phosphate dehydrogenase (GAPDH) antibody was from Abcam.

Cell Culture and Transfection

Human HeLa and U-2 OS osteosarcoma (HTB-96; American Type Culture
Collection, Manassas, VA) cells were maintained in DMEM supplemented
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with 10% (vol/vol) fetal bovine serum at 37°C in 5% CO,-humidified incu-
bators. For confocal microscopy and biochemical studies, cells were tran-
siently transfected with DNA plasmids by using calcium phosphate precipi-
tation for 48 h or with predesigned small interfering RNAs (siRNAs) by using
Oligofectamine (Invitrogen, Carlsbad, CA) for 72 h (Yang et al., 2008). The
siRNA sequences (Invitrogen) used were as follows: Istl #1, 5'-GGGUA-
GAGACAGAUCUUAUUGAUGU-3'; Istl #2, 5'-CCCAUCGUAUGAAUC-
UAUGACAUUA-3'; Ist 1 #3, 5'-CCAGUCAGAAGUGGCUGAGUUGAAA-
3’; and spartin, 5'-GGCAAGGAUUGGAAUGUGCAGCUAA-3" (Bakowska
et al., 2007). Control siRNAs were from Applied Biosystems/Ambion
(Austin, TX).

Confocal Immunofluorescence Microscopy

To observe the midbody, cells plated on coverslips were fixed for 4 min with
ice-cold methanol and blocked for 45 min with 10% goat serum, 0.5% Triton
X-100 in phosphate-buffered saline (PBS; pH 7.4) at room temperature. After
three washes, coverslips were incubated with primary antibodies diluted in
1% goat serum. Alexa Fluor anti-rabbit and anti-mouse secondary antibodies
(Invitrogen) were used at 1:300 dilution. Cells were counterstained with
4’ 6-diamidino-2-phenylindole (DAPI; 0.1 mg/ml) where indicated and
mounted using Fluoromount-G (Southern Biotechnology, Birmingham, AL).
Cells were imaged using an LSM510 confocal microscope (Carl Zeiss Micro-
imaging, Thornwood, NY) with a 63X 1.4 numerical aperture (NA) Plan-
Apochromat oil differential interference contrast (DIC) objective, and image
acquisition was performed using LSM510 version 3.2 SP2 software (Carl Zeiss
Microimaging). Images were processed with Image] (National Institutes of
Health, Bethesda, MD), Photoshop 7.0 (Adobe Systems, Mountain View, CA),
and Illustrator CS2 software (Adobe Systems).

For live-cell imaging experiments, HeLa cells were cotransfected with
spartin siRNA and pmaxGFP (Lonza Walkersville, Walkersville, MD) to label
the transfected cells, and cultured on two-well glass-bottomed chambers
(Lab-Tek IT chamber slides; Nalge Nunc International, Rochester, NY). Time-
lapse recordings were made using an LSM 710 confocal microscope (Zeiss/
PeCon XL LSM 710S1 live-cell incubator system with TempModule S, CO,
Module S1 and Heating Unit XL S; Carl Zeiss Microimaging) fitted under
thermostat conditions (37°C in 5% CO,-humidified chamber). Images were
collected with a 40X 1.4 NA Plan-Apochromat oil DIC objective as one picture
of 1-um Z-stacks at 20-min intervals, together with a single DIC reference
image. Images were exported in 8-bit TIFF format by using Image]J software.

Figure 3. Istl localizes to centrosome and
midbody during mitosis. (A-C) HA-Istl
(green) accumulates at the microtubule-orga-
nizing center/centrosome during prophase,
metaphase (arrowheads), and early anaphase
(A), and at the midbody during late cytokinesis
(A-C). Corresponding images show the local-
izations of B-tubulin (red; B) and CEP55 (red;
C), and merged images are at the right. A DIC
image centered on the midbody is shown in an
inset in B. (D) HeLa cells were costained for
endogenous Istl (green) and B-tubulin (red),
with the merged image at the right. Boxed
areas are enlarged in the panels below. Bars,
10 pm.
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For quantification studies, DIC images were used to determine the timing of
mitosis.

Gel Electrophoresis and Immunoblotting

Preparation of cell extracts, gel electrophoresis, and immunoblotting were
performed as described previously (Zhu et al., 2003).

Epidermal Growth Factor Receptor (EGFR) Degradation
Assay

EGFR degradation assays were performed essentially as described by Ba-
kowska et al. (2007). In brief, HeLa cells were transfected with HA-spartin,
HA-spartin F24D, or empty pGW1-HA vector; serum starved for 16 h; and
then treated with EGF (100 ng/ml) and cycloheximide (10 ug/ml) for the
indicated times. After washing with ice-cold PBS, cells were rapidly lysed
with Laemmli sample buffer; resolved on SDS-polyacrylamide gel electro-
phoresis gels; and immunoblotted for EGFR, HA-epitope, and actin. EGFR
immunoreactive bands were quantified using ImageJ software.

Fusion Protein Production in Bacteria

The expression and purification of CHMP1B C-terminal region (CTR) and
spastin MIT was performed as reported previously (Yang et al., 2008). The
CTRs of human Ist] (residues 296-335) and the spartin MIT domain (residues
1-107) were cloned into pGST2 and pGEX6P-1 vectors, respectively, and
expressed in Escherichia coli Rosetta (DE3) cells. Expression was induced by 1
mM isopropyl-p-p-thiogalactopyranoside at 18°C for 20 h. Cells were then
lysed in PBS with 7 mM B-mercaptoethanol (8-ME) by using sonication.
Lysates were applied to glutathione-Sepharose resin (GE Healthcare, Piscat-
away, NJ) and then washed with PBS with 7 mM B-ME for 50 column
volumes. Glutathione transferase (GST)-Ist1-CTR was eluted from the gluta-
thione-Sepharose resin by using 20 mM glutathione (reduced form) in PBS
with 7 mM B-ME (pH 7.1). The protein was dialyzed in 10 mM HEPES, pH
7.0, with 150 mM NaCl. For the spartin MIT domain, the GST tag was cleaved
on the column by incubating with tobacco etch virus (TEV) protease at room
temperature overnight. The cleaved protein was eluted by PBS with 7 mM
B-ME and then passed through a HisTrap HP column to remove His-tagged
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Figure 4. Spartin localizes to midbodies during
cytokinesis. (A) HA-spartin (green) accumulates
at the midbody during late cytokinesis. Corre-
sponding images show the localization of B-tu-
bulin (red), and merged images are at the right.
The boxed area is enlarged in the panels below.
(B) HA-spartin (green) localizes to the midbody,
as shown with costaining for CEP55 (red). The
merged image is at the right. Boxed area is en-
larged in the panels below. (C) HeLa cells were
stained for endogenous spartin (green) and p-tu-
bulin (red), with the merged image at the right.
Boxed area is enlarged in the bottom panels.
Bars, 10 um.

Telophase

Cytokinesis

Anaphase

Vol. 21, October 1, 2010

Spartin-Ist] Interaction during Cytokinesis

TEV protease. The protein was dialyzed in 20 mM Tris, pH 7.6, with 100 mM
NaCl and 7 mM B-ME.

Surface Plasmon Resonance (SPR)

Binding of MIT domains to CHMP1B-CTR or Istl-CTR constructs was ana-
lyzed using a Biacore T100 instrument at 25°C with a flow rate of 10 ul/min
(Biacore Life Sciences, Piscataway, NJ). Hexahistidine-tagged CHMP1B-CTR,
GST-tagged Istl-CTR, and GST samples were immobilized by first being
diluted in 10 mM acetate buffer, pH 4.0 and then passed over a CM5 chip that
had been activated with a 1:1 mixture of N-hydroxysuccinimide and 1-ethyl-
3-(3-dimethylaminopropyl)carbodiimide at a flow rate of 10 ul/min. After the
immobilization step, the CM5 surface was blocked using 1 M ethanolamine,
pH 8.5. Binding studies were performed by passing the spartin or spastin MIT
domains over the chip surface at a flow rate of 10 ul/min. The surface was
regenerated with an injection of 10 mM glycine-HCI, pH 2.2, at a flow rate of
10 pl/min for 30 s. The reference cell contained immobilized recombinant
GST. The data were fit with the following equation:

R = RynaxIMIT]/ (K4 + [MIT]) + offset

where [MIT] is the protein concentration of the flowing analyte, K4 is the
dissociation constant, R,,, is the maximal response, and “offset” is the
background signal. Data were processed using BiaEvaluation (Biacore Life
Sciences) and SigmaPlot software (Systat Software, San Jose, CA).

Protein Content Determination

Protein content was assessed using the bicinchoninic acid assay (Pierce Chem-
ical, Rockford, IL), with bovine serum albumin as the standard.

Statistical Analysis

Statistical significance was assessed using two-tailed, unpaired Student’s t
tests, assuming unequal variance.

Tubulin
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RESULTS

Spastin has been recently shown to interact with Ist1 as well
as with CHMP1B. We investigated this interaction by using
yeast two-hybrid tests, and we confirmed the specificity of
these interactions (Figure 1A). Similar results were observed
using just C-terminal domains of the ESCRT-III proteins
(Supplemental Figure S1A). This may be because residues
important for the spastin-CHMPI1B interaction are con-
served in Istl (Figure 1A). We were able to narrow down
this interaction to the C-terminal 26 amino acid residues of
Istl, making up the region known as MIM1 (Figure 1B). A
structure-based mutation that interfered markedly with
spastin-CHMP1B binding (Yang et al., 2008), F124D, also
substantially inhibited interaction with Istl, as shown by
yeast two-hybrid analysis (Figure 1C). Analogous results
were obtained for the interaction of spastin with Ist1 by SPR;
wild-type and F124D mutant spastin MITs interacted with
Kq = 4.6 £ 0.1 and 471 = 16 uM, respectively (Figure 1D).

The spartin MIT domain has no known interactions with
ESCRT-III proteins, but it is most similar to the MIT domain
of the SPG4 protein spastin. We investigated the interactions
of spartin MIT with the 12 known human ESCRT-III sub-
units, making up CHMP1-7 and Istl, by using yeast two-
hybrid tests. The spartin MIT domain interacted robustly
with Istl but not with any other ESCRT-III proteins, includ-
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(CTRs) of ESCRT-III proteins act as autoinhibitory switches
(Bajorek et al., 2009b), we considered the possibility that
using isolated C-termini of other ESCRT-IIIs might uncover
weaker interactions. However, only the Istl CTR interacted
with the spartin MIT domain (Supplemental Figure S1B), as for
the full-length proteins shown in Figure 2A. The C-terminal
MIM1 domain (residues 310-335 in isoform 2) was both neces-
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findings for interaction with the spastin MIT (Figure 1B).

In the solution structure of the human spartin MIT do-
main (Protein Data Bank accession code 2DL1), Phe24
(Phe23 in 2DL1 numbering) is in the same three-dimensional
position as Phel24 in spastin, with the spartin Phe24 side
chain rotated to fill the void left by the absence of the
CHMP1B MIM helix in the spastin MIT-CHMP1B MIM
structure (Yang et al., 2008; Figure 2, C-E). This conserved
Phe residue is critical for interactions of the spastin MIT with
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by using SPR and obtained a K; = 10.4 = 0.3 uM. Consistent
with the yeast two-hybrid results, no interaction between
spartin F24D MIT and Ist]l was detected using SPR (Figure
2G). Thus, spartin F24D is unable to interact with Istl. Al-
though CHMPI1B interacts robustly with the spastin MIT
domain (Yang et al., 2008), the spartin MIT domain shows no
interaction with CHMP1B in yeast two-hybrid tests or in
vitro (Figure 2, A and G).

Because spartin is modified by monoubiquitination (Ba-
kowska et al., 2007), we examined whether interaction with
Istl is required for this modification in HeLa cells. HA-
tagged spartin F24D was monoubiquitinated to a similar
extent as HA-tagged, wild-type spartin (Supplemental Fig-
ure S2A), indicating that interaction with Ist1 is not required
for spartin monoubiquitination. Both spartin overexpression
and depletion by siRNA have been shown to decrease EGFR
degradation (Bakowska et al., 2007; Edwards et al., 2009),
indicating that overexpressed spartin might act in a domi-
nant-negative manner by binding to proteins outside of the
proper cellular context, consistent with its proposed role as
an adaptor protein (Bakowska et al., 2007; Edwards et al.,
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2009). Overexpression of HA-spartin F24D had a significant
effect on EGFR degradation compared with control cells or
those overexpressing wild-type spartin (Supplemental Fig-
ure S2, B and C; Bakowska et al., 2007). However, similar to
a recent study, we found no significant difference in EGFR
degradation upon suppression of Istl expression by using
siRNA (Supplemental Figure S2, D-F; Agromayor et al.,
2009), suggesting that the observed effects of spartin on
EGEFR degradation do not require interaction with Istl.
Given the lack of significant effect of the spartin-Istl in-
teraction in EGFR degradation, we sought to establish fur-
ther the functional importance for the interaction of Istl and
spartin in cells. Thus, we examined the distribution of Istl
and spartin in HeLa cells during different stages of the cell
cycle. Consistent with previous reports (Bajorek et al., 2009a;
Agromayor et al., 2009), HA-tagged Istl was found within
the microtubule-organizing center/centrosome during the
cell cycle, with this distribution particularly evident from
prophase through anaphase (Figure 3A). In addition, Istl
appeared at the midbody during late cytokinesis, before
abscission (Figure 3, B and C). Istl immunostaining was
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control for protein loading (left). Quantification of the percentage of control and Istl siRNA cells with spartin (middle) or Istl (right) present
at midbodies (means * SD of at least three trials, with 100 cells per experiment). (D-G) Quantifications of cells prepared as described in C
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(G). Means * SD of at least three trials are shown, with 100 cells per experiment. **p < 0.001. Bars, 10 um.
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usually concentrated at both ends of the Flemming body,
which was most evident when immunostaining was per-
formed for endogenous Istl (Figure 3D). Similar localization
studies investigating HA-spartin showed more diffuse dis-
tributions of immunoreactive puncta throughout the cell
cycle, although there was a clear localization to the midbody
during late cytokinesis before abscission in HeLa cells (Fig-
ure 4A). Specifically, immunoreactivity for both HA-spartin
and endogenous spartin typically concentrated at the ends
of the Flemming body (Figure 4, B and C). The localization
of endogenous Istl and spartin at the ends of the Flemming
body also was clearly observed in another human cell type,
U-2 OS cells (Supplemental Figure S3).

Given the high-affinity interaction of spartin and Istl and
their similar distribution at the ends of the Flemming body
during cytokinesis, we examined their roles in recruitment
to midbody. In cells depleted of Istl by using siRNA, there
was a significant loss of both spartin and Istl at midbodies
(Figure 5, A—C). Consistent with previous reports (Bajorek et
al., 2009a; Agromayor et al., 2009), Istl depletion caused a
significant increase in the number of multinucleated cells,
indicating a clear impairment in cytokinesis (Figure 5, D and
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E). By contrast, depletion of spartin by using siRNA had
no effect on Istl localization to the midbody even when
the proportion of cells with spartin at the midbodies was
significantly down-regulated (Figure 6, A-C). Similarly,
depletion of spartin had no effects on the midbody localiza-
tion of CHMP1B (Supplemental Figure S4A). Although de-
pletion of spartin resulted in no significant differences in
number of mitotic cells or interphase cells (Figure 6, D and
E), the number of cells interconnected by a midbody and the
number of multinucleated cells were both increased (Figure
6, F and G). Together, these studies indicate that although Ist1
is required for spartin localization to the midbody, spartin is
not required for the midbody localization of Istl. In cells de-
pleted of either Istl or spartin, the number of multinucleated
cells was substantially increased, consistent with a defect in
cytokinesis. The Flemming body itself was consistently visible
on DIC imaging (Figure 6B), indicating that any localization
changes are not secondary to disruption of midbody structure.

To examine in more detail the effects of spartin depletion
on cytokinesis, we conducted live imaging experiments. Al-
though cytokinesis occurred normally in control siRNA cells
(Figure 7A, top; and Supplemental Video 1), spartin-de-

Figure 7. Spartin depletion inhibits the ab-
scission phase of cytokinesis. (A) HeLa cells
transfected with control or spartin-specific
siRNA were imaged live at the indicated times
(in minutes). Bars, 10 um. (B) Quantification of
the time required to complete cytokinesis (12
cells/condition). *p < 0.001. (C) Plot of cleav-
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60 80 age furrow diameter over time after anaphase
onset (10 cells/condition, means * SD).
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Figure 8. Spartin F24D does not localize to mid-
bodies and causes dominant-negative impair-
ment in cell division. (A) HA-spartin F24D
(green) does not accumulate at the midbody dur-
ing cytokinesis in HeLa cells. Corresponding im-
ages show the localization of B-tubulin (red), and
merged images are at the right. The boxed area is
enlarged in the panels below. (B) Multinucleated
cells, with nuclei identified using DAPI staining
(blue), were frequently seen upon HA-spartin
F24D expression (green). B-Tubulin staining is
shown in red. (C) Quantification of the percent-
age of multinucleated cells upon expression of
empty vector, HA-spartin, HA-spartin F24D, and
HA-Istl (means = SD of at least three trials, with
100 cells/experiment). **p < 0.001 for wild type
(WT) versus F24D. Bars, 10 um.

Telophase

Cytokinesis

pleted cells showed failure of abscission (Figure 7A, middle;
and Supplemental Video 2) as well as extension of the ab-
scission phase (Figure 7A, bottom; and Supplemental Video
3). Overall, time to complete cytokinesis was substantially
increased in cells lacking spartin (Figure 7B), but there was no
significant difference in formation or ingression of the cleavage
furrow in these cells, as assessed by changes in furrow diam-
eter over time after the onset of anaphase (Figure 7C).

Because spartin F24D is unable to bind Istl or localize to
midbodies (Figures 2, F and G, and 8A), we investigated the
effects of spartin F24D overexpression on cytokinesis. There
was a dramatic increase in the number of multinucleated
cells in HA-spartin F24D expressing cells, compared with
control cells and cells overexpressing either wild-type HA-
spartin or HA-Istl (Figure 8, B and C). Overexpression of
spartin F24D had no effect on Ist1 or CEP55 localization to the
Flemming body (Supplemental Figure S4B). Spartin F24D
probably exerts a strong dominant-negative effect on cytokine-
sis by interacting with other proteins and sequestering them
from Istl interactions at the midbody or elsewhere.

DISCUSSION

In this study, we have demonstrated the high-affinity, selec-
tive interaction of the MIT domain of the spartin protein that
is mutated in Troyer syndrome (SPG20) with the MIM1 of
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the ESCRT-III protein Istl. The in vitro affinity of the spartin
MIT domain with the Istl MIM1, with a K4 of ~10 uM, is
among the highest known for MIT-MIMI interactions,
which are typically in the range of K of ~30-35 uM (Obita
et al., 2007, Stuchell-Brereton et al., 2007) and similar to the
affinity of the extended spastin MIM1 for CHMP1B (Yang et
al., 2008). Given the importance of the Phel24 residue in the
spastin MIT-CHMP1B complex (Yang et al., 2008) and that
this residue is conserved in the spartin MIT domain, we
investigated the role of this residue in the spartin-Ist1 inter-
action and found that mutation of this residue in spartin
(F24D) abolished the interaction with Istl. Despite that this
conserved Phe is critical for interactions of both spastin and
spartin MIT domains with Istl as well as the spastin MIT
interaction with CHMP1B (this study and Yang et al., 2008),
the two MIT domains show exquisite discrimination in
terms of CHMP1B MIM interaction. The spastin MIT binds
CHMPI1B robustly, with a K4 of ~12 uM (Yang et al., 2008),
but the spartin MIT does not interact at all with CHMP1B
(Figure 2, A and F), indicating that other residues are critical
for this discrimination.

The interaction with Istl provides support for previous
studies localizing spartin to endosomes, because Ist1 in Sac-
charomyces cerevisiae interacts with Did2 (analogous to hu-
man CHMP1A,B) and is a positive component of the MVB-
sorting pathway (Dimaano et al., 2008; Rue et al., 2008). Thus,
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we suggest that spartin also may have a modulatory effect
on MVB sorting in mammalian cells through interaction
with Istl but that interaction with Istl is not required for this
effect (Bakowska et al., 2007; Edwards et al., 2009).

A recurring theme in several studies investigating spartin
localization is its recruitment to various cellular compart-
ments. For example, spartin is recruited to lipid droplets
upon treatment with oleic acid (Eastman et al., 2009; Ed-
wards ef al., 2009) and to endosomes upon treatment with
EGF (Bakowska et al., 2007; Edwards et al., 2009). The specific
recruitment of spartin to midbodies by Istl discovered here
fits this scheme well, because like other ESCRT-III proteins
Istl is probably present in an autoinhibited conformation in
cells (Bajorek et al., 2009b), and the autoinhibition may be
released as ESCRT-III forms multimeric circular arrays dur-
ing cytokinesis (Hanson et al., 2008), permitting interactions
of ESCRT-III MIMs with MIT domain-containing proteins
such as Vps4 and spartin. Based on the prominent impair-
ment of cytokinesis in cells depleted of spartin as well as in
cells overexpressing spartin F24D, we suggest that spartin
may serve as an adaptor platform for recruitment of other
proteins important for the abscission phase of cytokinesis.
For example, overexpression of a dominant-negative form of
the deubiquitinating protease UBPY, which also binds Ist1,
similarly leads to the appearance of multinucleated cells
(Agromayor et al., 2009). This is consistent with a require-
ment for ubiquitin modification at the midbody for efficient
cytokinesis (Pohl and Jentsch, 2008). The spartin interaction
with Istl we report here, in conjunction with previous re-
ports that spartin interacts with E3 ubiquitin ligases (AIP4
and AIP5) and is both monoubiquitinated and binds ubig-
uitin (Bakowska et al., 2007; Eastman et al., 2009; Edwards et
al., 2009), provides additional support for the participation
of spartin in an ubiquitin-based regulatory network during
cytokinesis.

Importantly, this study provides pathogenic insights into
mechanisms underlying the hereditary spastic paraplegias.
Both the SPG4 protein spastin and SPG20 protein spartin
interact with the ESCRT-III protein Istl. In addition, recent
studies of the SPG15 protein FYVE-CENT have identified an
interaction of FYVE-CENT with ESCRT complex via FYVE-
CENT interactions with the TTC19 protein that in turn in-
teracts with the ESCRT-III protein CHMP4B (Sagona et al.,
2010). Together, these findings suggest a converging path-
way implicating the ESCRT complex in many different
forms of hereditary spastic paraplegia. It will be important
to determine whether this has specific functions in develop-
ment or maintenance of axons in neurons.
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