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Psoriasis is a frequent, chronic disease characterized by cutaneous inflammatory plaques
and/or arthritis. It may be associated with few other diseases, mainly Crohn’s disease and
metabolic syndrome. The medical and psychosocial burden of psoriasis remains high
even since biological treatments arose, stressing that efforts to decipher its
physiopathology are constantly needed. Tumor-necrosis factor a, interleukin (IL) 12 and
IL17 have been previously associated with psoriasis and successfully targeted by
monoclonal antibodies. IL17 in particular has been initially described as a T helper (Th)
17—produced cytokine, but it is now established that other cell types, such as gd T
lymphocytes, Mucosal-Associated Invariant T (MAIT) cells and Innate Lymphoïd Cells (ILC)
3 are also important sources of IL17 in the skin in response to inflammatory stimuli. Th17
phenotype has been shown to be stabilized by IL23, which is synthetized by
macrophages and dendritic cells in response to Toll Like Receptors and C-type Lectin
Receptors stimulation. Recent data also reported a crucial role for IL23 in MAIT17 and
ILC3 homeostasis. Genome-wide association studies have found a significant link
between IL23 receptor polymorphism and psoriasis susceptibility. IL23 signals through
Janus kinase 2 and Tyrosine kinase 2, against which specific inhibitors are currently being
tested. Monoclonal antibodies against IL17 and IL23 are only the beginning of a new
avenue in psoriasis treatment. This review focuses on the molecular basis underlying IL23/
IL17 axis blockade in psoriasis, and on future targets in this pathway.

Keywords: IL23, IL17, psoriasis, skin, Th17
INTRODUCTION

Psoriasis is a chronic inflammatory disease involving the skin and/or the joints. Psoriasis prevalence
in adults ranges from 0.51 to 11.43% worldwide (1) but is mainly considered to affect 2–3% of the
population, with similar frequency in males and females (2). Skin lesions are featured by relapsing
cutaneous erythro-squamous patches in its most frequent form, namely psoriasis vulgaris (PV).
These will target electively peculiar locations such as scalp, palms and soles but also sacrum or large
folds. Arthritis (PA, psoriatic arthritis) is associated to skin lesions in 1 to 15% of psoriasis patients
(3). Of note, PA may either concern the peripheral articulations being therefore close to the
org February 2021 | Volume 12 | Article 6219561
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characteristics of rheumatoid arthritis or in the contrary involve
the spine, close to ankylosing spondylitis.

Psoriasis belongs to the spectrum of autoinflammatory
diseases. Even in psoriasis without PA, its medical and
psychosocial burden is high. Indeed, several studies using
robust tools indicate that in all countries psoriasis may severely
affect the quality of life (QOL) of these patients (4). In addition,
psoriasis is significantly associated with metabolic syndrome,
cardiovascular comorbidities and more rarely Crohn’s
disease (5).

Since the 1990s, genetic and immunological studies have
impressively dissected the mechanisms of psoriasis. Briefly, the
disease appears to result from the interaction of genetic
background and environmental triggers. Susceptibility loci
mainly belong to HLA class I and II genes but also to various
genes implicated in interleukin (IL) 17, IL23 and nuclear factor-
kappa B (NFkB) pathways. In susceptible individuals, especially
in response to physical traumatisms, autoantigens from
keratinocytes, such as DNA, conjugate with anti-microbial
peptides like cathelicidin/LL-37 (6), and activate plasmacytoid
dendritic cells (pDCs) in the dermis. pDCs then secrete type I
interferon and tumor-necrosis alpha (TNFa), which will activate
classical dendritic cells (cDCs). These cDCs will produce IL12
and IL23, and skew the education of naïve T cells into T helper
(Th) 1, Th17 and Th22 cells. Tumor-necrosis alpha (TNFa),
IL17, and IL22 produced by these CD4+ T cells will then
promote secretion of pro-inflammatory chemokines by
keratinocytes, proliferation of epithelial cells and hyperkeratosis,
and the recruitement of more inflammatory immune cells,
accounting for the erythemato-squamous clinical lesions (7).

Resulting from this knowledge, targeted therapies have been a
turnover in the management of psoriasis. TNFa blocking agents
have initially paved the way, followed by monoclonal antibodies
directed against IL12/23, IL17, and IL23. This highlights the
crucial role of the IL17/23 cytokine pathway in psoriasis
pathogenesis. Constant efforts are required to decipher the
molecular mechanisms behind this disease, since new
treatments are still needed for refractory and severe cases.
GENETIC VARIANTS HIGHLIGHT
CRITICAL IMMUNOLOGICAL PATHWAYS

Heritability might account for as much as 68% of psoriasis
susceptibility in Europeans (8). The first genetic linkage
analyses in familial psoriasis (9) demonstrated the role of
major histocompatibility complex alleles, mainly HLA-C*06:02,
and were further confirmed by genome-wide association studies
(GWAS) (10). Further insights into psoriasis genetics confirmed
the importance of several immunological pathways among
variants (11). Various mutations activating the pro-
inflammatory NFkB pathway downstream of IL17 receptor
(IL17R), such as in TRAF3 Interacting Protein 2 (TRAF3IP2),
which encodes ACT1, a protein that allows signal transduction
from the IL17R and downstream activation of NFkB, in CARD14
(an activator of NFkB), and in TNFAIP3 (tumor necrosis factor
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alpha induced protein 3, also called A20) and TNFAIP3
Interacting Protein 1 (TNIP1), have also been associated with
an increased risk of developing psoriasis by GWAS studies, in
Asian and Caucasian populations (10, 12–20).

Th17 lymphocytes are a major source of IL17, and they
require IL23 to maintain their phenotype and to produce large
amounts of IL17 (21–24). Polymorphisms in both subunits of
IL23, IL23A(p19) and IL12B(p40), and in IL23R, have been
associated with an increased risk of psoriasis in North
Americans, Europeans and Asians (10, 12, 25). Signaling
downstream of IL23 requires the signal transducer and
activator of transcription protein 3 (STAT3). Polymorphisms
have also been found by a GWAS meta-analysis in this gene (13).
Interferon regulatory factor 4 (IRF4), another gene whose
variants are associated with psoriasis (13), encodes a
transcription factor that binds to the IL17 promoter and
regulates Th17 pathogenic properties (26, 27). IRF4 also drives
the differentiation of conventional dendritic cells (cDCs) into
cDC2, which produce IL23 and promote Th17 (28, 29).

Eventually, clues for the implication of other sources of IL17
than Th17 in psoriasis pathogenesis may also be suggested by the
association of Runt-related transcription factor 3 (RUNX3)
polymorphisms to psoriasis susceptibility (13). RUNX3 is
indeed a critical transcription factor for innate lymphoid cells
(ILC), in particular for ILC3, the IL17 producing subset (30).

The vast majority of available genetic association studies
highlight the role of the immune system in the pathophysiology
of psoriasis. Even if some other genes such as IL-36 receptor
antagonist (IL-36RN) are implicated (31, 32), the IL-17/23 axis
seems to play a cardinal role.
IL17 AS A CENTRAL EFFECTOR
IN PSORIASIS

An extensive amount of evidence now places IL17 as a key player
in psoriasis pathogenesis (33, 34). In addition to genetic
association studies, the efficacy of monoclonal antibodies
targeting IL17 is a strong argument for the implication of this
cytokine (35, 36).

Six isoforms of IL17 exist, and IL17A and IL17F are deemed
to be the most pathogenic in psoriasis (37). IL17 receptors are
heterodimers of IL17RA and a ligand specific subunit (IL17RB–
E). IL17 receptors are widely expressed on epithelial cells (38).
Upon the recognition of its ligand, IL17R recruits ACT1, which
binds to tumor necrosis factor receptor 6 (TRAF6) (20).
Downstream signaling involves mitogen activated protein
kinase (MAPK), NFkB and C/EBPb/d pathways (19, 39–41).
IL17 drives secretion of inflammatory chemokines, cytokines and
antimicrobial peptides by keratinocytes, such as chemokine (C-C
motif) ligand 20 (CCL20), IL-8 and b-defensin2 (42–45). IL17
indeed seems to play a key role in skin local immunity, as inborn
deficiencies of IL17 or IL17R are responsible for chronic
mucocutaneous candidiasis in humans (46). Pro-inflammatory
mediators then recruit more Th17 lymphocytes, for example
through CCL20/CCR6 signaling (47), and neutrophils, and
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increase local inflammation, resulting in the erythematous
lesions characteristic of psoriasis.

Th17 cells were the first described source of IL17 (21, 48) and
as such have been implicated in the pathogenesis of psoriasis
(49). Th17, along with Th1, are found in the dermis of psoriatic
lesions, and produce IL17 and IL22 (50), which in turn drives
inflammatory and antimicrobial molecules secretion by
keratinocytes (51). In mice, Th17 differentiate from naïve T
CD4+ lymphocytes upon IL6 and transforming growth factor b
stimulation; this process is amplified by IL1b and TNFa. Th17
cell survival and expansion depends on IL23 (21). IL23R is
induced in Th17 by IL6 signaling through Janus kinases (JAK)
JAK1, JAK2 and tyrosine kinase 2 (TYK2), STAT3 and RAR-
related orphan receptor gamma t (RORgt) (52–54). IL23 signals
through JAK/STAT3, resulting in enhancement of the Th17
phenotype (22). In humans however, Th17 require IL23 and
IL1b for their differentiation (51). Keratinocytes also produce
cytokines such as IL1b which amplifies Th17 generation (55).

Of note, Th17 are not the only source of IL17 in psoriasis.
Other innate subsets, such as unconventional T cells, produce
this key cytokine and might represent new therapeutic
targets (56).

Innate Cells Are Key Sources of IL17
Gamma delta T lymphocytes (Tgd) are abundant innate-like T
lymphocytes in the dermis. They can be divided into T-box
expressed in T cells+ (T-bet)+, IFNg-producing Tgd and RORgt
+, IL17-producing Tgd (57–59). The IL17-producing subset
predominates in the dermis, expresses IL23R, depends on
STAT3 signaling and is a major source of pathogenic IL17 in
psoriasis (60–62).

Mucosal-associated invariant T cells (MAIT) are recently
characterized innate-like T lymphocytes which recognize
metabolites produced by bacteria and fungi. They are
abundant in barrier tissues and especially in the skin. Although
rare in mice, they represent 1–10% of T lymphocytes in human
blood, skin and intestine (63–65). In mice, they are also divided
into MAIT1 and MAIT17 subsets, expressing T-bet and RORgt
and producing IFNg and IL17, respectively (66). MAIT17 rely on
IL23 for their homeostasis and activation (67, 68) and are
enriched in psoriatic skin lesions (64).

Another important type of unconventional cells are innate
lymphoid cells (ILC). They have a lymphoid morphology, do not
rely on recombination-activating genes (RAG) for their
development, and lack myeloid, dendritic and T/B markers.
Type 1 ILC encompass NK cells and ILC1, express T-bet and
secrete IFNg; ILC2 are characterized by GATA3 expression and
IL5 and IL13 secretion; while ILC3 express RORgt and require
IL23 to produce IL17 (69). ILC3 - like Th17 cells, IL17-producing
Tgd cells and MAIT17 cells - are increased in blood and
cutaneous lesions of psoriasis patients (70, 71).

Several reports of IL17 secretion by neutrophils through
extracellular traps production in psoriasis have been published
(72–74). Neutrophils seem to express IL23R and RORgt (75), but
their contribution to IL17 production in psoriasis is still
largely unknown.
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Eventually, keratinocytes themselves are able to produce
IL17C, enhancing inflammation in psoriasis in an autocrine
way (37, 44, 76, 77).

IL23 Is a Key Regulator of IL17 Production
In many IL17-producing cell types, IL23 plays a pivotal role in
IL17 secretion (78). IL23 induces Th17 phenotype in humans
(51) or maintains this phenotype in mice (21–24). IL23 is
required for IL17 production by skin Tgd (62), MAIT17 (67,
68), ILC3 (69) and maybe by neutrophils (75). The receptor for
IL23 is a heterodimer of IL23R, which signals through JAK2, and
of IL12Rb1, which signals through TYK2. Both activate STAT3,
resulting in RORgt expression and IL17 secretion (22, 79).

It seems that in the gut, contrary to the skin, IL17 might play a
protective role on the epithelial barrier, and its secretion seems to
be at least partially IL23-independent (80). This difference may
account for the worsening of Crohn’s disease symptoms in
psoriasis patients treated with antiIL17, which is not found so
far during IL23 blockade (81).

IL23 is mostly produced by cDC2 in mice, which correspond
to CD1c+ DC in humans. cDC2 are driven by the transcription
factor IRF4 and promote Th17 differentiation in mice and
humans (29). This IL23 production depends on Toll Like
Receptors and C-type Lectin Receptors stimulation, and
neurogenic locus notch homolog protein 2 (NOTCH2)
signaling, in different models of inflammation including
psoriasis (51, 82, 83).

The whole IL23/JAK/STAT3/RORgt/IL17 pathway plays a
central role in psoriasis pathogenesis and is a key target of many
recent and developing treatments for psoriasis.

Targeting the IL23/IL17 Axis in Psoriasis
The development of new psoriasis treatments has nicely
demonstrated in vivo the essential role of the IL23/IL17 axis in
psoriasis (Figure 1). Ustekinumab, an antip40 (common to IL12
and IL23) antibody, represented the second generation of
monoclonal antibodies developed in psoriasis after antiTNFa
antibodies. It induces a nonspecific inhibition of Th1 and Th17
with a high efficiency (Psoriasis Area Severity Index
improvement ≥ 75% (PASI75) at week 12: 67%), but that is
reached slowly, usually in 3–6 months (84–86).

More recently, a third generation of monoclonal antibodies
became available: secukinumab and ixekizumab targeted IL17A,
whereas bimekizumab blocked both IL17A and IL17F and
brodalumab inhibited IL17R. Their efficacy was also high
(PASI75 at week 12: 77–86%) but reached much faster, in 1–3
months (35, 36, 87–89). However, unexpected flare-ups of
Crohn’s disease happened in a minority of patients, whereas it
was not the case during TNFa and IL12/IL23 inhibition (81, 90).
Even if this over-risk is not fully confirmed (91), several studies
now suggest that IL17 might play a protective role in the gut,
where secretion by Tgd and ILC3 might predominate, whereas
IL17 is endowed with pro-inflammatory functions in the skin
(44, 80, 92). Other expected side effects include diffuse
candidiasis, as suggested by studies from inborn errors in IL17
signaling (46). A warning about suicide risk restricted to
February 2021 | Volume 12 | Article 621956
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brodalumab (93) has been described but does not seem to be
confirmed by more recent follow-ups.

The latest generation of monoclonal antibodies in psoriasis is
represented by specific antiIL23 treatments such as guselkumab,
rizankizumab, tildrakizumab and mirikizumab. Their efficacy is
very high (PASI90 at week 16: 67–75%) and reached as quickly as
when using antiIL17 antibodies, but without the previous side
effect of IBD flare (94–99).

New therapeutic strategies in psoriasis now tend toward small
molecules targeting JAKs, in order to prevent signaling
downstream of IL23 and IL6. Tofacitinib, which blocks JAK1,
JAK2 and JAK3, is tested in several clinical trials (100–105). Results
are interesting but side effects, especially cytopenias, are pushing
toward more selective JAK inhibitors (106). Specific TYK2
inhibitors are also under development, with an encouraging
phase II trial (107), and several phase III trials ongoing
(ClinicalTrials.gov identifiers NCT04036435, NCT03924427,
NCT04167462, NCT03624127, and NCT03611751). Masitinib,
the TYK c-kit inhibitor, is also undergoing a phase II trial
(ClinicalTrials.gov identifier NCT01045577).
Frontiers in Immunology | www.frontiersin.org 4
Inhibitors of RORgt are also under development, with an
ongoing phase II trial (ClinicalTrials .gov identifier
NCT04207801) while another one was terminated for adverse
events (ClinicalTrials.gov identifier NCT03329885). RORgt
inhibition could be relevant as it does not seem to affect Tgd
nor ILC3, which could spare the protective role of IL17 on the
intestinal barrier (78, 108). Concerns about a risk of deep
immunosuppression have been raised since RORgt is required
at the early stage (double positive stage) of thymic development
for all T lymphocytes (109, 110). Opportunist candidiasis and
mycobacterial infections might also be a concern, since they are
encountered in patients with inborn deficiencies in RORgt (111).
Finally, conditional knock-out mice for RORgt develop
lymphomas (112), which are thus closely monitored in
clinical trials.

A promising strategy might be to use the topical route to
avoid these potential serious side effects. Topical tofacitinib has
shown promising results in a phase II trial (113). A topical
formulation of a JAK1 and TYK2 inhibitor is currently
undergoing a phase II trial (ClinicalTrials.gov identifier
FIGURE 1 | IL23/IL17 axis in psoriasis and targeted therapies. CCL20, chemokine (C-C motif) ligand 20; cDC, classical dendritic cell; IFNa, interferon alpha; IL,
interleukin; IL17R, IL17 receptor; ILC, innate lymphoid cell; JAK, Janus kinase; JAKi, JAK inhibitor; MAIT, mucosal associated invariant T cell; MAPK, mitogen
activated protein kinase; NFkB, nuclear factor-kappa B; pDC, plasmacytoid dendritic cell; RORgt, RAR-related orphan receptor gamma t; RORgti, RORgt inhibitor;
STAT, signal transducer and activator of transcription protein; Tgd, gamma delta T lymphocyte; Th, T helper lymphocyte; TNFa, tumor necrosis factor alpha; TYK,
tyrosine kinase; TYKi, TYK inhibitor. Created with BioRender.com.
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NCT03850483). Topical RORgt inhibitors are still in phase I or
preclinical development (114, 115).
CONCLUSION

IL23/IL17 axis plays a crucial role in psoriasis. Innate-like
sources of IL17, such as Tgd, MAIT and ILC3 are broadening
the scope of pathogenic cells beyond classical Th17. Therapeutic
Frontiers in Immunology | www.frontiersin.org 5
targets now encompass IL23, JAK, RORgt and IL17 steps in this
pathway, opening new avenues for resistant psoriasis treatment.
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