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ABSTRACT
Circular DNAs are extra-chromosomal fragments that become circularized by genomic
recombination events. We have recently shown that yeast LTR elements generate circular DNAs
through recombination events between their flanking long terminal repeats (LTRs). Similarly,
circular DNAs can be generated by recombination between LTRs residing at different genomic loci,
in which case the circular DNA will contain the intervening sequence. In yeast, this can result in
gene copy number variations when circles contain genes and origins of replication. Here, I
speculate on the potential and implications of circular DNAs generated through recombination
between human transposable elements.
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Although the presence of circular DNAs in the shape
of fragments excised from the genome has been
known for decades,1,2 their prevalence has only
recently been highlighted.3,4 Circular DNAs are likely
formed by non-homologous recombination events.5,6

In this respect, the multitude and sequence redun-
dancy of transposable elements should render them
highly efficient agents for the generation of circular
DNAs. We recently assessed the involvement of trans-
posable elements in the genesis of circular DNAs in
baker’s yeast, Saccharomyces cerevisiae.7 Detection of
structural variants—of which circular DNAs are a sub-
set—requires customized analysis and is not directly
elucidated using conventional mapping of short
sequence reads onto reference genomes.3,7 Analysis is
further complicated by the sequence redundancy of
transposable elements.8,9

The baker’s yeast genome contains 5 families of
LTR elements occupying roughly 3% of the
genome.10,11 The LTR elements are retrotransposable
elements encoding the proteins necessary for their
movement and flanked by long-terminal repeats
(LTRs). Most copies exist as solo LTR sequences,12

presumably generated through recombination events.11

When sequence reads highly enriched for circular

sequences3,13 were mapped onto the yeast genome, a
relative uniform coverage was observed across full-
length LTR elements and this level of coverage did not
extend outside the LTR borders.7 This suggested that
the majority of LTR sequences in circular DNAs exist
as full-length LTR elements, although circles generated
from LTR sequences residing at different genomic
location have also been reported.3,14,15

LTR elements are structurally related to retroviruses,
for which generation of circular structures from extra-
chromosomal linear DNA is readily observed.16-18

The presence of LTR sequences as circular DNA could
therefore potentially both be a result of circularization
of extra-chromosomal DNAs and the circularization
arising from genomic recombination events. Circulari-
zation of linear extra-chromosomal LTR DNAs can
happen in several ways, including nonhomologous
end-joining, recombination between flanking LTR
sequences, and through so-called auto-integration in
which the LTR element inserts into its own
sequence.16,18,19 However, due to the fact that these
scenarios are all preceded by transcription of the geno-
mic LTR element, any resulting circular LTR sequence
will display an apparent breakpoint at the transcription
start site (despite the fact that they may not be created
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by recombination events).7,20 If nucleotide differences
exist between the 2 LTR sequences flanking an element
the apparent breakpoint site can be inferred,5 and any
apparent breakpoints outside the transcription start
site region are therefore inconsistent with circles gener-
ated through circularization of linear extra-chromo-
somal DNA. Although only a few LTR sequences
contained informative nucleotide differences, all tested
sequences were inconsistent with being generated
through circularization of linear extra-chromosomal
DNA.7 It therefore seems that yeast LTR elements are
a source for circular DNAs through genomic recombi-
nation between the flanking LTR sequences. Interest-
ingly, this provides a potential novel way of LTR
element movement, in which full-length LTR elements
in circular DNAs may recombine back into the
genome at other LTR loci.21

Potential for DNA circularization by human
transposable elements

The human genome contains relatively few intact LTR
elements.22 However, as circles can be generated
through recombination between repetitive sequences
residing at different genomic loci,3 recombination
between the highly abundant human transposable
elements is not an unlikely scenario.23 One prominent
candidate for generating circular DNAs would for
example be the Alu family that is present in more than
1 million copies in human genomes.24 Although several
subfamilies of Alu elements have evolved during pri-
mate evolution, consensus sequences from the different
families are highly similar but for a few diagnostic
sites.25 Alu elements are further known to participate
in unequal homologous recombination, which has been
associated with a range of human disease states.26

Although the sizes of coding sequences are highly
uniform across eukaryotic genomes,27 the presence of
introns means that the total size of human genes can
exceed several hundreds of kilobasepairs.28 Although
the possibility of entire human genes ending up in
relatively small circular DNAs would at first appear to
be limited, large circular DNAs as well as relatively
short human genes would render this scenario far
more conceivable. First, a circular DNA encompassing
39 kb has been reported in yeast, containing 2 histone
genes as well as a centrome and origins of replica-
tion.14 More than 80% of the human genes in the
ensembl annotation would fit in circles of this size.29,30

Second, numerous human genes are deprived of
introns and therefore occupying a limited genomic
space. Intronless human genes—presumably gener-
ated through retrotransposition using the LINE L1
machinery31—are enriched for signal transducing-
and regulatory genes, and for tissue-specific expres-
sion in brain or testis.32,33 Clearly, such relatively short
genes could be contained in circular DNAs from a
more modest size range.

Implications of DNA circularization by human
transposable elements

In nitrogen-deprived yeast cultures amplifications and
deletions of the GAP1 gene have been associated with
the presence of circular DNAs harboring the GAP1
gene and an origin of replication.5 As nitrogen limita-
tion results in elevated GAP1 expression,34 this
prompted speculations that DNA circularization could
provide a means for the cell to increase GAP1 activity
through the presence of multiple gene copies residing
in DNA circles.5

Although the number of cell divisions varies
immensely between human tissues,35 and the specific
nature of mammalian replications origins is still not
well-understood,36 circular DNA carrying human genes
could increase in numbers, providing additional gene
copies to the cell. Yet, affecting gene copy numbers
may not be the only impact of circular DNAs. Tran-
scriptional regulation in mammalian cells often works
at a regional scale, where genetic promoter regions
physically interact with enhancer structures located at a
considerable distance.37 Transcription is further regu-
lated by epigenetic modifications, which can travel
across larger genomic regions38—the spread of which
intriguingly can be stopped by the presence of tran-
scriptionally active transposable elements.39 Transcrip-
tion initiated at one genomic site may also drive or
repress transcription at neighboring sites. This is
referred to as transcriptional interference,40 a phenome-
non that may even shape genome architecture.41

A gene residing in a circular DNA should hence
evade such regional regulatory effects, and one may
therefore speculate if the major impact of circular
DNAs is not primarily in gene copy number varia-
tions, but in taking genes out of their regulatory
context. It is also conceivable that gene copies residing
in circular DNAs bind regulatory proteins, thereby
potentially changing the dynamics and kinetics at
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other chromosomal loci. Similarly, transcripts from
genes in circular DNAs may act as sinks by binding
regulatory RNAs as well as proteins. Such an effect
may obviously manifest itself without the entire gene
sequence being present in circular DNAs, and circular
DNAs harboring incomplete gene sequences may serve
as previously described regulatory pseudogenes.42

In summary, we have previously shown that circular
DNAs are generated from genomic copies of yeast
transposable elements.7 It is currently unknown to
which extent this is happening in mammalian genomes
rich in transposable element sequences. Circular DNAs
have a huge potential in altering gene copy numbers,5

and – as speculated here – in harboring genes that will
be taken out of their regulatory context. Whether the
generation of circular DNAs has an adaptive aspect,
and may add novel functionality to the cell is of course
an entirely different question. As circular DNAs from
ribosomal genes are found in aging yeast cells,43 circu-
larization may simply reflect a genomic deterioration
associated with cellular decay. The true extent to which
human transposable elements are a source for the gen-
eration of circular DNAs will be determined in coming
experiments. But crucially, such experiments need to
be tailored toward circular structures both in experi-
mental design and in downstream analysis.
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