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ABSTRACT 

Although higher-order cognitive and lower-order sensorimotor abilities are generally regarded 

as distinct and studied separately, there is evidence that they not only covary but also that this 

covariation increases across the lifespan. This pattern has been leveraged in clinical settings 

where a simple assessment of sensory or motor ability (e.g., hearing, gait speed) can forecast 

age-related cognitive decline and risk for dementia. However, the brain mechanisms underlying 

cognitive, sensory, and motor covariation are largely unknown. Here, we examined whether such 

covariation in midlife reflects variability in common versus distinct neocortical networks using 

individualized maps of functional topography derived from BOLD fMRI data collected in 769 45-

year old members of a population-representative cohort. Analyses revealed that variability in 

basic motor but not hearing ability reflected individual differences in the functional topography 

of neocortical networks typically supporting cognitive ability. These patterns suggest that 

covariation in motor and cognitive abilities in midlife reflects convergence of function in higher-

order neocortical networks and that gait speed may not be simply a measure of physical function 

but rather an integrative index of nervous system health. 
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INTRODUCTION 

Higher-order cognitive and lower-order sensorimotor abilities have been generally regarded as 

distinct and studied separately. However, there is growing evidence that they not only covary but 

also that this covariation increases across the lifespan. For example, there is some evidence for 

covariation between sensorimotor and cognitive abilities during childhood (van der Fels et al., 

2016; Welch & Dawes et al., 2007), midlife (Rasmussen et al., 2019), and old age (van der Wilik 

et al., 2021). In addition, this covariation tends to become more pronounced during aging (Baltes 

& Lindenberger 1997). Moreover, measures of sensory and motor abilities such as hearing tests 

and gait assessments are commonly used to predict cognitive decline and dementia risk in older 

adults (Collyer et al., 2022; Kwok et al., 2022; Studenski et al., 2011). Identifying brain 

mechanisms linking these seemingly disparate abilities can further our understanding of not only 

the extent to which variability in fundamental aspects of human behavior reflect distinct and 

common features of brain function across the lifespan but also how they may be best leveraged 

in clinical applications. 

 

Gait speed is a simple and widely used measure of biological aging measured by how quickly a 

person walks across a biosensor-equipped pad (Fritz & Lusardi, 2009). As early as midlife, 

individual differences in gait speed covary with complex psychological functions including 

memory and cognitive ability (Rasmussen et al., 2019), yet the extent to which these processes 

are associated with common brain systems is unclear. There is some evidence in older adults that 

gait speed is associated with the strength of functional connectivity in higher-order brain 

networks supporting cognitive abilities (Lo et al., 2017; Yuan et al., 2015), bolstering the 
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hypothesis that some effects of physical and cognitive aging reflect shared features of common 

brain systems. Likewise, hearing ability as measured by pure tone audiometry is associated with 

cognitive ability during midlife and aging (Loughrey et al., 2018; Okley et al., 2021; Lindenberger 

& Baltes 1994; Baltes & Lindenberger 1997) and is predictive of future cognitive decline (Lin et 

al., 2011). However, there is some added complexity in assessing potential links between hearing 

and cognitive ability. 

 

For example, pure tone audiometry is not a consistent indicator of functional hearing ability and 

some individuals who have no peripheral damage to the ear (i.e., peripheral hearing loss) may 

still report reduced hearing ability (Sardone et al. 2019), which could be more indicative of 

underlying brain health. Conversely, peripheral synaptic pathologies have been associated with 

normal pure tone thresholds (Kohrman et al., 2020). For this reason, hearing researchers often 

measure declining ability to differentiate speech in noisy environments, which is thought to be 

more affected by brain processing and is also associated with cognitive decline (Humes et al., 

2013, 2020; Sardone et al., 2019; Stevenson et al., 2022). 

 

This ability to recognize speech in the presence of background or competing noise is measured 

as a speech reception threshold in noise (henceforth “SRT-hearing”). Crucially, measured SRT-

hearing may show greater ecological validity than pure tone audiometry, as it captures ability to 

hear and discern complex auditory information (Stevenson et al., 2022). As with gait speed, prior 

studies have associated SRT-hearing with functional connectivity in higher-order brain networks 

most associated with complex cognitive ability (Fitzhugh, et al., 2021). These prior findings with 
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gait speed and SRT-hearing suggest that physical and cognitive aging are reflected in shared 

features of common brain networks. However, they are limited by small sample sizes and only 

focus on a small number of networks. Thus, it remains unclear why basic sensorimotor 

functioning is so closely linked with cognition functioning especially in midlife and continuing into 

later life. 

 

Intrinsic functional connectivity is a powerful tool to describe individual differences in network-

level brain organization and their relationship to behavior (Chen et al., 2022; Shen et al., 2017). 

Traditional studies of functional connectivity use group-averaged atlases to assign anatomical 

brain regions to different functional networks. However, this assumes that the spatial layout of 

functional networks is identical from person to person. Recent technical advances have 

demonstrated that there is substantial variation between people in the spatial layout of 

functional neocortical networks (Laumann et al. 2015; Wang et al. 2015). This spatial variation is 

called functional topography. Traditional studies using functional connectivity ignore variation in 

functional topography, and this likely increases error in the calculation of functional connectivity. 

Importantly, emerging studies have demonstrated that functional topography reliably maps onto 

individual differences in behavior as well as onto developmental changes in early life (Kong et al. 

2019; Cui et al. 2020, 2022; Keller et al., 2022). Thus, functional topography represents a novel 

measure that can reduce individual-level error in the estimation of neocortical network 

architecture and, subsequently, further capture covariation between brain and behavior. 
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Here, we leveraged measures of functional topography in a large population-representative birth 

cohort, the Dunedin Study, to examine the extent to which overlap in cognitive, motor, and 

sensory abilities reflect shared variability in neocortical network architecture. Specifically, we 

used Multi-Session Hierarchical Bayesian Modeling (Kong et al., 2019; MS-HBM) to generate 

reliable individualized estimates of functional topography at age 45. We then mapped functional 

topography onto variation in cognitive ability as measured by IQ, motor ability as measured by 

gait speed, and sensory ability as measured by SRT-hearing. Next, we tested our ability to predict 

variation in these three behaviors in Study members by training models on features of functional 

topography. Based on prior work, we hypothesized that IQ, gait speed, and SRT-hearing would 

be correlated within each Study member. We further hypothesized that higher IQ, faster gait 

speed, and better SRT-hearing would all be associated with relatively larger higher-order 

functional neocortical networks. Lastly, we hypothesized that variability in IQ, gait speed, and 

SRT-hearing would be predicted by overlapping patterns of individual differences in the 

functional topography of these networks. 

 

MATERIALS AND METHODS 

Study Design and Participants 

Participants were members of the Dunedin Study, a representative birth cohort (N = 1037; 91% 

of eligible births; 52% male) born between April 1972 and March 1973 in Dunedin, New Zealand 

(NZ) and eligible based on residence in the province and participation in the first assessment at 

age 3 years (Poulton et al., 2015; 2022). The cohort represented the full range of socioeconomic 

status in the general population of NZ’s South Island and, as adults, matches the NZ National 
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Health and Nutrition Survey on key adult health indicators (e.g., body mass index, smoking, 

physical activity, physician visits) and the NZ Census of citizens the same age on educational 

attainment. The cohort is primarily white (93%). Assessments were carried out at birth and ages 

3, 5, 7, 9, 11, 13, 15, 18, 21, 26, 32, 38, and most recently (completed April 2019) 45 years when 

875 Study members completed neuroimaging. The NZ-HDEC (Health and Disability Ethics 

Committee) approved the Study and all Study members provided written informed consent. The 

concept and main analyses for this project were preregistered at rb.gy/34xv8a. All analyses were 

checked for reproducibility by an independent data analyst who used the manuscript, code, and 

an independent copy of the data to check all analyses. 

 

MRI Acquisition 

Study members were scanned using a MAGNETOM Skyra 3T scanner (Siemens Healthcare GmbH) 

equipped with a 64-channel head/neck coil at the Pacific Radiology imaging center in Dunedin, 

New Zealand. High resolution T1-weighted images were obtained using an MP-RAGE sequence 

with the following parameters: TR = 2400 ms; TE = 1.98 ms; 208 sagittal slices; flip angle, 9°; FOV, 

224 mm; matrix =256×256; slice thickness = 0.9 mm with no gap (voxel size 0.9×0.875×0.875 

mm); and total scan time = 6 minutes and 52 seconds. Functional MRI (fMRI) data were collected 

using 72 interleaved axial T2-weighted functional slices with 3-fold multi-band accelerated echo 

planar imaging (TR=2000ms; TE=27ms; flip angle = 90 degrees; field of view=200mm; voxel 

size=2mm isotropic; slice thickness=2mm without gap). Resting-state and task fMRI data were 

collected as follows: (1) resting-state with eyes open and a gray screen displayed (8:16 min; 248 

TRs), (2) emotional face processing task (6:40 min, 200 TRs), (3) color Stroop task (6:58 min, 209 
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TRs), (4) monetary incentive delay task (7:44 min, 232 TRs), and (5) episodic memory task 

(5:44min, 172 TRs). Details for each of the four tasks can be found in the Supplemental Methods. 

Twenty Study members completed the entire scanning protocol a second time (mean days 

between scans = 79 days) allowing for calculation of test-retest reliability of all our MRI-derived 

measures. 

 

fMRI Preprocessing 

Resting-state and task fMRI data were concatenated into one time series to derive estimates of 

General Functional Connectivity (GFC), which we have shown enhances test-retest reliability and 

improves prediction of behavior in the Dunedin Study and other datasets (Elliott et al., 2019). 

The use of GFC was further motivated by strong convergent evidence that functional networks 

are largely invariant to task conditions and task-derived functional networks are similar to those 

derived from resting-state data (Fair et al., 2007; Gratton et al., 2018). Further analyses validating 

GFC in this dataset and others have been previously described (Elliott et al., 2019). Briefly, data 

were analyzed using the Human Connectome Processing minimal preprocessing pipeline (Glasser 

et al., 2013). T1-weighted anatomical images were skull-stripped, intensity-normalized, and 

nonlinearly warped into a study-specific average template in MNI space (Avants et al., 2008; Klein 

et al., 2009). Functional time-series data were despiked, slice-time-corrected, and realigned to 

the first volume in the time-series using AFNI (Cox, 1996). To limit distortion caused by in-scanner 

head motion, motion regressors were generated using 6 motion parameters and their first 

derivatives (to account for nonlinear effects) for a total of 12 motion regressors. Five components 

from white matter and cerebrospinal fluid were extracted (Behzadi et al., 2007) and used as 
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nuisance regressors along with the mean global signal. Images were bandpass filtered to retain 

frequencies between 0.008 and 0.1 Hz. To reduce the influence of motion-related artifacts, we 

excluded all high-motion participants and adhered to strict scrubbing of motion-infected 

timepoints. We investigated a range of framewise-displacement cutoffs using QC-RSFC plots to 

determine the optimal threshold for removing motion artifacts as recommended by (Power et 

al., 2014). We selected 0.35mm framewise-displacement and 1.55 standardized DVARS as 

exclusion thresholds. Nuisance regression, bandpass filtering, censoring, and global-signal 

regression were performed using AFNI’s 3dTproject. For task data, functional connectivity due to 

signal evoked by task structure was removed using a Finite Impulse Response model (Fair et al., 

2007). Finally, time series data were then projected to a two-dimensional fs_LR32k cortical 

surface space made up of ~30,000 points or “vertices” that can be convoluted to improve 

anatomical correspondence between people (Van Essen et al., 2012). 

 

Of the 875 Study Members who underwent MRI scanning, 769 were included in the current 

analyses after quality control procedures. 62 Study Members were excluded for excess head 

motion, 14 were excluded based on visual inspection of irregularities in a 360 ROI x 360 ROI 

functional connectivity matrix, 10 were missing one or more functional scan (i.e. rest and four 

tasks), 8 were excluded due to missing 3D-FLAIR sequences, 7 were excluded as MRI data were 

acquired with a 20-channel head coil instead of the 64-channel head coil to accommodate larger 

head circumferences, 4 were excluded due to incidental neurological findings, and 1 was 

excluded due to a missing fieldmap. 
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Multi-session Hierarchical Bayesian Modeling (MS-HBM) 

We implemented MS-HBM per the strategy of Cui et al. (2020), who applied this method in a 

dataset with a similar amount of fMRI data to the Dunedin Study. Broadly, MS-HBM defines 

several parameters that are modeled in a variational Bayes expectation maximization algorithm 

to estimate network labels across the cortical surface. Parameters required for this method are 

inter-region variability, inter-subject variability, and intra-subject variability as well as two tuning 

parameters which control the importance of the group average parcellation and smoothness. 

 

To estimate inter-regional variability, MS-HBM first generates binarized connectivity profiles for 

1483 equally spaced vertices across the cortical surface. Binarized profiles were defined here as 

the 10% of vertices across the cortical surface with the strongest functional connectivity to each 

of these 1483 vertices. A group average network parcellation was then derived using the average 

binarized connectivity profiles of all participants. To estimate intra-subject variability with only 

one scan per Study member, time series data were split into two halves of 17:41 min each, as 

recommended by Kong et al. (2019). Next, to estimate inter-subject variability, we used a 

resampling method as we did not have a validation dataset and computing across all Study 

members was highly computationally expensive. We randomly resampled 50 sets of 200 Study 

members from the total datasets available. We calculated inter-subject variability across each of 

these 50 sets and averaged these estimates. Finally, we selected the following tuning parameters 

that were optimized using data from the Human Connectome Project (Kong et al., 2019) due to 

similarities in our preprocessing procedures: smoothness prior: c = 40; group spatial prior: 𝛼 = 

200. The smoothness prior (c) controls the penalty assigned for assigning two adjacent vertices 
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to different networks. The group spatial prior (𝛼) controls the weight of the group spatial prior. 

In other words, a parcellation estimated with a high group spatial prior will be more similar to 

the group average. 

 

Given the above parameter estimates, MS-HBM generates an individual-specific parcellation 

from each Study member’s GFC time series data using a variational Bayes expectation 

maximization algorithm (Kong et al., 2019). We chose to parcellate brain function into 17 

networks. This number represents a previously determined optimal solution to capture the 

structure of correlations between cortical regions and allows for ready comparison with existing 

literature (Yeo et al., 2011). Specifically, these 17 networks were derived by applying a clustering 

algorithm to functional connectivity strength between evenly distributed vertices across the 

cortex (Yeo et al., 2011). To evaluate how “well” the resulting individualized parcellations 

captured variation in BOLD signal, we calculated functional homogeneities for all individualized 

parcellations and compared them to homogeneities from template network parcellation (Yeo et 

al., 2011). Specifically, functional homogeneity is the average BOLD timeseries correlation 

between all pairs of vertices assigned to the same network. Therefore, higher homogeneity 

means that, on average, vertices within the same network are more functionally connected. 

 

To estimate test-retest reliability we generated parcellations using data from each of two 

separate scanning sessions in a subset of 20 Study members who were scanned twice. We first 

estimated test-retest reliability of individual network surface areas using a two-way mixed-

effects intraclass correlation coefficient (ICC) with session modeled as a fixed effect and subject 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 9, 2023. ; https://doi.org/10.1101/2023.01.09.523297doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.09.523297
http://creativecommons.org/licenses/by-nc-nd/4.0/


FUNCTIONAL TOPOGRAPHY OF COGNITIVE AND MOTOR ABILITIES 

 12 

as a random effect (Shrout and Fleiss, 1979). We also calculated test re-test reliability of whole 

brain topographic organization by computing the Dice coefficient between timepoints as well as 

all pairs of unique Study members. The Dice coefficient is a metric to determine the overlap 

between two sets of categorical features (Birn et al., 2013; Destrieux et al., 2010; Kong et al., 

2019, 2021). The Dice coefficient can be calculated using the following formula: 

 

Dice (parcellation A, parcellation B) = 

2	X	(#	of	vertices	that	overlap	between	parcellations	A	and	B)
(total	number	of	vertices	in	parcellation	A	 + 	total	number	of	vertices	in	parcellation	B)

 

 

The Dice coefficient is equal to 1 if there is complete overlap between two parcellations and 

equal to 0 if there is no overlap between parcellations.  

 

Cognitive Function 

Full-scale IQ was assessed at age 45 using the Wechsler Adult Intelligence Scale-IV (WAIS-IV; 

Wechsler, 2008). The WAIS-IV also yields indices of four specific cognitive domains: processing 

speed, perceptual reasoning, verbal comprehension, and working memory. Full-scale IQ was 

used in our primary analyses. 

 

Gait Speed 

The gait speed of Study members was assessed using the GAITRite Electronic Walkway with 2m 

acceleration and deceleration before and after the walkway. Gait speed was assessed under 

three conditions: usual gait speed (walking at a normal pace from a standstill), maximum gait 
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speed (walk as fast as safely as possible), and dual-task gait speed (walk at a normal pace while 

reciting alternate letters of the alphabet out loud). Study members completed each gait condition 

twice and the mean speed was taken for each condition. Gait speed was highly correlated across 

all three conditions (Supplemental Results). For our main analysis, we used the average of the 

usual gait speed and maximum gait speed conditions to remove any cognitive effects present in 

the dual-task condition. We also completed all gait-speed analyses using the mean of all three 

conditions to compare with previously published results from this cohort (Rasmussen et al., 

2019). These results can be found in the Supplemental Materials. 

 

Listening Task 

Study members completed the Listening in Spatialized Noise - Sentences test (LiSN-S) in a 

soundproof booth. Stimuli were presented using Sennheiser 215 headphones attached to a Mini 

PCM2704 external sound card. The LiSN-S generates a three-dimensional auditory environment 

in four different conditions. During the task, target sentences are superimposed with distractor 

sentences. The distractor sentences were presented at 55 decibels sound pressure level (dB SPL). 

Study members repeated target sentences out loud and were automatically scored according to 

the number of correct words in each sentence. The program began with target sentences 

presented at 62 dB SPL and intensity levels were adjusted according to performance: the intensity 

was adjusted down if > 50% of the words in a sentence were correct and adjusted up if <50% of 

the words were correct. The first several sentence presentations were considered practice, with 

each presentation lowered in 4 dB increments until performance dropped below 50% accuracy, 

after which increments decreased to 2 dB. Practice sessions were not included in the final scores. 
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The test condition continued until the average of the positive and negative-going reversals was 

≥ 3 and the standard error of these midpoints was < 1 dB. If Study members did not reach this 

point, the test condition simply ended after 30 sentence presentations. Speech reception 

thresholds (SRT) were considered the lowest intensity a Study member could repeat 50% of 

words correctly. We used the low cue speech reception threshold, where the distractor speaker 

and target speaker had the same identity and were presented in the same location in the auditory 

environment, in our primary analyses. We selected low cue speech reception threshold as it is 

the most challenging condition and may have greater age-related variation. Crucially, lower 

scores on this measure indicate better hearing, as it reflects the intensity at which a person can 

successfully distinguish between distractor and target sentences. Further, we tested the other 

speech reception threshold from the LiSN-S task and measures of pure tone audiometry (see 

Supplemental Materials). We also tested results from an adaptation of the Digit Triplets Test 

(Van den Borre et al., 2021; King et al., 2011), a speech-in-noise task which uses white noise as a 

distractor instead of other speech (See Supplemental Materials). Results for these additional 

hearing measures can be found in the Supplemental Results and Supplemental Figure S1. We 

also repeated all analyses while controlling for overall hearing ability as measured by pure tone 

audiometry (Supplemental Results, Supplemental Figure S2). 

 

Primary Analyses 

We associated IQ, gait speed, and SRT-hearing with two broad features of functional topography: 

(i) total network surface area and (ii) spatial similarity. These are described in more detail below. 
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Total Network Surface Area 

Total network surface areas were calculated for all 17 functional networks by summing the 

number of vertices assigned to a given functional network in each Study member. As functional 

topography maps were generated after normalizing all subjects to fs_LR32k space, measures of 

network surface area already control for total cortical surface area. We conducted 17 univariate 

regressions between each functional network and each behavioral measure (IQ, gait speed, and 

SRT-hearing) while controlling for sex and in-scanner head motion (average framewise 

displacement). We used a Bonferroni corrected p value of .05/17 = 0.0029 to determine statistical 

significance. 

 

To more stringently test associations observed with total network surface areas, we also trained 

linear ridge regression models using network surface areas and tested their ability to predict IQ, 

gait speed, and SRT-hearing in unseen data using a split-half scheme. Specifically, we used a 2-

fold nested cross-validation scheme to train our model (Cui et al., 2020). The outer fold was used 

to estimate the generalizability of the model and the inner fold was used to optimize the penalty 

parameters. For each behavioral measure (IQ, gait speed, and SRT-hearing) we generated a rank 

ordering of Study members and placed odd-ranking Study members into the training set and 

even-ranking Study members into the test set (i.e., unseen data). This train/test set split was the 

outer fold. This approach to data splitting ensured that training and test sets would be closely 

matched on the behavioral outcome of interest. 
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We included an L2 regularization term to prevent model overfitting. This term was optimized 

during inner-loop cross-validation. Specifically, we again split the training set in half (training 

subset 1 and training subset 2). We then trained our ridge regression model using subset 1 to 

predict behavior in subset 2 using a variety of L2 regularization terms. We then repeated this 

procedure using subset 2 to predict subset 1. We calculated the accuracy of each prediction 

(Pearson’s r) and the mean absolute error (MAE) for each individual prediction. For each L2 term, 

we averaged the r and reciprocal of the MAE terms and summed these values to get an 

“accuracy” measure for each L2 term. The L2 term with the highest overall accuracy was carried 

forward to the outer fold step. Effects of sex and in-scanner head motion were regressed from 

our behavioral measures prior to model training. To prevent information leak, we regressed 

average FD and sex from the training set and applied the resulting beta weights to the test set. 

This approach ensures that our model only uses information from the training set, including 

covariate regression, when calculating predictions in the test set. 

 

We employed a permutation method to test our predictions for statistical significance. 

Specifically, we shuffled the behavioral scores within the training set 1,000 times and 

recomputed the prediction strength each time. We considered observed predictions statistically 

significant if they had prediction accuracy above the 95th percentile of null predictions and 

prediction error below the 5th percentile of null predictions. Finally, to ensure prediction 

accuracies were not due to our data splitting procedure, we generated 100 random outer fold 

splits and generated predictions for each of these random splits to compare with our estimates 

derived from rank-order splitting. 
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We utilized the Haufe transform to assess for relative feature importance in our multivariate 

prediction model (Haufe et al., 2014). Because multivariate regression models involve 

transforming predictor variables from a high-dimensional feature space into a lower-dimensional 

feature space, the multivariate beta weights cannot be interpreted as relative feature 

importance. Instead, we calculated the covariance between each predictive feature and outcome 

variables. These covariances can be thought of as “relative feature importance” and can allow 

for interpretation of our predictive model. Prior to Haufe transformation, we standardized total 

surface area measures and regressed the effects of sex and in-scanner head motion from each of 

our behavioral variables. We then calculated covariance between each network’s standardized 

surface area and each predicted behavioral score. To maintain a consistent scale across 

behavioral measures, we divided each covariance measure by the variance of respective 

behavioral measures. To ensure that our feature importance estimates were not driven by 

idiosyncrasies in the data splitting procedure, we computed feature importance estimates across 

the aforementioned 100 random outer fold data splits. We report the average feature 

importance across these 100 predictions. Notably, we performed this analysis only using Study 

members in the training set to better interpret our trained regression model. 

 

Spatial Similarity 

To test behavioral associations with the spatial layout of networks, we again used a split-half 

approach to train kernel ridge regression models using brain wide topographic similarity and 

tested its ability to predict behavior in held-out data. These models predict behavior of a held-
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out Study member as the weighted average of associations observed in Study members from the 

training set. The weights were determined by that held-out Study member’s brain-wide 

topographic similarity to each of the training Study members, as quantified by the Dice coefficient 

(Chen et al., 2022; Kong et al., 2019). We used the Dice similarity coefficient between Study 

members to estimate which Study members should show the most similarity in behavior. In other 

words, if two Study members have similar brain-wide functional topography, our models would 

predict that they have similar behavior. Additional details of this model can be found in the 

Supplemental Methods. We used the same 2-fold nested cross-validation approach as above to 

train and test the regression models using spatial similarity. We again used similar permutation 

methods to test our predictions for statistical significance and for robustness to data splitting 

procedures. 

 

Secondary Analyses – Regional Prediction 

To assess for specific regional contributions to prediction accuracies, we assessed the accuracy 

of our kernel ridge regression models while training them using only topographic similarity from 

within 360 cortical parcels (Glasser et al., 2016). By using a parcellation that is not based on our 

functional connectivity maps, we are able to extract regional patterns of functional topography 

across the cortex. Due to the misalignment of these parcellations, each of the 360 parcels contain 

individual-level variation in functional network boundaries. Thus, regional predictions of 

behavior are based only on the topography within a specific region of the cortex. This procedure 

allowed us to test for qualitative similarity of the cortical regions most important for the 

predictions of IQ, gait speed, and SRT-hearing. 
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To formally test for correspondence between maps of parcel-wise prediction accuracies, we used 

a spatial permutation procedure known as a spin test (Váša et al., 2018). A spin test allows for 

tests of statistical significance by generating 10,000 random permutations of cortical surface data 

while preserving the spatial covariance structure of the data. A truly random shuffling of cortical 

data would create an unrealistically weak null distribution by generating biologically improbable 

distributions across the cortex (Alexander-Bloch et al., 2018). Thus, a spin test is a more 

conservative test of spatial correspondence. Correlations between two brain maps were 

considered statistically significant if they were higher than the 95th percentile of the set of null 

distributions generated through the spin test. 

 

RESULTS 

Cohort Characteristics 

Attrition analyses revealed no significant differences in either childhood IQ or socioeconomic 

status between the full cohort, those still alive, those seen at age 45, or those scanned at age 45 

(Supplemental Methods, Supplemental Figure S3-S4). Of the 875 Study members completing 

the neuroimaging protocol at age 45, 769 had GFC data passing quality control that were included 

in the primary analyses. Study members with usable GFC data did not significantly differ from the 

full age 45 sample in IQ at age 45 (t = 1.44, p = .15) or sex distribution (X2 = 0.21, p = 0.88). Thus, 

the current analyses continue to reflect effects in a population-representative cohort. 
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IQ, gait speed, and SRT-hearing were all normally distributed in the subsample of 769 Study 

members with high-quality GFC data (Supplemental Figure S5A). IQ, gait speed, and SRT-hearing 

were all significantly correlated (IQ and gait: r = .38, p < .001; IQ and SRT-hearing: r = -.31, p < 

.001; gait and SRT-hearing: r = -.20, p < .001; Supplemental Figure S5B). This is consistent with 

previously reported associations between these variables in the full Dunedin Study cohort at age 

45 (Rasmussen et al., 2019). 

 

Functional Topography Homogeneity and Test-Retest Reliability 

Consistent with previous work (Cui et al., 2020; Kong et al., 2019, 2021), we found that 

individualized parcellations showed reliable differences between people and boosted average 

functional homogeneity (i.e., the average correlation in BOLD signal between all pairs of vertices 

within each network) compared to the template parcellation. Each individual Study member 

showed higher homogeneity from their individualized parcellation compared to the template 

parcellation (Figure 1, Supplementary Figure S6). 

 

High quality GFC data were available from 19 of the 20 Study members who repeated the 

scanning protocol. We found that total network surface areas showed fair test-retest reliability 

(mean network ICC = .47). We further observed strong within-person similarity between 

timepoints (Dice coefficient = 0.81), which was greater than between-person similarity (Dice 

coefficient = 0.72; Supplemental Figure S7). These results are consistent with previous test-retest 

analyses of functional topography in other datasets (Cui et al., 2020; Kong et al., 2019, 2021). 

Thus, our maps capture reliable individual-level features of functional topography. 
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Figure 1. Example of functional topography in the Dunedin Study cohort. A. Group average functional 
parcellation. Legend shows colors corresponding to each of 17 neocortical networks. B. Example of functional 
topography variation in 3 Study members. Right hemisphere is shown to portray overall group correspondence 
while a region of the temporo-parietal junction is highlighted to show individual variation in topography. 
 

 

Total Network Surface Area 

We first tested associations between total network surface area for each of the 17 functional 

networks and IQ, gait speed, and SRT-hearing (Figure 2A). IQ and gait speed but not SRT-hearing 

exhibited a broadly similar pattern of associations with network surface area. Notably, higher IQ 
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and faster gait speed were associated with relatively larger default mode network 1, but 

relatively smaller default mode network 2 and limbic networks. No statistically significant 

associations with SRT-hearing were observed. A complete list of results is presented in 

Supplemental Table S1. 

 

To gauge the similarity between profiles of associations, we computed correlations between 

resulting beta weights with IQ, gait speed, and SRT-hearing. While the pattern of associations 

appeared highly consistent between IQ and gait speed (r = .76, p = <.001), there was no such 

consistency between IQ and SRT-hearing (r = -.31, p = .22), or between gait speed and SRT-hearing 

(r = -.40, p = .11). 

 

In complementary analyses, ridge regression models trained using total network surface areas 

(henceforth: surface area prediction models) were able to predict variation in IQ (fold 1: r = .19, 

p < .001; fold 2: r = .11, p = .03) and gait speed (fold 1: r = .19, p < .001, fold 2: r = .12, p = .02), 

but not SRT-hearing (fold 1: r = .06, p = .22, fold 2: r = .08, p = .10; Figure 2B). Our permutation 

procedure revealed that our predictions were significantly higher than would be expected by 

chance for IQ (fold 1: pperm = .003, fold 2: pperm = .03) and gait speed (fold 1: pperm = .001, fold 2: 

pperm = .03), but not for SRT-hearing (fold 1: pperm = .15, fold 2: pperm = .08). The predictions for IQ 

also had less error than would be expected by chance (fold 1: pperm = .002, fold 2: pperm = .03). 

Predictions for gait speed (fold 1: pperm = .004, fold 2: pperm = .08) and SRT-hearing also had 

relatively low error (fold 1: pperm = .06, fold 2: pperm = .01) (Figure 2C). These predictions were 

robust to variation in data-splitting procedures (Supplemental Figure S9). 
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Figure 2. Network surface area analyses. A. Results from univariate correlations between network surface 
area and IQ, gait, and SRT-hearing. Colors correspond to functional networks identified in Figure 1A. 
Correlations marked with a star are statistically significant after Bonferroni correction across the 17 
comparisons. B. Results from surface area prediction models for IQ, gait speed, and SRT-hearing. Scatterplots 
represent the correlation between observed scores and predicted scores according to ridge regression models. 
Fold 1 is shown in gray while fold 2 is shown in black. C. Permutation tests of observed predictions compared 
to 1,000 null predictions. (Top panel) Histograms show null distribution of prediction strengths and vertical 
lines show the observed prediction strengths. (Bottom panel) Histograms show the null distribution of 
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prediction error and vertical lines show the observed prediction error. Fold 1 is shown in gray vertical lines 
while fold 2 is shown in black. 
 
Lastly, Haufe-transformed predictive feature scores derived for each functional network were 

broadly consistent between IQ and gait speed (r = .74, p = .001), but not between IQ and SRT-

hearing (r = -.28, p = .26), or gait speed and SRT-hearing (r = -.37, p = .14). In addition, surface 

areas for default mode network 1 had strong positive feature importance for both IQ and gait, 

while limbic networks had strong negative feature importance for both IQ and gait 

(Supplemental Figure S10). 

 

Spatial Similarity 

Next, we used a more fine-grained approach to testing the associations between functional 

topography and behavior. Using total network surface areas is a somewhat coarse way of testing 

associations with functional topography, as it does not consider the shape of functional networks. 

Furthermore, this coarse measure of total network surface area had only fair test re-test 

reliability in our dataset. Thus, the following analysis is based on the shape of individualized 

functional networks - a more detailed and reliable strategy of capturing functional topography. 

For this analysis, we again used a split-half approach to train kernel ridge regression models, this 

time using brain-wide topographic similarity as calculated using the Dice coefficient (henceforth: 

spatial similarity prediction models; Figure 3A). We found that these spatial similarity prediction 

models were able to predict IQ (fold 1: r = .34, p < .001, fold 2: r = .23, p < .001) and gait speed (r 

= .19, p < .001, fold 2: r = .10, p = .04), but not SRT-hearing (fold 1: r = .03, p = .58, fold 2: r = .05, 

p = .32) in held-out Study members (Figure 3B). Prediction was stronger than would be expected 

by chance for IQ (fold 1: pperm < .001, fold 2: pperm < .001 ) and gait speed (fold 1: pperm < .001, fold 
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2: pperm < .03), but not SRT-hearing (fold 1: pperm = .28, fold 2: pperm = .14). In addition, predictions 

for IQ (fold 1: pperm < .001, fold 2: pperm < .001) had less error than would be expected by chance. 

Gait speed had relatively low levels of error (fold 1: pperm = .001, fold 2: pperm = .23), but SRT-

hearing prediction had error similar to the null distribution (fold 1: pperm = .64, fold 2: pperm = .09) 

(Figure 3C). Finally, these results were robust to variation in data splitting (Supplemental Figure 

S11). As has been observed previously (Kong et al., 2019, Cui et al., 2020), predictions using 

similarity tended to have stronger accuracy and less error compared to predictions using only 

total surface area (Supplemental Figure S12). 
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Figure 3. Whole brain spatial similarity analyses. A. Schematic depicting the organization of our ridge 
regression model. Brain-wide similarity (Dice coefficient) was calculated between all unique pairs of Study 
members and stored in a similarity matrix. This matrix was then used to train our ridge regression model to 
predict IQ, gait speed, and SRT in unseen Study members. B. Results of spatial similarity prediction models for 
IQ, gait speed, and SRT-hearing. Scatterplots show the correlations between observed scores for IQ, gait speed, 
and SRT-hearing and the predicted scores according to our ridge regression models. Fold 1 is shown in gray 
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while fold 2 is shown in black. C. Permutation testing of spatial similarity prediction models. (Top panel) 
Histograms show the null distribution of prediction strengths from 1,000 null predictions. Vertical lines 
represent observed prediction strengths. (Bottom panel) Histograms show the null distribution of prediction 
error from 1,000 null predictions. Vertical lines represent observed prediction error. Fold 1 is shown in gray 
while fold 2 is shown in black 
 

Regional Prediction 

To identify specific regional contributions to our observed predictions, we repeatedly assessed 

the accuracy of our spatial similarity prediction models while training them using only functional 

topography from within each of 360 anatomically derived cortical parcels (Figure 4A). Specifically, 

we calculated the Dice coefficient similarity between all pairs of participants for each cortical 

parcel. We then used each of these 360 similarity matrices to train our spatial similarity prediction 

models. Each resulting prediction strength thus indicates how well functional topography from 

within that anatomical parcel alone can predict behavior. This procedure also allowed us to test 

for qualitative similarity of the cortical regions most important for the predictions of IQ, gait 

speed, and SRT-hearing. Broadly, the strongest regional predictions for IQ and gait speed 

reflected variability in the functional topography of the temporoparietal junction and superior 

temporal gyrus, regions assigned to various default mode subnetworks in our group average, as 

well as lateral frontal cortex. SRT-hearing was modestly predicted from variability in lateral 

frontal and temporoparietal parcels (Figure 4B). 

 

We also compared the prediction strength of each individual parcel with the prediction strength 

using global functional topography (i.e., across the entire cortex). We observed that the 

prediction of IQ based on global topography was stronger than prediction from the topography 

of any single parcel, while a small number of parcels predicted gait speed more strongly than did 
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global topography. There was no difference between prediction strengths of regional or global 

topography for SRT-hearing (Figure 4C). 

 

We used a spin test to formally evaluate correspondence between regional prediction maps for 

IQ, gait speed, and SRT-hearing. This test created 10,000 random permutations of values in the 

360 cortical parcels while preserving their overall spatial covariance structure, thus generating a 

more realistic and stricter null distribution to test the observed association (Vaśa et al., 2018). 

The spatial patterns of regional prediction for gait speed and SRT-hearing both modestly aligned 

with IQ (IQ-gait speed fold 1: r  = .12, pspin = .01; IQ-gait speed fold 2: r  = .21, pspin < .001; IQ-SRT-

hearing fold 1: r  = .17, pspin < .001; IQ-SRT-hearing fold 2: r  = .14, pspin = .007). However, regional 

prediction patterns for gait speed and SRT-hearing did not align with each other (gait speed-SRT-

hearing fold 1: r  = .03, pspin = .30; gait speed-SRT-hearing fold 2: r  = .06, pspin = .09; Figure 4D). 
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Figure 4. Regional prediction analyses. A. Schematic depicting our method for regional prediction. For each of 
the 360 Glasser parcels, we generated a new similarity matrix based on topographic similarity between all 
unique pairs of Study members within only that Glasser parcel. We then tested the ability for topography in 
that parcel alone to predict IQ, gait speed, and SRT-hearing. B. Prediction strengths for 360 Glasser parcels for 
IQ, gait speed, and SRT-hearing. Darker red indicates stronger prediction based on topography within that 
parcel. Parcels that had negative prediction values (i.e., no predictive strength) have no color. C. Comparison 
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of regional predictions with whole brain predictions. Histogram shows distribution of predictions from each 
parcel and the vertical lines show prediction strength based on the whole brain. Fold 1 is shown in gray while 
fold 2 is shown in black. D. Cross-parcel correlations in predictions for IQ, gait speed, and SRT-hearing (vertical 
lines), overlaid on null density plots generated with spin tests. Fold 1 is shown in gray while fold 2 is shown in 
black. Leftmost plot shows the correlation between parcel-wise prediction of IQ and gait, middle plot shows 
the correlation between parcel-wise prediction of IQ and SRT-hearing, and rightmost plot shows the correlation 
between parcel-wise prediction of gait speed and SRT-hearing. 
 

DISCUSSION 

We used a recently developed approach to reliably capture individual differences in the 

organization of functional networks across the neocortex (i.e., functional topography) in a large 

population-representative birth cohort now in midlife. We then leveraged this information to 

help better understand commonly observed correlations between seemingly disparate abilities, 

namely cognitive functioning as captured by IQ, and sensorimotor functioning as captured by gait 

speed and SRT-hearing. First, we found evidence for considerable variation in the topographical 

organization of common functional neocortical networks across this population-representative 

cohort, bolstering prior work with samples of convenience (Kong et al., 2019, Cui et al., 2020; 

Keller et al., 2022). Next, we found evidence for shared variation in the functional topography 

associated with IQ and gait speed but not SRT-hearing. While IQ and gait speed would appear to 

be quite different behaviors, they mapped onto highly similar aspects of functional topography. 

This suggests that covariation between cognitive and motor abilities during midlife is partially 

driven by shared variation in the functional integrity of widely-distributed and rather highly 

circumscribed neocortical networks. 

 

More specifically, we found that higher IQ and faster gait speed both mapped onto increased 

surface area of higher-order functional cortical networks typically associated with cognitive 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 9, 2023. ; https://doi.org/10.1101/2023.01.09.523297doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.09.523297
http://creativecommons.org/licenses/by-nc-nd/4.0/


FUNCTIONAL TOPOGRAPHY OF COGNITIVE AND MOTOR ABILITIES 

 31 

functions and not lower-order somatomotor cortical networks typically associated with motor 

functions. This is in line with prior findings that gait speed in older adults most strongly correlates 

with the functional connectivity strength of higher-order functional networks (Lo et al., 2017; 

Yuan et al., 2015). However, these prior studies utilized functional connectivity rather than 

functional topography so we cannot directly compare our results to these prior studies. In our 

analyses, variation in IQ and gait speed most strongly reflected the functional topography of the 

default mode network. Thus, slower gait speed in midlife appears to reflect changes in default 

mode network organization. Notably, the default mode network is thought to be critical during 

aging, cognitive decline, and dementia onset (Buckner et al., 2005). Specifically weaker functional 

connectivity of the default mode network have been associated with aging, cognitive decline, 

and poorer health in adults (Sambataro et al., 2010; Smith et al., 2015; Staffaroni et al., 2018). 

The observed topographic patterns of associations with IQ and gait speed may index poorer 

overall health at midlife that may predispose people to accelerated biological aging (Elliott et al., 

2021), and could reflect the early signs of aging itself. This would align with the ‘last in, first out’ 

hypothesis of brain aging (Douaud et al., 2014), which posits that the last brain networks to 

develop during early life (i.e., default mode network) are the first to degrade during later life. 

Given the relative youth of our cohort compared to most aging studies (i.e., age 45 vs. age 65+), 

the cross-sectional associations with the default mode network could reflect early stages of aging 

that first manifest in higher-order, later-developing networks. 

 

Notably, while we observed the strongest associations with the functional topography of the 

default mode network, our prediction models performed best when using information from all 
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17 neocortical networks. Thus, while the default mode network may have greater relative 

importance, the shared variance between IQ and gait speed reflects the functional organization 

of the entire neocortex. 

 

In contrast, we did not observe similar associations between SRT-hearing and functional 

topography. This is somewhat surprising given that SRT-hearing was correlated with cognitive 

ability at a similar magnitude as gait speed in our cohort, and all three measures were similarly 

normally distributed. This null finding was true for SRT-hearing as well as other hearing variables 

and was robust to variation in overall hearing ability (see Supplemental Materials for additional 

analyses). It is important to note that very few Study members demonstrated clinically significant 

hearing loss at midlife. Age and peripheral hearing loss significantly contribute to SRT-hearing 

(Besser et al. 2015) and normal hearing has been shown to nullify the association between SRT-

hearing and cognitive ability (Glyde et al., 2013). While many studies have found associations 

between sensory functioning and cognitive decline, these studies have typically focused on 

participants older than 65 years, who would typically have mild or greater hearing loss (Lin et al., 

2011; Loughrey et al., 2018; Lindenberger & Baltes, 1994). A possible explanation for the absence 

of associations between SRT-hearing and functional topography is that sensory functioning is less 

closely tied to the organization of neocortical networks in midlife compared to cognitive and 

motor functioning. Indeed, when younger (25-69 years) and older (70-103 years) adults are 

directly compared, older adults show stronger associations between sensory and cognitive ability 

compared to younger adults (Baltes & Lindenberger (1997). Finally, prior research in the Dunedin 

Study has found that biological aging in midlife is more weakly associated with sensory 
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functioning compared to cognitive and motor functioning (Elliott et al., 2021). Thus, if the profile 

of associations between functional topography, IQ, and gait speed does reflect midlife stages of 

biological aging, this profile may not yet reflect variation in hearing ability. 

 

In addition to these novel findings, our analyses extend prior studies of functional topography in 

several ways. First, our individualized maps of functional topography had good test-retest 

reliability comparable with prior work (Kong et al., 2019, 2021), including with parcellation 

methods other than MS-HBM (Cui et al., 2020). Second, we found associations between 

functional topography and cognitive ability that have effect sizes and prediction performances 

that are similar to prior work in other datasets (Cui et al., 2020; Kong et al., 2019; Keller et al., 

2022). Third, we replicated findings that measures of network spatial organization tend to 

outperform summary metrics of total network surface areas in predicting behavior (Kong et al., 

2019). Taken together, these findings provide further evidence for the utility of functional 

topography as a novel technique for reliably capturing individual differences in brain function 

and their mappings out to behavior. 

 

Our study is not without limitations. First, neuroimaging, gait speed assessment, and hearing 

measurements were only conducted at one time point, precluding longitudinal analyses. While 

we have previously found that gait speed is associated with longitudinal biological aging 

(Rasmussen et al., 2019), we are not yet able to describe longitudinal changes in gait speed itself, 

hearing ability, or functional topography. However, repeat testing of neuroimaging, gait speed, 

IQ, and hearing in this cohort will begin at age 52 in 2023. Second, the Dunedin Study cohort was 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 9, 2023. ; https://doi.org/10.1101/2023.01.09.523297doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.09.523297
http://creativecommons.org/licenses/by-nc-nd/4.0/


FUNCTIONAL TOPOGRAPHY OF COGNITIVE AND MOTOR ABILITIES 

 34 

established 5 decades ago, bringing an inherent limit on sample size. Thus, we faced power 

constraints typical of cross-sectional analyses of brain-behavior associations (Gratton et al., 2022; 

Marek et al., 2022). It is partially for this reason that we selected a strategy (MS-HBM) designed 

to reduce individual error inherent in traditional analyses of brain function. While our replications 

of prior brain-behavior findings from other large datasets are reassuring (Kong et al., 2019), we 

must await additional independent replications of our novel findings. Moreover, our population-

representative dataset may generalize more readily than convenience samples that suffer from 

healthy volunteer bias. Finally, our preregistration and reproducibility-check strategies prevent 

p-hacking, which is known to contribute to reproducibility failures. 

 

Taken together, our results present a profile of brain-wide functional organization that correlates 

with both cognitive and motor functioning during midlife. These convergent patterns across the 

functional topography of IQ and gait speed provide a plausible biological basis for why gait speed 

captures individual differences in midlife cognitive function (Rasmussen et al., 2019), overall 

health (Smith et al., 2015), and, potentially, early signs of accelerated aging in midlife. This 

suggests that gait speed may not be simply a measure of physical function but rather an 

integrative index of nervous system health. 
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