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Background: Acute rheumatic fever (ARF) is a serious sequela of Group A Streptococcus
(GAS) infection associated with significant global mortality. Pathogenesis remains poorly
understood, with the current prevailing hypothesis based on molecular mimicry and the
notion that antibodies generated in response to GAS infection cross-react with cardiac
proteins such as myosin. Contemporary investigations of the broader autoantibody
response in ARF are needed to both inform pathogenesis models and identify new
biomarkers for the disease.

Methods: This study has utilised a multi-platform approach to profile circulating
autoantibodies in ARF. Sera from patients with ARF, matched healthy controls and
patients with uncomplicated GAS pharyngitis were initially analysed for autoreactivity
using high content protein arrays (Protoarray, 9000 autoantigens), and further explored
using a second protein array platform (HuProt Array, 16,000 autoantigens) and 2-D gel
electrophoresis of heart tissue combined with mass spectrometry. Selected autoantigens
were orthogonally validated using conventional immunoassays with sera from an ARF
case-control study (n=79 cases and n=89 matched healthy controls) and a related study
of GAS pharyngitis (n=39) conducted in New Zealand.

Results: Global analysis of the protein array data showed an increase in total autoantigen
reactivity in ARF patients compared with controls, as well as marked heterogeneity in the
autoantibody profiles between ARF patients. Autoantigens previously implicated in ARF
pathogenesis, such as myosin and collagens were detected, as were novel candidates.
Disease pathway analysis revealed several autoantigens within pathways linked to arthritic
and myocardial disease. Orthogonal validation of three novel autoantigens (PTPN2, DMD
and ANXA6) showed significant elevation of serum antibodies in ARF (p < 0.05), and
further highlighted heterogeneity with patients reactive to different combinations of the
three antigens.
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Conclusions: The broad yet heterogenous elevation of autoantibodies observed
suggests epitope spreading, and an expansion of the autoantibody repertoire, likely
plays a key role in ARF pathogenesis and disease progression. Multiple autoantigens may
be needed as diagnostic biomarkers to capture this heterogeneity.
Keywords: autoantibody, rheumatic fever, protein array, immunoassay, autoantigen, streptococcus A, group
A Streptococcus
INTRODUCTION

Acute rheumatic fever (ARF) is a serious multi-focal
autoimmune sequela of Group A Streptococcal (GAS) infection,
presenting with a combination of signs and symptoms including
one or more of the major manifestations used for diagnosis as
part of the Jones criteria (1, 2); arthritis, carditis, Sydenham’s
chorea, erythema marginatum and subcutaneous nodules.
Approximately 60% of ARF cases progress to chronic
rheumatic heart disease (RHD), which can cause permanent
heart valve damage (3), with an estimated 33 million people
living with RHD globally (4). Although ARF rates declined over
the twentieth century, the disease persists in low-income
countries and amongst disadvantaged communities in some
high-income countries, with Indigenous Māori and Pacific
children in New Zealand and Aboriginal children in Australia
having some of the highest incidences in the world (5, 6).

The clinical manifestations of ARF usually develop 2-4 weeks
after a GAS pharyngitis infection, with growing evidence also
implicating GAS skin infections in disease (7). The pathogenesis
pathway for ARF remains poorly understood. The current
hypothesis involves “molecular mimicry”, wherein antibodies
initially targeting specific GAS components are proposed to
cross-react with human tissue (8, 9). This is largely based on
M-protein specific antibodies and T-cells which cross-react with
cardiac myosin, laminin and tropomyosin antigens found in the
heart and synovium (9). The role of molecular mimicry remains
the subject of debate, with an alternative hypothesis suggesting
that infection with GAS causes disruption of the extracellular
matrix, which exposes cryptic collagen epitopes, and triggers an
autoimmune response (10, 11). Additional autoantibodies could
then be generated due to increased inflammation, subsequent
tissue damage and epitope spreading (12).

There are few contemporary studies investigating the broader
autoantibody response in ARF and a lack of application of
unbiased approaches to study the ARF autoantibody repertoire.
Protein−microarray technologies enable quantification of
autoantibody responses to large proportions of the human
proteome (13). These technologies have been used to identify
novel autoantibodies and associated disease pathways in a broad
range of immune-mediated diseases, including lupus, some
cancers and the recently described Multisystem Inflammatory
Syndrome in Children (MIS-C) that can develop following
SARS-CoV-2 infection (14–16). This study aimed to apply
high-content protein-microarray technology to ARF to enable
a comprehensive analysis of the disease’s autoantibody
landscape. This unbiased array-based approach was taken to
org 2
inform antibody-driven pathogenesis and identify possible novel
disease biomarkers.
MATERIALS AND METHODS

Protein Microarrays
Human Protorrays (Protein microarray platform v5.0) were
performed following the manufacturer’s instructions to detect
serum autoantibodies (ThermoFisher, Massachusetts, USA).
Samples were diluted 1:500 and antibody binding detected with
an Alexa Fluor 647 labelled goat anti-human IgG antibody. Arrays
were scanned using a GenePix4000B microarray scanner and
array grids aligned using the GenePix Pro 5.0 software
(Molecular Devices). Raw data were background corrected using
the “saddle” correction (17) from the Bioconductor limma
package (18), and data were quantile normalized followed by
differential expression statistical analysis using linear models and
empirical Bayes statistics with the limma package. Proteins
antigens with p < 0.05 and a fold-change of > 2.0 were
considered significant. For proteins with duplicated identifiers,
(proteins with more than one variant on the arrays) variants with
the highest absolute fold-change were kept for further analysis.
Autoantigens were cross-validated using HuProt v3.0 arrays
conducted by CDI Laboratories (Baltimore, USA). Serum
antibodies were detected using an Alexa Fluor 532-labelled anti-
human IgG secondary and data were quantile normalized as
previously described for HuProt arrays (19). Proteins with p <
0.1 and fold−change >1.5 were considered significant.

Array Analysis and Visualizations
Analysis and visualizations were carried out in R (version 4.0.2)
within R studio19 (version 1.2.5042) using the tidyverse suite of
packages (20). Upset plots were produced using ComplexHeatmap
package (21). Venn diagrams were produced using jvenn (22).
Heatmaps and hierarchical clustering (using the average Euclidean
distance method) were carried out using Morpheus (https://
software.broadinstitute.org/morpheus). Disease pathway analysis
of differentially bound proteins was carried out using Metascape
using custom analysis for enrichment in DisGeNet disease
pathways (23, 24). Tissue specificity of proteins was elucidated
using “Normal tissue data” downloaded from the human tissue
atlas (HPA) from the URL (https://www.proteinatlas.org/about/
download) (25). Data were filtered from the HPA using both the
“reliability score” and “level”. The Compartments database was
also used for filtering proteins via the “confidence score” (26).
Filtering parameters applied were; an enhanced or supported
July 2021 | Volume 12 | Article 702877
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“reliability score” and high or medium expression “level” in heart
muscle, as well as a “confidence score” of >4 for plasmamembrane
expression or extracellular space.

Enzyme-Linked Immunosorbent
Assays and Interpretation
Selected antigens identified were orthogonally validated in a
larger cohort of serum samples using ELISA (Supplementary
Table 1). Antigens were obtained commercially: NM_080423
(protein tyrosine phosphatase non-receptor type 2, PTPN2)
(Origene, Maryland, USA), NM_004021 (dystrophin - dp140
variant, DMD) (Origene, Maryland, USA), NM_001155.5
(Annexin VI, ANXA6), (R&D Systems, Minneapolis, USA).
For ELISA, Nunc-immunoplates (Sigma-Aldrich, Missouri,
USA) were coated with antigen at 2.5 µg/ml (ANXA6) or 2 µg/
ml (PTPN2 and DMD) at 4°C overnight and blocked with
Phosphate Buffered Saline (PBS) supplemented with 0.5%
human serum albumin (Albinorm, Octapharma, Stockholm,
Sweden) for 1 hour at 37°C. Following three washes with PBS/
0.1% Tween-20, serum was added at a 1:200 dilution in PBS/0.1%
human serum albumin for 1 hour at 37°C. IgG binding was
detected using goat anti-human IgG labelled with horse-radish
peroxidase (Abcam, Cambridge, UK) diluted 1:10,000 in PBS/
0.1% human serum albumin, developed with 3,3′,5,5′-
Tetramethylbenzidine (TMB) and stopped with 1M HCl. The
optical density (OD) at 450 nm was measured using an EnSight
absorbance reader. Two serum samples with high and low OD
readings for each antigen were included on every ELISA plate as
internal positive and negative controls. A CV of <15% between
assay runs was set as acceptance criteria.

To compare the individual antigens, and combination of
antigens, for performance in discriminating ARF from control
groups, the receiver operating characteristic curve (ROC) and
area under the curve (AUC) values (from a logistic regression
model) for each antigen or combination of all three antigens were
calculated by comparing ARF and control samples using the
pROC package (27). Confidence intervals for AUC and
differences in AUC were obtained using bootstrapping
(n=2000) implemented in the pROC package.

Study Participants
Human sera were obtained from several studies conducted in New
Zealand. Each had appropriate ethical approval, and all
participants (or their proxies) provided written informed
consent. All ARF cases were diagnosed according to the New
Zealand modification of the Jones criteria (1, 28). The sera for
ProtoArrays were from a study conducted in the Waikato District
Health Board region (2012 to 2015; ethics CEN/12/06/017)
including ARF (n=3), GAS pharyngitis (n=3), as well as
ethnically matched healthy controls (n=3) from the Auckland
arm of the children of SCOPE study (29). The sera for the HuProt
arrays (ARF with carditis (n=7), ARF without carditis (n=5) and
matched healthy controls (n=6)) and ELISA orthogonal validation
(ARF n=79 and controls n=85) were from participants recruited as
part of the Rheumatic Fever Risk Factors (RF RISK) study (30).
This nationwide study conducted between 2014 and 2017 (ethics
Frontiers in Immunology | www.frontiersin.org 3
14/NTA/53) included first-episode ARF patients and closely
matched healthy controls (30). Controls were matched by age,
ethnic identification, socioeconomic deprivation (using the New
Zealand Deprivation Index score (31)) and geographic area. Sera
from children with GAS positive pharyngitis (n=39) used for
orthogonal validation ELISAs were recruited as part of a paediatric
study investigating GAS skin and throat infections conducted in
the Auckland region (2018-2019; ethics 17/NTA/262) (32).
RESULTS

Global Analysis of Autoantibody Reactivity
in Acute Rheumatic Fever
The ProtoArrays initially utilized to profile the autoantibody
response in ARF contain over 9000 human proteins expressed in
insect cells. As autoantibodies are present in all individuals (33–
35), serum binding from ARF patients (n=3) was compared to
that of healthy children (n=3) and children with GAS positive
pharyngitis (n=3) as controls. Following array QC and
normalization, the total antibody reactivity or fluorescence
intensity, was determined for each array. ARF arrays showed
an increased number of total reactivities compared to controls
(p < 0.0001) (Figure 1A), suggesting an overall increase in
autoantibodies in ARF patient sera. The total reactivity
observed on the ARF arrays was markedly increased compared
to both the GAS positive pharyngitis and healthy controls
(Supplementary Figure 1), and as the overarching goal was to
identify ARF specific autoantibodies rather than those associated
with GAS pharyngitis, the control groups were combined for the
subsequent data analysis. The antibody reactivity signals for ARF
patients were filtered to include only proteins with a > 2.0 fold-
increase in fluorescence intensity compared to the mean of the
combined controls (healthy and GAS pharyngitis). This selected
for autoantibodies with stronger reactivity in ARF and enabled
individual ARF patient’s autoantibody profile to be compared. A
total of 1013 autoantibodies showed > 2.0 fold-increased reactivity
in ARF compared to the combined controls, with each of the ARF
patients having similar numbers of proteins with an increased
signal (687 in patient A1, 556 in patient A2 and 541 in patient A3)
(Figure 1B). Nearly half (47%, 480/1013) of the autoantibodies
were unique to an individual patient, with only 23% (238/1013)
shared between all three ARF patients and the remaining 29%
(295/1013) present in two ARF patients but not the other. Taken
together, these results show a global increase in autoantibodies in
ARF sera with marked heterogeneity in the autoantibody profiles
for each of the ARF patients assessed.
Autoantibodies Target Proteins in Relevant
Disease Pathways
To identify differentially bound proteins in sera from ARF
patients and perform pathway analysis, proteins with
significantly elevated fluorescence intensity in the ARF group
compared with the combined control group were selected
July 2021 | Volume 12 | Article 702877
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(p < 0.05 and fold-change > 2.0). In total, 841 proteins were bound
significantly more by ARF serum IgG compared to 693 proteins in
controls (Figure 2A and Supplementary Data). This is in line
with the prior global analysis suggesting higher overall
autoantibodies in the ARF group. Encouragingly, some proteins
that have previously been implicated in the pathogenesis of ARF
and RHD were identified (10). These included extracellular matrix
proteins; fibronectin (36) and collagens (10, 37, 38) (FSD1L,
COL-/2/9/14-A1) as well as intracellular proteins involved in
muscle contraction; tropomyosins and myosin (39, 40) (TPM2/3
and MYL6) (Figure 2A). As the tropomyosin that previously
linked to ARF is cardiac tropomyosin (TPM1), a sequence
alignment was performed with the TMP2 and TMP3 isoforms
identified in this study. This showed high sequence identity
between TPM1 and TPM2 (85.563%) and TPM3 (91.197%)
(Supplementary Figure 2).
Frontiers in Immunology | www.frontiersin.org 4
To explore disease connections, the 841 proteins bound by
ARF IgG were subjected to disease pathway analysis. This
identified three noteworthy pathways, which were both
significantly enriched (p < 0.01, fold-enrichment > 1.5)
(Figure 2B and Supplementary Data), and related to two of
the major criteria used to diagnose ARF (carditis and arthritis).
The “Myocardial Ischemia”, “Autoimmune arthritis” and
“Juvenile Rheumatoid Arthritis” disease pathways contain 33,
11 and 13 proteins targeted by autoantibodies in ARF sera,
respectively. Unsupervised hierarchical clustering on these
pathway proteins shows serum from ARF patients clustering
separately from the control groups with respect to fluorescence
intensity (Figure 2C). This indicates that ARF autoantibodies
target a diverse range of proteins that are enriched for in relevant
disease pathways.

Multi-Platform Validation of Array Hits
To further explore and validate the ARF autoantibody repertoire,
including antigens identified via the ProtoArray analysis,
additional high-content arrays (HuProt arrays, > 16,000
human proteins, expressed in yeast cells) were conducted using
a distinct cohort of patients; ARF patients with carditis (n=7),
ARF patients without carditis (n=5) and healthy controls (n=6).
A focussed analysis of the HuProt array data identified 158
human proteins bound significantly more by serum IgG in
carditis patients compared to healthy controls (p < 0.1 and
fold change >1.5) (Figure 3A). Interestingly, one of these
proteins, ANXA6, was previously identified in a pilot mass
spectrometry analysis of 2−Dimensional Electrophoresis (2-
DE) separated human heart lysate and ARF sera conducted in
our laboratory (Supplementary Methods). Nine of the 158
proteins identified via the HuProt analysis overlapped with
those identified by the ProtoArrays (Figure 3B). When these
nine proteins were filtered for expression in heart muscle [using
human protein atlas data (25)] as well as localization in or near
the plasma membrane [using the compartments database (26)]
just two proteins remained; PTPN2 and DMD (Figure 3B and
Supplementary Data). When the same analysis and filtering was
applied to the control groups, five overlapping proteins were
identified, but none of these passed the filters for expression
location. Plotting normalized fluorescence values from the
HuProt arrays for PTPN2 and DMD plus ANXA6 illustrates
the increased autoantibodies in ARF compared to healthy
controls (Figure 3C).

Orthogonal Validation Using ELISA
To orthogonally validate hits from the arrays, ELISAs were
performed with DMD, PTPN2 and ANXA6 as antigens. These
antigens represent different aspects of ARF disease mechanisms
including an immune cell signalling protein [PTPN2 (41)], a central
component of the extracellular matrix in muscle fibre [DMD (42)]
and a protein abundantly expressed in cardiomyocytes and
chondrocytes during osteoarthritis [ANXA6 (43, 44)]. A large
cohort was used for validation comprising sera from children
with first-episode ARF (n=79), closely matched healthy controls
(n=85), as well as children with GAS pharyngitis (GAS positive
throat swab and elevated streptococcal serology, n=39)
A

B

FIGURE 1 | Global autoantibody analysis in ARF using ProtoArrays.
(A)Overall antibody binding intensities against human proteins in ARF patients
(blue, n=3) and grouped controls (red, n=6). Controls comprise both healthy
children (n=3) and children with GAS positive pharyngitis (n=3). Bars indicate mean
and standard error. ****p < 0.0001 using two sampleWilcoxon test. (B) Upset plot
showing number of shared autoantibodies between ARF patients (ARF1, 2 and 3).
Autoantibodies shared between all three ARF patients are indicated in grey, those
shared between at least two patients in blue and those unique to an individual
patient in red. The number of autoantibodies in each category is indicated on
vertical bar charts with respective colours. Upset plots include only antibodies that
showed at least a two-fold enrichment when compared with the mean of grouped
controls. Total number of auto-antibodies identified using this threshold per patient
is indicated on horizontal bar charts (Set size).
July 2021 | Volume 12 | Article 702877
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(Supplementary Table 1). Significantly elevated autoantibodies
were observed in the ARF patient group compared to both
healthy controls and the GAS pharyngitis group for all three
antigens (Figure 4A). The lack of reactivity to these antigens in
the GAS pharyngitis group confirms that these autoantibodies are
associated with disease, and not with the prior GAS infection.
Receiver Operator Curves (ROC) were generated to assess the
predictive performance of each of the three antigens alone as well
as in combination to distinguish ARF sera from the combined
controls (healthy and GAS pharyngitis) (Figure 4B). The area
under the curve (AUC) metric showed DMD had the best
predictive performance (AUC = 0.857, CI:0.805-0.904 followed by
PTPN2 (AUC = 0.787, CI:0.718-0.847) and ANXA6 (AUC = 0.642,
CI:0.565-0.716). DMD performed significantly better than PTPN2
(p < 0.05) which, in turn, performed significantly better than
ANXA6 (p < 0.001). There was no significant gain in
Frontiers in Immunology | www.frontiersin.org 5
performance, above DMD alone, when combining all three assays
(AUC = 0.861, CI:0.809-0.908, p = 0.583).

To further explore the biomarker potential of these three
antigens, cut-offs for positivity were determined using the
Youden index (45). This method identifies an optimal cut-off
from the ROC curve that maximizes sensitivity and specificity
and resulting values were DMD = 0.190, PTPN2 = 0.274 and
ANXA6 = 0.275 (Figure 4A). These cut-offs were applied and the
ARF patients were categorized as having positive or negative
reactivity to each antigen in the form of an autoantibody barcode
(Figure 4C). In keeping with the superior predictive
performance of DMD in the ROC analysis, this antigen yielded
the highest number of positive ARF cases (62/79, 78%). However,
the barcode also illustrates that patients with first episode ARF
have every combination of biomarkers tested ranging from
positive for one, two or three antigens through to negative for
A

B

C

FIGURE 2 | Autoantibody disease pathway analysis using ProtoArray data. (A) Volcano plot showing fold-change differences in autoantibody signals between ARF
patients (n=3) and controls (n=6). Controls comprise both healthy children (n=3) and children with GAS positive pharyngitis (n=3). The size of the dots and
annotations relates to the fluorescence intensity of individual autoantibodies. Red dashed lines indicate cut-offs for significant differences (p < 0.05, fold-change >2).
Blue dots represent autoantibodies showing significantly increased binding in ARF patients compared to controls whilst red dots represent autoantibodies showing
significantly increased binding in controls compared to ARF patients. Orange annotated autoantibodies have historically been implicated in the pathogenesis of ARF
and/or RHD. Purple annotated autoantibodies are novel and of interest for downstream analysis (see Figure 3). (B) Disease pathway analysis conducted on 841
autoantigens with significantly increased binding in ARF patient sera in part (A). Three significant (p < 0.005) disease pathways are shown in relation to fold
enrichment of proteins in pathways (compared to what would be expected by chance). Dot color intensity corresponds to p-value and dashed red line indicates a
fold-enrichment of 1, which would represent no enrichment. (C) Heat-maps showing individual autoantibody reactivities to proteins belonging to disease pathways
identified in part (B). Color intensity corresponds to log2 normalized fluorescence values from ProtoArrays of each individual ARF patient (blue columns), healthy
controls (red columns) and children with GAS positive pharyngitis (orange columns). A relative color scheme was applied using the min and max values in each row
to plot relative colors. The dendrogram represents results of hierarchical clustering on columns. Autoantibody reactivities indicated by purple arrows relate to novel
autoantibodies of interest for downstream analysis annotated.
July 2021 | Volume 12 | Article 702877
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all three antigens. This further highlights the heterogeneity of
autoantibody responses in ARF.
DISCUSSION

This studyhas comprehensively investigated the serumautoantibody
repertoire in ARF patients using multiple approaches. High content
arrays revealed an overall increase in autoantibodies in ARF, with a
large proportion of the antibodies unique to individual patients. The
current pathogenesis models for ARF following GAS infection are
centredonmolecularmimicryand thedevelopmentof autoantibodies
to host coiled-coil proteins and extracellular matrix disruption and
exposure of cryptic epitopes (10, 11). While the array analysis in this
study did identify autoantibodies to myosin, tropomyosin and
collagens that might support mimicry and extracellular matrix
Frontiers in Immunology | www.frontiersin.org 6
disruption, the breadth of the autoantibody reactivity observed also
points to epitope spreading playing a role in pathogenesis (12).

Epitope spreading, that is the involvement of antigens beyond
those that initially trigger the autoimmune response, is thought
to be central to the pathogenesis of other systemic autoimmune
diseases such as rheumatoid arthritis (46). It has also been
suggested to have a role in ARF pathogenesis (12), and is in
keeping with the systemic and heterogeneous nature of
symptoms associated with the disease including poly-migratory
arthritis, carditis, subcutaneous nodules and in some,
neurological symptoms or chorea (1, 8). The pathway analysis
applied to the array data in this study enabled filtering of the
large number of autoantibodies identified and revealed antigens
associated with disease pathways relevant to ARF symptoms;
“Myocardial Ischemia”, “Autoimmune Arthritis” and “Juvenile
Rheumatoid Arthritis”. Yet even within these pathways a diverse
A B

C

FIGURE 3 | Autoantibody cross-validation using HuProt array (A) Volcano plot showing fold-change differences in autoantibody signals between ARF patients with
carditis (n=7) and healthy controls (n=6). The size of the dots relates to the fluorescence intensity of individual autoantibodies. Red dashed lines indicate cut-offs for
significant differences (p < 0.1, fold-change >1.5). Blue dots represent autoantibodies showing significantly increased binding in ARF patients compared to controls
whilst red dots represent autoantibodies showing significantly increased binding in controls compared to ARF patients. Black and purple annotated autoantibodies
are those also identified in ProtoArray analysis (see Figure 2), with purple dots relating to novel autoantibodies of interest for downstream analysis. Green annotated
dot was also identified by 2-DE gel. (B) Venn diagram showing the nine overlapping autoantibodies between; 158 proteins identified in HuProt analysis from part (A)
in violet; and 841 autoantibodies identified in ProtoArray analysis from Figure 2A in yellow. Following filtering for proteins localized to plasma membrane and present
in heart muscle, autoantibodies targeting two proteins were identified indicated by large purple text. (C) Bar graphs showing mean and standard error of normalized
fluorescence values representing autoantibody reactivities to DMD (left), PTPN2 (middle) and ANXA6 (right), from healthy controls (blue, n=6) and ARF patients with
carditis (red, n=7).
July 2021 | Volume 12 | Article 702877
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range of antigens were targeted by patient serum antibodies,
suggesting that a loss of tolerance and epitope spreading may
occur in relevant tissues. This is consistent with an ARF
pathogenesis model in which a loss of tolerance, driven by
inflammation, enhances a dysregulated immune response. There
is increasing evidence to suggest that repeatedGAS infectionsprime
the immune response for a loss of tolerance in ARF (47–49), and it
follows that the presence of inflammation observed inARFpatients
(12, 50) could enhance the dysregulated autoimmune response,
Frontiers in Immunology | www.frontiersin.org 7
counteracting tolerance mechanisms, and contribute to epitope
spreading and further damage in specific tissues.

In order to validate the analysis of the high content protein
arrays, the presence of autoantibodies to three of the antigens
identified, DMD, PTPN2 and ANXA6, was assessed in a large
ARF cohort. While there was a significant increase in
autoantibodies to each of these three antigens in ARF, there was
also variability at an individual patient level such that a continuum
of reactivity was observed, ranging from autoantibodies to all three
A

B C

FIGURE 4 | Orthogonal validation of autoantigens by ELISA (A) Combined violin and box and whisker plots showing ELISAs targeting DMD (left), PTPN2 (middle)
and ANXA6 (right) using sera from ARF patients (blue, n=79), matched healthy controls (red, n=85) and children with GAS positive pharyngitis (orange, n=39). For
box and whisker plots the lower and upper hinges correspond to the first and third quartiles (the 25th and 75th percentiles). The whiskers extend from the hinge to
the largest and smallest value no further than 1.5 x inter-quartile range from the respective hinge. The violin plot extends from the highest to the lowest value showing
density of data. Red dashed line represents the cut-off for positivity positive based analysis in part (B). *p < 0.05, **p < 0.01, ****< 0.0001 using two sample Wilcoxon
test. (B) Receiver Operator Curves (ROC) of ELISA results from DMD (red), PTPN2 (blue) and ANXA6 (green) as well as all three antigens combined (black). Grey
dashed line represents the line of no discrimination, which would indicate a test with no predictive power. The AUC for each analysis is indicated with confidence
intervals obtained using bootstrapping in brackets. The crosses represent the optimal cut-off for each autoantigen ELISA. (C) Barcode of all 79 ARF patients
indicating positive (black) or negative (grey) reactivity to all three autoantigens. Cut-off for positivity was determined from the ROC analysis in part (B) and is
represented visually as a red dashed line in part (A).
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antigens in some patients to an absence of autoantibodies to the
three antigens in others. The three proteins validated in this study
were selected based on their detection across multiple analyses and
represent different aspects of potential pathways and tissues
involved in ARF. In particular immune signalling [PTPN2 (41)],
cardiac tissue [ANXA6 (43), DMD (42)] and joint tissue [ANXA6
(44)]. However, all appear to be associated with the plasma
membrane rather than being fully extracellular antigens. It is
therefore possible that these antigens are not involved in initiating
disease, but rather are exposed as a result of inflammation driven
tissue damage and epitope spreading. It is important to note that in
autoimmune disease in general not all autoantibodies are
pathogenic, and only those targeting cell surface proteins are
generally thought to cause clinical manifestations (51). In a
similar vein, the anti-myosin autoantibodies observed in ARF (8,
12, 36, 40) could well be the result of tissue damage and
cardiomyocyte burst given the intracellular location of myosin
within the myocardium (52).

This study has several limitations. The ProtoArrays antigens are
expressed in insect cells such that the glycosylation patterns on the
extracellular antigens will differ from those that maybe present in
human tissue. Similarly, membrane associated antigens may be mis-
folded or under-represented on both of the array platforms utilised
given the uniformapproach required to express andpurify such large
numbers of antigens in parallel. To overcome this limitation, and
expand the antigen space examined in the context ofARF, alternative
approaches such as Phage Immunoprecipitation Sequencing [PhiP
−Seq (53)] and Rapid Extracellular Antigen Profiling [REAP (54)] of
the human proteome could be considered in future studies. Finally,
the initial array analysis was based on small patient numbers and it is
possible that additional ARF autoantibodies would be detected with
larger cohorts. Despite this, the analysis and filtering approach
applied to the array data successfully identified three novel ARF
autoantigens, each validated in a large patient cohort, supporting the
use of high content arrays as a discovery tool.

In conclusion, this study has utilized high content protein
array platforms to assess autoantibodies present in ARF in an
unbiased fashion. The broad yet heterogenous elevation of
autoantibodies in ARF patients support a pathogenesis model
in which tissue damage and inflammation leads to a loss of
tolerance to endogenous proteins and subsequent epitope
spreading. Whilst autoantibodies have diagnostic potential, a
panel comprising multiple antigens will likely be needed to
capture individual heterogeneity.
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