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1. INTRODUCTION 

 The identification and quantification of proteins in 
biological samples play a crucial role in biological and 
biomedical research [1-4]. For example, in biomarker 
discovery studies, the aim is to elucidate a set of proteins that 
can be used to reliably differentiate diseased and normal 
samples. Accurate protein identification and quantification 
are required to achieve this goal. 

1.1. Liquid Chromatography/Mass Spectrometry 
(LC/MS) for Protein Identification and Quantification 

 The most powerful method for protein identification and 
quantification is Liquid Chromatography/Mass Spectrometry 
(LC/MS), a combination of Liquid Chromatography (LC) 
and Mass Spectrometry (MS) which are explained separately 
below. 
 After purification and separation, proteins can be cut into 
peptides by enzymes (see Fig. 1) at theoretically predictable 
positions. Each protein generates a unique combination of 
peptides with different masses. Thus, by knowing the mass 
list of a protein, or “protein mass fingerprint”, a specific 
protein can be identified. Mass Spectrometry achieves 
protein identification and quantification through measuring 
the mass and abundance of peptides contained in a sample. 
There exist several databases (such as Swiss-Prot 
http://www.expasy.org/sprot/) that store the mass 
fingerprints of known proteins. Thus the protein content of a 
sample can be obtained by submitting a mass list to these 
databases. 
 However, MS has limitations in protein identification 
since different peptides may share the same mass. This, 
coupled with limited protein sequence coverage (the number  
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of peptides detected by MS per protein), mass fingerprint 
matching can not uniquely resolve the identity of proteins. In 
such cases, MS/MS technologies can be employed. In 
MS/MS, peptides are further fragmented into smaller 
molecules. Similar to DNA sequencing, the fragmented 
molecules can be pieced back together to identify the exact 
amino acid sequence of a parent peptide. 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. (1). Proteins are digested into peptides. 
 
 There are several types of MS technologies for 
measuring peptide masses including: Fourier transform 
(FTMS) [5] and Time-of-Flight (TOFMS) [6]. In both cases, 
peptides are charged (ionized) through either Electrospray 
Ionization (ESI) [7] or Matrix-Assisted Laser 
Desorptation/Ionization (MALDI) [7, 8]. (Note that peptides 
from the same species may carry different number of charges 
(z). Multiple factors may affect the charge state distribution 
of a peptide which have not been well characterized). In 
FTMS, charged peptide ions are trapped in a magnetic field, 
where they are excited to a larger cyclotron radius by an 
oscillating electric field perpendicular to the magnetic field. 
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The excitation results in the ions moving in a circle with a 
frequency determined by their mass/charge ratio (m/z) value. 
The resulting signal consists of the superposition of sine 
waves. Then the mass spectrum is extracted from this signal 
by performing a Fourier transform. In TOFMS (Fig. 2), ions 
are accelerated by an electrical field to the same kinetic 
energy with the velocity of the ion depending on the m/z 
value. Thus time-of-flight can be used to translated to m/z. 
After estimating the number of charges (charge state 
estimation), the mass of the peptides can be extracted from 
the m/z values recorded in the mass spectrum which can be 
viewed as the superposition of mass finger prints of all 
proteins contained in the sample. In both MS technologies, 
the intensity of the recorded signal indicates the abundance 
of the peptides, which enables protein quantification. FTMS 
has a very high mass resolution, but due to cost and 
sensitivity issues, TOFMS is also very common. 
 In MS, the problem of ion-ion suppression is a serious 
problem in complex biological samples. In the ionization 
process, peptides compete for electric charges such that some 
low abundance peptides may not be ionized; consequently, 
they can not be identified and quantified. For this reason, 
peptide separation using Liquid Chromatography (LC) is 
employed to reduce the total amount of peptides entering the 
mass spectrometer at a give time. The combination of LC 
and MS (LC/MS) is rapidly emerging as a method of choice 
for large-scale biomarker discovery [9, 10]. 
 LC is a laboratory technique for the separation of peptide 
mixtures by passing peptide samples through a column that 
contains a certain solvent. Depending on their 
physicochemical properties and interactions with the solvent, 
peptides travel through the column with different speeds. 
The elution (retention) time is the characteristic time it takes 
for a particular peptide to pass through the system (from the 
column inlet to the mass spectrometer) under set conditions. 
An illustration of the LC elution process is shown in Fig. (3).  
 In LC/MS, peptides are less likely to compete for charge 
since they are separated in elution time. Therefore, relative to 
MS, many more peptides can be measured. Sequence 
coverage (i.e. the number of peptides observed from a given 
protein) affects the confidence of protein identification and 

quantification. LC can also be combined with MS/MS to 
form LC/MS/MS. Note that MS instruments are often set up 
to collect LC/MS and LC/MS/MS data simultaneously. 
 
 
 
 
 
 
 
Fig. (3). The LC elution column. 
 

1.2. Typical Workflow Using LC/MS 

 There are several common types of proteomic studies 
that may utilize LC/MS. After peak detection, comparative 
studies aim at selecting features (peptide signals) 
consistently correlated with a particular physiological status, 
such as development of disease [11]. The process of 
selecting differentially expressed peptide signals is called 
feature selection. Comparative study ends when features are 
selected. Second, targeted studies aim at the determination of 
peptide/protein identity and biological significance [12, 13]. 
Third, survey proteomic studies aim at the identification and 
quantification of all proteins contained in a biological sample 
[14, 15]. 
 A biomarker discovery study can first employ 
comparative study for identifying features that can reliably 
differentiate one class of samples from another. Then a 
targeted study can be conducted to clarify the protein 
identity of selected features. A hypothesis driven study, on 
the other hand, can start with targeted study directly. A 
survey proteomic study can serve the purpose of creating a 
proteomic database, containing protein identities and 
contaminants, or as a first step before comparative study.  
 A typical workflow using LC/MS for biomarker 
discovery is depicted in Fig. (4). Protein extracts from 

 
 
 
 
 
 
 
 
 
 
 
 
Fig. (2). Time-of-Flight mass spectrometry. 
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different samples are digested by a protease (typically 
trypsin) to prepare samples of complex peptide mixtures. An 
aliquot of each sample is injected into the LC/MS system. 
The remainder of the sample is used for replicate injections 
and for future (targeted) LC/MS and LC/MS/MS analysis. 
After peak detection and alignment is performed by the 
LC/MS analysis software, a comparison between samples 
will enable the selection of those peaks that display 
differential behavior between samples. As data are collected 
in LC/MS mode only up to this point, the identity (i.e., the 
amino acid sequence) of the selected peaks (peptides) is yet 
unknown. For this, another aliquot of the sample is often 
injected onto a different LC/MS/MS system, where a tandem 
mass spectrometer collects MS/MS spectra from 
(differentially) expressed peptides. In this two-step, and 
often two-instrument, approach to biomarker discovery, 
quantitative and qualitative (sequence) information are 
collected separately by LC/MS and LC/MS/MS. 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. (4). Example of LC/MS Work Flow. 
 
 Although it is possible to discover biomarkers by 
LC/MS/MS directly it has several drawbacks. Since MS/MS 
scans are slower than MS scans, undersampling often occurs 
[16]. Also, the reproducibility of LC/MS/MS is poor. 
Overall, the limitations of 'shotgun proteomics' methods 
preclude replicate analysis required to gather statistical 
information from a large number of samples; therefore, 
LC/MS is the method of choice in many biological research 
problems. 

1.3. Data Structure of LC/MS 

 Fig. (5) depicts an example of an LC/MS dataset from 
one LC/MS data run. In LC/MS, the output of the LC 
column is inducted to a mass spectrometer periodically 
throughout the elution process. The time points can be 
referred to as elution time sampling points },,{ 1 T

ttt !!  if 
there are a total of T  sampling time points. At each time 
sample point, the mass spectrometer will produce an MS 
scan which registers the m/z values and the corresponding 
abundance (intensity) of all ionized peptides. The i th scan 
can be represented as  

 

 
 
 
 
 
 
 
 
 
Fig. (5). Example of LC/MS dataset. 
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 Note that the sampling rate in the m/z dimension may 
vary from scan to scan and the length of MS scans may vary. 
The sampling m/z values also may vary from scan to scan. 
Thus, elution time profiles cannot be extracted directly. 
There are several ways of extracting the elution time profiles 
and we will discuss them in detail when we introduce each 
LC/MS algorithm. Since different peptide species are eluted 
out at different time intervals, they arrive at the mass 
spectrometer within different time periods and will form 
distinct chromatographic peaks in elution time profiles 
indexed by the m/z values 

z
mz . Fig. (6) shows an example 

of a chromatographic peak in an elution time profile.  

1.4. Signals Generated by a Peptide 

 A peptide species with molecular weight m  may 
generate a group of related peaks in the LC/MS dataset. 
First, when a peptide species enter the mass spectrometer, 
different numbers of charges will be attached to them during 
the ionization process, which results in different charge 
states. If +

H  is the weight of the charge at charge state z , 
the resulting m/z value can be calculated as 

zHzmmz )/(= +
!+  for }{1,2,!!z . In ESI, the charge 

state can be higher than 30. In MALDI, the charge state is 
mostly one or two. The charge state distribution is 
determined by a variety of factors such as molecular weight, 
physicochemical properties of peptides as well as the 
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instrument. Currently, it is generally not clear what charge 
state distribution will result when a particular peptide enters 
a mass spectrometer. Due to charge state dispersion, one 
peptide species may register peaks at a series of m/z 
locations. Sometimes, one charge state dominates, but it is 
also very common that two or more charge states occur with 
comparable peptide counts. 

 Apart from peptide charge state dispersion, each peptide 
species should register as a series of isotope peaks in MS. 
This is due to the fact that different chemical elements that 
form peptides have isotopes in the natural world. For 
example, while carbon C12 usually has 6 protons and 6 
neutrons, it has an isotope with 6 protons and 7 neutrons 
(C13). The presence of C13 will increase the molecular weight 
of the corresponding peptide species to pwm

c
!+ , where 

c
w  stands for the weight of the extra neutron and p  is the 
number of C13s in the peptide. Given a total number of 
peptide counts of a peptide species, the percentage of the 
peptide composed of p  carbon isotopes is governed by the 
Poisson distribution [17, 18], and is called an isotope pattern. 
It should be noted that other chemical elements (such as 
oxygen) may also contribute to the isotope pattern. However, 
C13 is the dominating factor in the formation of an isotope 
pattern. 

 There exist various approaches [19-21] addressing the 
calculation of isotope patterns. One of the most popular is 
based on “averagine”, an averaged molecular formula for 
peptides [19]. Using the “averagine” molecular formula, one 
can estimate the number of carbons, oxygens etc. contained 
in a peptide sequence given the total molecular mass, which 
in turn will allow for the calculation of an estimated isotope 
pattern. The presence of an isotope pattern predicted by the 
“averagine” is important evidence of the existence of a 
peptide since non-peptides that do not have similar chemical 
composition as the “averagine” will not have the same 
isotope pattern as that of peptides. In Fig. (7), we plot an 
example of an observed isotope pattern.  

 

 

 

 
 

 

 

 
 

 

 

 
 

 
Fig. (7). Example of an observed isotope pattern in a MS scan. 
 
 Isotope and charge state dispersion result in a 
phenomenon where multiple peaks will be registered for one 
peptide species in MS spectrums at different m/z locations. 
Also, at these m/z locations, similar chromatographic peaks 
will occur in their elution time profiles. These facts 
enormously complicate the accurate identification of peptide 
identity. However, before the peptide identity can be inferred 
based on isotopic pattern and charge state distributions, it is 
important to discern peaks that were generated by real 
peptides from those by random electrical and chemical noise. 

 LC/MS peaks occupy both the LC and MS dimensions, 
and a number of factors affect the peak shape. The MS peak 
shape is mainly determined by the mass spectrometer used 
and can be modeled as Gaussian although other more 
complicated models [22] provide a better fit. The MS peak 
width can be predicted by the resolution of the mass 
spectrometer which is described by the Full-Width-Half-
Maximum (FWHM) ratio. For example, if an instrument has 
a resolution of 10,000 FWHM resolution, it means that at 
m/z value 2000 Dalton, the width of the peak at half of the 
maximum intensity can be calculated as 2000/10,000 Dalton. 
There is generally a linear relationship between the m/z 
value and MS peak width. The observed peak width will 
differ from the width predicted by the instrument resolution 
due to various reasons such as temperature and calibration 
[22]. 

 While the MS peak shape is largely determined by the 
MS instrument, the LC peak shape is determined by more 
complex factors that have not been completely characterized. 
Some factors include the concentration of solvent or gradient 
used for chromatogram separation and physicochemical 
interactions between peptides. While some researchers 
consider the LC peaks as Gaussian shaped, our observation 
of LC/MS datasets suggests that LC peaks are bell-shaped 
like peaks with a long tail in a significant number of cases. 
On the other hand, we have also observed many other types 
of LC peak shapes, some of which have double local 
maxima as shown in Fig. (8).  

 

 

 

 

 

 

 

 

 

 

 

 
Fig. (6). Example of LC/MS elution time profile. 
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Fig. (8). Example of LC/MS elution time profile with 2 peaks. 

 

 List of Terminologies  

 MS   Mass Spectrometry of peptides or intact proteins  

MS/MS   Mass Spectrometry of fragmented peptides  

LC   Liquid-Chromatography, a method for separating peptides  

FWHM   Full-Width-Half-Maximum, describes the resolution of 
MS  

ESI   Electrospray Ionization, a method for ionizing peptide  

MALDI   Matrix-Assisted Laser Desorptation/Ionization  

FTMS   Fourier-Transform Mass Spectrometry  

TOFMS   Time-of-Flight Mass Spectrometry  

Feature   Peptide signals that can be used to classify samples  

Peak  
Detection  

 The process of distinguishing peptide and noise peaks  

Isotope 
Pattern  

 Abundant ratios of a peptide spices in different isotopes 
forms 

 

2. PEAK DETECTION IN LC/MS 

 As the initial step in LC/MS data processing, peak 
detection aims to tease apart peaks generated by real peptides 
from those generated by random electrical and chemical 
noise. After peak detection, LC/MS datasets from different 
classes can be compared to extract features for classifying 
samples. 
 There are two essential aspects to consider when 
designing a peak detection algorithm. The first is to select a 
set of characteristics that can be utilized to differentiate 
peptide peaks and noise peaks. The second is to design a 
method to extract these characteristics from unknown peaks 
and compare them with that of known peptide peaks. We can 
categorize different peak detection algorithms based on the 
difference in these two aspects. One can also predict the 

performance of a peak detection algorithm based on these 
two aspects. Theoretically, if an algorithm explores all 
differentiating characteristics between peptide and noise 
peaks, and extracts these characteristics accurately, the peak 
detection performance will be the best. On the other hand, if 
an algorithm only utilizes one or two such characteristics, 
and if the extraction process is not done accurately, the 
performance is going to suffer. Listed below are the 
characteristics that have been employed to differentiate 
peptides from random noise.  
• MS and LC Peak Intensity: Usually noise peaks are of 

low intensity and high abundance peptides peaks have 
intensities that are well beyond the noise level. 
However, it is generally impossible to differentiate 
low abundance peptide peaks and chemical noise 
peaks based on intensity only.  

• MS Isotope Pattern: Peptides have predictable isotope 
patterns in the MS spectrum but noise peaks do not. 
This is a popular choice for many peak detection 
algorithms. However, for weak peptide peaks, only 
incomplete isotope patterns can be observed in the 
spectrum.  

• Frequency Content of the MS Spectrum: Noise peaks, 
especially electrical noise, occupy the higher end of 
the frequency spectrum. Thus, by performing 
filtering, noise peaks and peptide peaks can be 
separated to a degree. However, issues arise when the 
resolution of the MS instrument is high since both 
peptide peaks and noise peaks occupy similar ranges 
of the spectrum and thus weak peptide peaks could 
also be filtered out.  

• Frequency Content of the Elution Time Profile: The 
elution time profiles contain high frequency noise 
such as Poisson noise due to the discrete nature of the 
ion signal [23] or high frequency thermal noise. This 
type of noise is usually easy to differentiate from the 
low frequency LC peaks and can be removed by 
filtering methods.  

• Length of LC Peaks: Since it takes time for all 
molecules of a peptide species to elute from the LC 
column, an LC peak usually lasts for a relatively long 
period of time. If an LC peak is too narrow, it is very 
likely that the peak is due random noise. However, 
there does not exist a comprehensive study on how to 
predict the length of LC peaks under various 
experimental conditions and it is generally a guess as 
to how to choose the cut-off length of peptide peaks. 
For a low abundance peptide, the elution time is 
usually shorter and it is hard to differentiate it from 
noise.  

• Shape of LC Peaks: Some researchers [24, 25] 
consider LC peaks that match with a particular shape 
as peptide peaks. However, currently the shape of LC 
peaks is not predictable and varies greatly from one 
peptide to another. Peak detection based on the shape 
of LC peak will have low sensitivity.  

 Usually a peak detection algorithm combines one or 
more of the above characteristics to select peptide peaks. 
Obviously the choice of the subset of characteristics will 
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affect the sensitivity and specificity of the algorithm greatly. 
For example, if the shape of LC peak is chosen, then the 
sensitivity of the algorithm will be greatly reduced since any 
LC peaks that do not conform to the predefined LC peak 
shape will be considered as non-peptide peaks. When peak 
intensity is chosen as the sole criterion, a low threshold on 
intensity will be employed if high sensitivity is desired 
which will greatly reduce the specificity of the algorithm. 
 The second aspect of a peak detection algorithm, i.e., the 
method for extracting the characteristics, will also affect the 
performance greatly. For example, for isotope pattern 
matching, one can chose to use matched filtering methods 
[26], or the maximum entropy methods [27] to determine the 
match between an expected and an observed isotope pattern. 
 In what follows, we will survey and compare popular 
peak detection algorithms in the literature based on these two 
aspects. We categorize algorithms based on their main 
processing technique. Most of these algorithms are 
distributed in open source software packages. Commercial 
algorithms are not included in this review for lack of 
publicly available details of their implementation. 

2.1. Peak Detection Algorithms Based on Isotope Pattern 

 There exist a number of LC/MS peak detection and 
feature selection software packages that detect peaks mainly 
based on isotope pattern matching in the m/z dimension. 
These methods are also called 1-D LC/MS processing. Well-
known software packages include VIPER [28], SuperHirn 
[29], OpenMS [30] and PepList [31]. Note that the peak 
detection algorithm in VIPER and SuperHirn is very similar 
and we only describe VIPER in this paper. A common 
characteristic of these algorithms is that they process MS 
scans first using peptide peak detection based on isotope 
pattern matching. We can view these methods as direct 
extensions to previous mass spectrometry peak picking 
algorithms [21]. Peak picking in the LC dimension is limited 
to simple noise filtering or thresholding. The main drawback 
of these 1-D approaches is that they do not utilize the 2-D 
nature of the LC/MS dataset. 1-D MS scans are usually noisy 
and peak picking based on isotope pattern matching may 
miss a lot of peptide peaks. 

2.1.1. Visual Inspection of Peak/Elution Relationships 
(VIPER) 

 VIPER is an algorithm package developed by the group 
at Pacific Northwest National Laboratory to perform peptide 
identification based on the accurate mass and time (AMT) 
tag approach [28]. In this approach, a database tagging the 
molecular mass and LC elution time of previously identified 
peptides is employed. VIPER is applied to the 2-D LC-MS 
data to extract LC-MS features in terms of mass and elution 
time and compare with the database of tagged peptides for 
protein identification. 
 The VIPER software package utilizes software such as 
ICR2LS that uses the THRASH algorithm for peak picking. 
The THRASH algorithm [21] differentiates peptides and 
noise peaks based on isotope pattern matching. It compares 
the expected isotope pattern to the observed isotope pattern 
in each MS scan to detect peptide peaks. A byproduct, called 
the isotopic fit score, will be reported for each detected 

isotope group. The score is based on the mean square error 
difference between an isotope pattern template and the 
observed data to signify the confidence of each detected 
peptide. It implicitly assumes a Gaussian noise model in the 
MS spectrums. 
 The isotope matching algorithm also sums up a group of 
isotope peaks and then maps the masses and intensities of the 
isotopes to those of monoisotopes, which effectively 
deisotopes each MS spectrum. Note that the intensity value 
of the deisotoped spectrum is the combined intensities of 
potential masses from all possible charge states. 
 No additional peak picking steps are employed in the LC 
dimension. The LC dimension processing is aimed at 
reporting the mass and elution time tag of each detected 
peptide species. VIPER assumes that peaks from the same 
peptide species are similar in both the m/z and LC time 
dimensions. Consequently, it performs a clustering step to 
group the peaks of the same species together. To this end, a 
single link hierarchical clustering is applied with the distance 
(dissimilarity) measure defined on the features (mass, 
intensity, elution time, and isotopic fit score) and expressed 
as  

222 )()(=),(
baintbamass
IIwmmwbad !+!  

22 )()( bafitbaET ffwttw !+!+           (1) 

where a and b are two points on the 2-D spectra with m, I, t, 
and f being the respective features, and 

mass
w , 

int
w , 

ET
w , 

and 
fitw  are built-in weights assigned to reflect the 

importance of each feature in contributing to the detection of 
peptide peaks. After clustering, a single set of cluster 
features is created for each cluster, which contains the 
median mass, the central normalized elution time (NET), and 
an intensity estimate. The central elution time is based on the 
scan number containing the highest peak intensity and the 
intensity feature is the estimated as the area under the 
LC/MS peak intensity over the time scan of the cluster. 
VIPER actually provides two options for calculating the 
cluster feature: it can be based on data either from combined 
charged states or the charge state with the highest overall 
intensity and the latter is suggested by VIPER. These cluster 
features are then compared with the selected AMT tag 
databases for peptide/protein identification. 

2.1.2. PepList 

 Peplist [31] is the peak detection algorithm in the LC/MS 
data processing software package SpecArray. The algorithm 
differentiates peptide and non-peptide peaks based on 
isotope matching, intensity of MS peaks, intensity of LC 
peaks, frequency content of elution, and MS peaks. A one-
dimensional translation-invariant wavelet transformation 
filtering method (Symmlet8) [32] is used to remove high 
frequency noise in the MS scans. A smoothing method 
developed in [33] is used to smooth elution time profiles. 
Local background noise level is estimated as the median 
intensity within a window of 50 m/z. Any MS peak with a 
signal to noise ratio of less than 2 will be considered as noise 
and removed. The algorithm further assumes that peptide 
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features form isotope patterns in the MS scans, and the most 
intense peak could be the monoisotopic 1+M  or 2+M  
isotopic peak in an isotope pattern. Isotope pattern matching 
based on these assumptions is used to pick peptide features. 
The algorithm further assumes that the highest peak in an 
isotope pattern must have an SNR of greater than 5. The 
algorithm assumes that a peptide feature must have LC peaks 
with an SNR of greater than 2 when measured at the apex of 
the LC peak, and any LC peaks with smaller SNR are 
considered as noise. 

 After the algorithm performs wavelet filtering for each 
scan in the LC/MS dataset, a centroid MS spectrum is 
generated for each scan by locating all local maxima. Next, 
local background noise is estimated using a window size of 
50 m/z and stored. With estimated noise level, the SNR 
threshold of 2 is applied to the centroid peak list in each 
scan. Next, all peaks in each scan are ordered by intensity. 
Starting from the highest peak, the algorithm first estimates 
the charge state of the peak by checking the m/z difference 
of the considered peak and its neighboring MS peaks. Then 
each peak considered is assumed to be the monoisotopic 

1+M  or 2+M  isotopic peak and isotope matching is 
performed sequentially. Once a good match is found, a 
peptide feature will be reported. The criteria for a “good” 
match is not described and it is also not clear if all peaks 
belonging to the identified isotope pattern will be removed 
from the list of peaks. Afterwards, the algorithm proceeds to 
process the next highest peak in the scan having an SNR of 
at least 5. The process is repeated for all scans. 
 For each identified peptide feature in the MS scans, a 
single ion chromatogram (SIC) is constructed by summing 
the first 3 isotopic peaks and tracing the sum intensity along 
the LC dimension. A smoothing procedure developed in [33] 
is used to remove noise, and the noise level is estimated 
subsequently. LC peaks with SNR less than 2 will be 
considered as non-peptide or noise peaks. Finally the 
algorithm reports the area of the SIC as the abundance of the 
peptide and the apex location as the retention time. 

2.2. Peak Detection Algorithms Based on Peak Shape 

 These algorithms make assumptions on either the LC 
peak or the 2-D peptide peak shape. Based on the shape 
assumptions, these algorithms first filter out peaks that do 
not conform to these assumptions as noise peaks. After this 
filtering step, the algorithms may utilize other characteristics 
such as intensity and isotope pattern matching to further 
reduce the candidate peptide list. The main drawback of this 
type of algorithm is that the real peptide peak shape in the 
LC dimension is hard to predict and LC peaks that do not 
conform to the shape assumption will be missed by these 
algorithms. 

2.2.1. Matched Filtration with Experimental Noise 
Determination (MEND) 

 The MEND peak picking algorithm [25] attempts to 
develop a denoising and peak picking filter that enables low-
intensity and low-S/N peaks to be accurately determined. 
 The algorithm assumes the shape of the chromatographic 
peak to be Gaussian, and it differentiates peptide and noise 

peaks in the elution time profiles (XICs) based on matched 
filtering. Besides LC peak shape, the algorithm also assumes 
that the maximum point of a peptide's LC peak must 
intersect the maximum point of a MS peak. Lastly, the 
algorithm will further differentiate peptide and non-peptide 
peaks based on isotope pattern fitting. The algorithm will 
examine these three characteristics for each peak candidate 
and report a fitting score for each of the characteristics. 
Finally a summarizing score will be generated and a 
threshold is applied to differentiate peptide and noise. 

 To perform matched filtering, blank XICs without any 
LC peaks are used for estimating noise power spectral 
density )( fPNN . Then matched filtering is applied using the 

transfer function )()/(=)( * fPfSfH NN
, where )(* fS  is the 

conjugated Fourier transform of a Gaussian shaped curve. 
Each XIC 

mz
I  },,{ 1 Z

mzmzmz !!"  will be filtered using the 
transfer function and the output is the filtered XICs. After 
matched filtering, a fixed number of LC peaks in each XIC 
are considered as peptide candidates and each peak candidate 
is assigned with a fitting score GNSS

c
)/(= , where )/( NS  

is the estimated signal to noise ratio and nG 0.67=  is the 
gain due to matched filtering and n  is the number of data 
points per chromatographic peak. 

 The algorithm assumes that the maximum point of an LC 
peak must intersect the maximum point of an MS peak. A 
score 

V
K  up to 10 will be assigned if this is true within a 10 

sampling point window. The algorithm also examines the 
fitting of peak to isotope pattern. Another ad hoc score 

I
K  

will be assigned. The summarizing score 
IVCf KScKS =  is 

reported for each peptide peak candidate. Finally a threshold 
is used on the summarizing score to differentiate peptide and 
non-peptide peaks. 

2.2.2. Vectorized Peak Detection 

 Vectorized peak detection [34] is a relatively simple 
method of identifying peaks in LC/MS data. The aim of the 
technique is to identify areas in the data either directly as 
peaks or as an adjunct to other methods of peak detection. 
 The algorithm has but a single operating rule. For an m/z-
retention-time pair to be classified as part of a peak, it must 
be present in both the MS spectrum of that retention time 
and the LC data containing that m/z value. Data pairs thus 
identified can then be further optimized or filtered, if 
desired. 
 Hastings, et al. reported the method to be significantly 
more robust when compared with another method, 
AUTOPSY. As any detected peaks must be present in both 
the LC and MS dimensions of the data, then, in their 
requisite places, solvent cluster or column bleed 
contaminations in the LC data would generally not be 
detected as peaks, since those contaminations would also 
need to be present in the MS data. Likewise, chemical or 
instrumental detector noise in the spectrometry data would 
not generally be detected as peaks. In effect, this results in an 
adaptive noise threshold significantly more useful than 
methods such as global thresholding. 
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 The method is also reported to be suitable for use with 
other peak detection methods. While specific merging with 
other methods was not discussed in detail, it would appear 
that this method would be usable as either a precursor to 
another method or as a post-processor on candidate peaks 
already identified in one or the other sets of data. Further, 
undoubtedly due to its simplicity, it was reported that other 
considerations such as line shape and isotope distribution 
could be so incorporated. 

2.2.3. MZmine 

 MZmine [35, 36] is a software package for differential 
LC/MS analysis. It is a collection of software tools for 
visualization, peak picking, and statistical analysis of LC/MS 
datasets. It supports many options in peak picking. MZmine 
has default threshold values but the user can specify all the 
parameters. It gives the user three algorithms to select from 
for finding the mass values, two options for constructing the 
chromatogram, and seven algorithm options for peak 
recognition. MZmine is not automated so the user must 
specify the proper parameters and options for their data. It is 
written in Java by teams from Japan and Finland. 
 The peak detection algorithm in MZmine is based on 
peak shape and intensity in both the LC and MS dimensions. 
It also uses peak width of the LC dimension to differentiate 
peptide peaks from noise peaks. 
 Peak detection in MZmine is performed in a three-step 
manner. First, mass values are detected within each spectrum 
(several methods are available, depending on the nature of 
the data). In the second step, a chromatogram is constructed 
for each of the mass values which span over a certain time 
range. Finally, deconvolution algorithms are applied to each 
chromatogram to recognize the actual chromatographic 
peaks. It also optionally uses a gap filter to fill gaps in a peak 
list. 
 In MZmine the user has the option of smoothing the raw 
data to remove noise from either the LC or MS spectrum. 
This step is dependent on the type of data and can be ignored 
if the data is available as centroids. Smooth filtering options 
are crop filter, mean filter, Savitzky-Golay filter, and 
chromatographic median filter. 
 Next, the algorithm processes MS scans and detects 
possible mass values where a peptide peak may exist. This 
process is called the mass detection process. The options 
available are centroid, exact mass, local maximum, recursive 
threshold, and wavelet transform. For centroid data every 
point is considered a MS peak. The user must choose an 
intensity threshold value to filter out lower intensity peaks. 
For the exact mass detector, the algorithm searches for the 
FWHM data points and the user specifies the noise level, 
mass resolution, and peak model function. The local 
maximum finds the maximum intensities of the current 
spectrum and discards peaks that are not above noise level. 
Noise level is defined by the user. In recursive mass detector 
the user must input the noise level, minimum m/z peak 
width, and maximum m/z peak width. This method then 
looks for local maxima that satisfy the given parameters. The 
wavelet transform mass detector uses the Mexican Hat 
wavelet. The user must input the noise level, scale level, and 
wavelet window size. The MS scan is processed through 

wavelet transformation and local maxima are detected 
through the transformed data. The software allows users to 
select MS peak shape (such as Gaussian or Gaussian plus a 
base triangle); however, it is not clear how this peak shape 
information is incorporated in the peak picking process. 
 In the second step, XICs are obtained based on the mass 
list generated in the first step. There are two options for 
building chromatograms, the simple connector and the 
highest datapoint connector. The simple connector connects 
the mass peaks along the retention time dimension based on 
a match score. It requires user input of minimum time span 
and m/z tolerance window which determine the match score. 
The highest intensity chromatogram builder is similar except 
that it uses only the highest intensity as its match score. The 
exact details of how the match score is calculated is not 
given. 
 The last step in the peak detection algorithm is peak 
recognition in the LC dimension. The seven options for peak 
recognition are: no recognition, baseline, chromatographic 
threshold, noise amplitude, standard deviation, Savitzky-
Golay, and wavelet transform. The no recognition option 
makes no further processing and forms a LC peak using all 
mass spectrum peaks connected in the chromatogram. The 
baseline peak recognition sets a baseline and cuts off any 
point below the baseline from the chromatogram. The 
parameters are minimum peak height, minimum peak 
duration, and baseline level and the algorithm recognizes a 
chromatographic peak based on these parameters. The 
chromatographic threshold peak recognition uses a threshold 
level to use as a baseline and is very similar to baseline peak 
recognition. The parameters for threshold peak recognition 
are minimum peak height, minimum peak duration, and 
chromatographic threshold level. The noise amplitude peak 
recognition uses the noise amplitude to set the baseline. The 
parameters are minimum peak height, minimum peak 
duration, and amplitude of noise. Standard deviation peak 
recognition sets the baseline level based on the standard 
deviation of the signal. The parameters are minimum peak 
height, minimum peak duration, and standard deviation 
threshold level. Savitzky-Golay peak recognition uses the 
Savitzky-Golay polynomial to determine the peaks. It has 
parameters of minimum peak height and minimum peak 
duration. The wavelet transform peak recognition uses the 
Mexican Hat wavelet. It has parameters of minimum peak 
height, minimum peak duration, and wavelet threshold level. 
The software allows users to select peak shape (such as 
Gaussian or Exponentially Modified Gaussian) in peak 
detection in the LC dimension, however, the documentation 
on peak shape fitting is missing. 
 After peak detection each LC/MS run s  from  s = 1…S  
in LC dimension is stored in a peak list Ps = {pisc}  with 
i=1....Ns and s=1....S and c = {mz,!mz, rt,!rt,height,area}  
where Ns  is the total number of peaks in run s , mz  is the 
mean m/z value for the data points within the peak, !mz  is 
the standard deviation of m/z values within the peak, rt  is 
the retention time at the maximum intensity data point, !rt  
is the length of the peak in time, height  is the height of the 
peak, and area  is the area of the peak. The area is calculated 
by the sum of all intensities of the peak. 
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2.3. Two-Dimensional LC/MS Methods  

 In this category, peak detection algorithms utilize the 2-D 
nature of LC/MS and perform processing either in the LC 
dimension or on the 2-D LC/MS image first. Isotope pattern 
matching is usually performed as the last step or for 
reporting purposes only. The claimed advantage is that 
elution time processing first will reduce the noise level 
greatly and thus increase the accuracy of isotope pattern 
matching in the m/z dimension. Note that algorithms such as 
LCMS-2D still process LC data in a 1-D by 1-D fashion. 

2.3.1. LCMS-2D 

 LCMS-2D [37] processes LC/MS datasets in the LC 
dimension first and then in the m/z dimension. It claims that 
it performs 2-D processing in contrast to 1-D processing. 
 The algorithm differentiates peptide and noise peaks 
based on LC peak frequency content, LC peak intensity, LC 
peak width, and the fitness to isotope patterns in the m/z 
dimension. The algorithm assumes that LC peaks have low 
frequency content and performs smoothing to remove high 
frequency components. It also uses a preset threshold on the 
LC peak intensity to filter out peaks with low intensity. The 
algorithm assumes that peptide peaks span 5-300 scans and 
LC peaks narrower or wider are considered as noise. (The 
algorithm suggests to adjust this range in different LC 
conditions). The algorithm considers overlapping isotope 
patterns in the m/z dimension for deisotoping and charge 
state deconvolution using a variable selection algorithm [38]. 
 The algorithm first performs moving average smoothing 
in the LC dimension. The moving average window size is 
chosen to be between 3 and the minimum expected peak 
width. After LC dimension smoothing, each MS scan is 
converted to a single scan peak list with a method not 
described. These single scan peak lists include noise peaks. 
Next, all single scan peak lists are pooled together to form a 
super list. The peaks are ordered according to their intensity. 
Starting from the highest intensity single scan peak, an XIC 
is constructed within a +/- dm window of the m/z of the 
single scan peak. Then a preset threshold on SNR (2.5) is 
applied to the XIC to identify LC peaks. The method for 
determining noise variance is not provided. After 
thresholding, the LC peak list is further reduced by 
eliminating peaks with width outside the preset range (3-500 
scans). After LC dimension processing, the algorithm 
proceeds to m/z dimension processing. 
 The algorithm first pools LC peaks with similar retention 
time into clusters. Two LC peaks are considered similar in 
retention time if the peak apexes are within 5 scans, or if for 
any peak, more than half of the peak area above the half peak 
height overlaps with that of another peak. Then for elution 
time profiles within the cluster, it performs deisotoping and 
charge state deconvolution using a variable selection 
procedure [38] in the m/z dimension. It is not clearly 
described which m/z scans within the cluster of the LC peaks 
are selected for deisotoping. The variable selection 
deisotoping/deconvolution algorithm considers the observed 
MS peaks within an m/z window as the superposition of 
several isotope patterns with different charge states. Each 
contributing isotope pattern has an intensity value and is 
considered as a variable. The minimum number of variables 

that can best explain the observed MS peak is considered the 
true solution. This method is good for resolving overlapping 
isotope patterns, a phenomenon very common in lower 
resolution LC/MS datasets. The isotope patterns are also 
calculated using the “averagine” [20, 39]. 
 For clusters that cannot be explained well by overlapping 
isotope patterns, peak picking is performed in the MS 
dimension directly. The scan at the elution peak apex is used 
for this purpose. 
 This method is reported to perform better than pepList 
and msInspect when testing on a 16 synthetic peptide 
mixture. 

2.3.2. MapQuand 

 MapQuand is developed by Harvard Medical School 
[24]. The algorithm differentiates peptide and noise peaks 
based on frequency and peak intensity. The algorithm 
assumes that elution and MS peaks have low frequency and 
filtering is applied. Filtering options include matched 
filtering using Gaussian curve, box-car, or Savitzky-Golay in 
both the elution time and MS dimension. The algorithm 
applies thresholds on intensity to differentiate peptide and 
non-peptide peaks. The threshold on intensity is based on the 
mean or median plus standard deviation of the 2-D LC/MS 
data map I , and it shall be adapted to local noise 
characteristics. The algorithm assumes that a peptide forms 
2-D Gaussian curves supported on the 2-D space spanned by 
the elution time and m/z. Curve fitting is performed to 
extract peptide peak parameters such as abundance, 
retention-time centroid, m/z centroid etc. The peaks are 
deisotoped by fitting isotope patterns to the observed 2-D 
data. However, the algorithm does not use peak shape or the 
fitness to isotope pattern to differentiate peptide and non-
peptide peaks. 
 The algorithm first performs smoothing in both the MS 
and LC dimensions. The smoothed dataset is called a 2-D 
map. Using a watershed segmentation algorithm [24], the 2-
D image is partitioned into different segments. Each segment 
either contains one 2-D peak or several overlapping 2-D 
peaks. The goal of segmentation is to reduce computational 
complexity. Next, within each 2D segment, an algorithm for 
finding local maxima is employed. A point is decided to be a 
local maximum if it is greater than N neighboring data 
points. The definition of the neighboring data points is 
subject to user definition. These local maxima are considered 
as peak candidates. To reduce false positives, an intensity 
threshold is applied to these peak candidates. The threshold 
is set as the median plus two or three times the average 
absolute deviation from the median. The process of 
determining the median and deviation is not described. 
Subsequently, in order to report important peak parameters, 
each local maximum in a segment is fitted with a 2-D 
Gaussian curve:  
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where A  stands for the peak height, 
00

,mr  are peak centroid 

in the elution time and m/z dimension, and !r ,!m  are the 
deviation in the two dimensions. Non-linear least-squares 
regression is used for curve fitting. To address the problem 
that sometimes LC peaks have heavy tails, there is the choice 
of fitting peaks with the exponentially modified Gaussian 
(EMG) curve in the LC dimension. 
 If the peaks from an isotope cluster overlap with one 
another in low-resolution MS data, an additional curve 
fitting step that fits a wide 2-D curve is used based on the 
following parametric model:  
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where iic
ppcipciB )(1)(=),,( !

!  is the predicted isotope 
pattern or the probability of having i  13

C s out of a total of 
c  carbons when the 13

C  abundance is p . z  stands for the 
charge state. The unique aspect of MapQuand is that it does 
not use fixed abundance probability of 13

C  and the number 
of carbons while most other isotope pattern matching 
algorithms chose a fixed value for p  and c . 

2.3.3. msInspect 

 msInspect [40] is an open source suite of algorithms for 
comprehensive analysis of LC/MS data. It is written in Java 
by LabKey Software, Fred Hutchinson Cancer Research 
Center, and the University of Washington in Seattle, WA. 
This software has modular components for signal processing, 
time alignment, and normalization algorithms that can be 
replaced without altering the framework. 
 Their peak detection algorithm within the software 
package is primarily based on isotope pattern matching, 
filtering in LC and MS dimensions, LC peak length profile, 
and peak intensity, differentiating peptide peaks from non-
peptide peaks. Their isotope pattern matching algorithm is 
based on a Kullback-Leibler (KL) deviance score. 
 The algorithm assumes that elution and MS peaks have 
low frequency. Smoothing is performed in both LC and MS 
dimensions to remove high frequency noise. It also assumes 
that peptide peaks will sustain over time and LC peaks that 
last too short are noise peaks. The algorithm assumes that the 
LC peaks of isotopes maximize and disappear at the same 
time. In the MS dimension, the observed and expected 
isotopic distributions are compared using KL deviance score 
which can be used as measure of confidence for detected 
peptide peaks. 
 The algorithm first re-samples the raw LC/MS data to 
index the image. After re-sampling, the algorithm 
“conservatively” estimates the background level and uses a 
intensity threshold based on the estimated noise level to 
remove noise in both the LC and MS dimensions. The 
method for estimating noise level is not described. Next, 
peaks in the m/z dimension are identified using a wavelet 

additive decomposition [41] and reduced to centroid peak 
lists. 

 Subsequently peaks in the LC dimension are smoothed. 
LC peaks that are sustained over time are considered as 
peptide candidate peaks. LC peaks that appear to maximize 
and disappear at the same time are pooled together and are 
considered as isotopes. Any observed isotopic distributions 
will be extracted and are stored as 
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for  1)}({1 !" dx …  Where the maximum intensity is 
denoted by I (mz)  and with eluting isotopes being 
I (mz + x)  

 
x !{1…d " 1} . The default tolerance window 

chosen is d = 6  resulting in at most 5 isotopes. 

 The theoretical expected isotopic distribution of a peptide 
of mass m are stored into 

m
P . The model for the expected 

isotope distribution is defined as  
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 is based on its fit to 

the theoretical isotopic distributions calculated from 539 957 
tryptic peptides from the human proteome sequence 
database. 

d
K  is a normalizing constant for d  eluting 

isotopes. To compare the closeness between the observed 
and the modeled distributions a KL score is used. This score 
measures discrimination information of the two distributions. 
It is defined by  
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 Isotope peaks with the lowest KL value to expected 
peptide isotope distribution are removed from the peak 
cluster until all observed isotopes are assigned. Isotopes that 
are not assigned are given a charge state of zero. If isotopes 
are within 10% of each other then preference is given to 
those with lower m/z value and higher charge state. 
Quantification uses the highest peak within each peptide. It 
can also use the maximum intensity, the intensity summed 
over all elution profiles, and the intensities summed over 
multiple charge states of the same peptide. The algorithm 
finally produces a peptide feature file which locates each 
peptide and gives its charge state(s), time at maximum 
intensity, signal intensity, KL, number of isotopes identified, 
and the peptide's first and last scan. 

3. SIMULATION 

  The LC/MS dataset used for testing various peak picking 
criteria was generated using the Proteomics Standard Set 
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(UPS1) from SIGMA ! ALDRICH
TM . The UPS1 set is 

comprised of one vial of Proteomics Standard and one vial 
(20 mg) of Proteomics Grade Trypsin. The Proteomics 
Standard is produced from a mixture of 48 individual human 
source or human sequence recombinant proteins, each of 
which has been selected to limit heterogeneous post-
translational modifications (PTMs). The total protein content 
in each vial is 10.6 mg. Each protein has been quantified by 
amino acid analysis (AAA) prior to formulation. 
 The UPS1 sample was analyzed using an FTMS mass 
spectrometer (LTQ-Orbitrap-XL, ThermoFisher, San Jose, 
CA). 
 Note that both LC/MS and LC/MS/MS scans were 
collected in this experiment; however, this does not cause 
discontinuities in the elution profiles in the LC/MS data 
because LC/MS and LC/MS/MS data are collected in 
different sections of the same instrument. Even though the 
protein content in the UPS1 sample is known, the exact set 
of peptides after trypsin digestion cannot be theoretically 
predicted exactly due to complications such as missed 
cleavages and oxidation. The generated dataset is converted 
from the manufacturer's proprietary file format to mzXML. 

 To annotated the LC/MS data, i.e., to assign amino acid 
sequences to peptides, LC/MS/MS data was searched with 
the MASCOT protein identification algorithm. LC/MS/MS 
peaklist is searched in Mascot. Mascot returns a list of 
probable proteins based on MS/MS spectrum for each 
peptide. The Mascot search result is then compared to the 
original protein list. Out of the 283 probable proteins 
returned by the Mascot search results, 46 out of 48 proteins 
contained in the original sample are present. We treat the set 
of observed peptides in LC/MS/MS scans associated with 
these 46 proteins as the set of “true peptides” denoted as 
peptideL  with size 

pN  that is contained in the trypsin 
digested sample. Note that this list of 800 peptides cannot be 
the complete set of peptides contained in the sample; 
however, it is a very close approximation which can be used 
to compare the performance of various peak picking 
algorithms. 
 We tested the effect of various peak detection methods 
based on the peak list generated by the peak detection 
algorithms in msInspect, MZmine as well as that generated 
by the algorithm described in VIPER software which we 
implemented. The purpose of the test is to illustrate the 
effect of using various peak picking criteria rather than 
comparing the performance of software packages. Since 
many software packages allow the selection of different peak 
picking criteria, direct comparison of their performance is 
impossible. 

 In this section, we evaluate the performance of peak 
picking criteria based on isotope pattern matching, intensity, 
signal-to-noise ratio and LC peak shape matching. A fair 
way of conducting the comparison these methods is to 
compare their ROC curve, i.e., plot the false positive rate vs. 
true positive rate as the threshold on parameters varies. 
Suppose the list of all peaks contained in an LC/MS data set 
is D  with 

d
N  peaks. Each item in the list is indexed by its 

mass and then followed by parameters such as isotope 
pattern matching score. Then a threshold on one of the 
parameters such as isotope matching score can be applied. 
Peaks pass the threshold will be treated as peaks detected. 
Detected peaks are then partitioned to a set of 

t
N  “true” 

peaks and 
fN  “false” peaks by comparing the detected 

peaks with the set of “true peptides”. The true positive rate is 
estimated as 

pt NN / , which indicates the probability of 
detecting a true peak. The false positive rate is estimated as 

)/( pdf NNN ! , which indicates the probability of false 
peaks being detected as true peaks. The performance of a 
peak picking algorithm is better when its true detection rate 
is higher at a given false detection rate. This is reflected as 
the area under the curve; the larger it is, the better the 
performance is. 
 We elected to use the peak list generated by msInspect, 
MZmine and the peak detection algorithm described in 
VIPER for testing. msInspect was selected because by 
setting up all thresholds to their minimum or maximum 
values the algorithm can report all peptide and noise peaks 
existing in the data. msInspect reports the intensity, LC peak 
duration, isotope matching score (KL distance), background 
noise etc. These parameters allow us to perform peak 
detection by applying thresholds on specific parameters and 
evaluate the effectiveness. For example, if we want to 
evaluate the performance of peak detection algorithms based 
on isotope matching, we can apply a threshold to KL 
distances of the list of candidate peptides reported by 
msInspect. The MZmine peptide list is used for evaluating 
the effect of shape filtering in the LC domain. We 
implemented the peak picking algorithm described in VIPER 
which is basically a 1-D isotope matching algorithm based 
on the minimum mean square error criterion. The purpose 
was to corroborate the performance curves derived using 
msInspect. Good correlation between the two algorithms 
when they use the same peak picking parameter was found, 
which provides confidence of our evaluation methods. 

3.1. Performance of Peak Detection based on Isotope 
Pattern Matching 

 Many software packages such as msInspect and VIPER 
provide the option of detecting peaks based on isotope 
matching. Different isotope matching metrics such as KL 
distance or mean square error can be used. msInspect 
performs LC dimension filtering while the peak detection 
algorithm in VIPER does not. The ROC curves are shown in 
Fig. (9). From this we can see that using KL distance or 
mean square distance provides similar performance. The 
performance gain of msInspect in the lower detection region 
could be attributed either to KL distance as a better criteria 
or because of the LC dimension filtering performed in 
msInspect.  

3.2. Performance of Peak Detection Based on Various 
Pick Picking Criteria 

 Besides isotope pattern matching, most commercial and 
open source software packages such as msInspect offer a 
variety of peak picking criteria. Here we examine the 
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performance of peak picking by applying thresholds on peak 
intensity, scan count (LC peak length), KL distance, Total 
peak intensity, and the signal-to-noise ratio (SNR) based on 
the msInspect peptide list. The SNR is calculated as the 
squared ratio between peak intensity and the background. 
msInspect reports a background level of zero for some peaks 
in the peaklist. In such cases, we treat these peaks as noise 
peaks. The results are shown in Fig. (10), and we can see 
that the best performance is achieved by using intensity. The 
worst performance is based on SNR. This graph suggests an 
inverse growth of SNR as peak intensity grows. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. (10). ROC curve with thresholds on different peak picking 
criteria. 
 

3.3. Combining Peak Detection Criteria 

 Next, we examine the effect of combining two criteria. 
The effect of applying thresholds in scan count (LC peak 
length) and then on intensity is shown in Fig. (11).  
 From Fig. (11), it can be seen that applying threshold on 
scan count first does not improve the ROC curve. On the 

other hand, applying threshold on intensity first does provide 
some improvement on the ROC curve at a cost of the limited 
detection rate. This shows that peptide and noise peak have a 
more pronounced difference in peak intensity then in LC 
peak length. Scan count is correlated with peak intensity and 
is largely a redundant feature. Note however, using intensity 
as the threshold will be less effective if the peptide 
abundance approaches the noise level. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. (11). ROC curve with thresholds on scan count and then on 
intensity. 
 
 We have also investigated the effect of combining KL 
distance and intensity for peak detection. The result is very 
similar to the combination of scan count and intensity. It 
seems that peak picking based on isotope matching does not 
improve the overall accuracy and thresholding on intensity 
alone is good enough for detecting peaks. 

3.4. Peak Detection with LC Peak Shape Filtering 

 The software packages MZmine and MapQuand provide 
the capability of peak picking based on LC peak shape. LC 
peak shape that does not conform to a pre-defined template 
is discarded as noise. It is anticipated that the performance 
will be very bad for the LC/MS dataset that we have since it 
has many irregular LC peak shapes. We utilized the peak list 
generated by the MZmine software. The software allows the 
option of using an Extended Gaussian template for detecting 
LC peaks. The peak list generated by MZmineine is not de-
isotoped. The ROC based on thresholding on intensity is 
shown in Fig. (12). We can see that the performance is much 
worse than that of msInspect which did not perform LC 
domain peak filtering based on peak shape.  

4. DISCUSSION AND FUTURE RESEARCH 

 We have reviewed popular LC/MS peak picking 
algorithms in the literature. They are categorized based on 
their main processing methods. The impact of different peak 
picking methods is examined by comparing results for a 48 
protein mixture LC/MS dataset. The simulations show that 
intensity seems to be the most effective criteria for peak 
detection. Other criteria such as the length of LC peak, LC 

 
 
 
 
 
 
 
 
 
 
 
 
Fig. (9). ROC curve based on KL distance and mean square error 
(MSE). 
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peak shape, and the isotope matching score do not improve 
the overall accuracy with the given dataset. This is somewhat 
surprising since we anticipated that more than one criteria 
should improve the accuracy if they are combined 
appropriately. 
 The obvious deficiencies of current peak picking 
algorithms mainly lie in two aspects. One is that there lacks 
an accurate and complete model for peptide and noise peaks. 
All current algorithms are developed based on partial models 
of the peptides. For example, isotope matching algorithms 
only partially model peptide peaks at each charge state. As a 
result, peak detection is conducted for each charge state 
separately. Thus the low abundance charge state peaks of a 
peptide may not be correctly linked to the rest of the charge 
states and are often wrongly detected as another peptide with 
a different mass. Models adopted by some of the current 
algorithms are also inaccurate. For example, the MapQuand 
algorithm assumes a two dimensional correlated Gaussian 
model for peptide peaks. However, we know that the LC 
elution process is conducted first and independently from the 
MS process, and the resulting peaks are not correlated in the 
two dimensions. Thus the model is unnecessarily 
complicated. The assumption of a Gaussian shape for LC 
peaks is also inaccurate under many experimental conditions. 
The study of the noise model is also lacking. Results of noise 
model study often conflicts one another [23]. 
 Another aspect is the ad hoc nature of current peak 
picking algorithms, which leads to poor performance. For 
example, the isotope pattern of a peptide is registered in 
multiple MS scans during the eluting period of the peptide. 
Information from different MS scans can be combined 
together for isotope pattern estimation. However, none of the 
current algorithms perform isotope pattern matching based 
on multiple MS scans. 
 We anticipate that significant performance improvement 
can be achieved by constructing accurate and complete 
models as well as performing near-optimal processing based 
on the models. 
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