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Abstract: Following most injuries to a musculoskeletal tissue which function in unique mechanical
environments, an inflammatory response occurs to facilitate endogenous repair. This is a process
that usually yields functionally inferior scar tissue. In the case of such injuries occurring in adults,
the injury environment no longer expresses the anabolic processes that contributed to growth and
maturation. An injury can also contribute to the development of a degenerative process, such as
osteoarthritis. Over the past several years, researchers have attempted to use cellular therapies to
enhance the repair and regeneration of injured tissues, including Platelet-rich Plasma and mesenchy-
mal stem/medicinal signaling cells (MSC) from a variety of tissue sources, either as free MSC or
incorporated into tissue engineered constructs, to facilitate regeneration of such damaged tissues.
The use of free MSC can sometimes affect pain symptoms associated with conditions such as OA,
but regeneration of damaged tissues has been challenging, particularly as some of these tissues have
very complex structures. Therefore, implanting MSC or engineered constructs into an inflamma-
tory environment in an adult may compromise the potential of the cells to facilitate regeneration,
and neutralizing the inflammatory environment and enhancing the anabolic environment may be
required for MSC-based interventions to fulfill their potential. Thus, success may depend on first
eliminating negative influences (e.g., inflammation) in an environment, and secondly, implanting
optimally cultured MSC or tissue engineered constructs into an anabolic environment to achieve
the best outcomes. Furthermore, such interventions should be considered early rather than later
on in a disease process, at a time when sufficient endogenous cells remain to serve as a template
for repair and regeneration. This review discusses how the interface between inflammation and
cell-based regeneration of damaged tissues may be at odds, and outlines approaches to improve
outcomes. In addition, other variables that could contribute to the success of cell therapies are
discussed. Thus, there may be a need to adopt a Precision Medicine approach to optimize tissue
repair and regeneration following injury to these important tissues.

Keywords: musculoskeletal repair; mesenchymal stem cells; inflammation; tissue engineering;
tissue regeneration

1. Introduction
1.1. Purpose of the Review

The purpose of this review is to present the current state of cellular therapy uses in
enhancing the repair of injured or damaged tissues of the musculoskeletal system (MSK),
and then propose approaches to improve the application of such approaches. The review
focuses on soft tissues of the MSK that function in unique biomechanical environments.
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The organization is to initially present the scope of the problem and then address why in-
flammatory processes are relevant to the topic, and how they will likely influence outcomes
of cellular therapy interventions. Subsequently, the discussion focuses on the way forward
to improve outcomes regarding the healing of these tissues when injured. The content of
the review and the perspectives presented are based on an assessment of articles in the
PubMed database from the past 30 years with representative articles cited.

1.2. Characteristics of Musculoskeletal (MSK) Tissues

Tissues of the musculoskeletal system (MSK) (i.e., cartilage, menisci, ligaments, ten-
dons, muscles, bone) are designed to provide a mechanical function to aid mobility. At the
time of birth, many of them are “cell rich and matrix poor” but become more “matrix rich
and cell poor” during growth and maturation discussed in [1,2]. This occurs as the mechan-
ical demands increase and the cell density declines due to matrix deposition. In addition,
many of these tissues have a low density of a microvasculature and innervation [3–5], with
mature articular cartilage devoid of both. Some tissues, such as ligaments, also contain a
few immune-related cells that could initiate an endogenous inflammatory response [6,7].

Many of the tissues of the MSK system have very complex organizations either at
the macro or micro level. Tendons in different locations (i.e., Achilles tendon, patellar
tendon, supraspinatus tendon of the shoulder) have different properties but all have an
insertion site at the bone interface enthesis [8–10], a mid-substance and a myotendinous
junction where it inserts into the muscle as discussed in [11,12]. The menisci of the knee
have a central region devoid of a microvasculature and innervation that is collagen II-rich
and a peripheral region that has a microvasculature and some innervation, discussed
in [13]. The complexity of the matrix organization in the two areas are very different and
are quite sophisticated in their complexity [14–16]. The template for the organization of
this complexity is likely laid down during development and then expanded upon during
growth and maturation. As this complexity was likely optimized during evolution to
address the required function in the mechanical environment, it would be difficult to
replicate many of them in a tissue-engineered construct. The exceptions to this conclusion
are bone which heals quite well when injured in most locations, and muscle which also
heals well in most circumstances.

Tissues of the MSK system are complex at multiple levels (macro structure and matrix
organization) and vary in different mechanical environments. They are dynamic and can
respond to changes in the mechanical environment. Bone can respond to changes in loading
and become strengthened [17–19]. In contrast, several MSK tissues can undergo atrophy if
not used appropriately and become “deconditioned” [20]. Following an injury, MSK tissues
often requires immobilization (e.g., putting a leg in a cast when a bone is broken) which is
a “deconditioning” environment for healing to initially take place.

This scenario poses some questions regarding signaling for healing and responsive-
ness to pro-healing signals/mediators. If one immobilizes the leg of a very young animal,
such as a rabbit, the medial collateral ligament of the knee almost immediately ceases to
grow in this anabolic environment [21]. The cells in what is normally a biomechanically
active environment do not receive the signals regulating growth and growth stops in such a
“deconditioning’ environment. After skeletal maturity, when the presence of anabolic medi-
ators contributing to growth and maturation are diminished in expression, immobilization
and deprivation of normal loading can lead to atrophy, potentially by the de-repression of
a cassette of catabolic genes that includes some pro-inflammatory genes, such as IL-1 [22].

The characteristics of the various MSK tissues described above must be considered
when attempting to repair or regenerate these tissues following injury.

1.3. The Inflammatory Response

Fundamentally, the inflammatory response is one that is designed to enhance survival
after an injury (i.e., a cut in the skin) or exposure to environmental threats, such as microor-
ganisms. After an injury to a tissue, the inflammatory response can also facilitate repair via
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clearance of damaged tissue components or microorganisms, and then initiate the fibrotic
process with formation of a scar tissue, a process that is central to wound healing success
as reviewed in [23]. Thus, scar formation in response to the injury of some tissues offers a
survival advantage, but for MSK tissues that function in defined mechanical environments,
scar tissue is not adequate for the optimal functioning of tissues, such as tendons, ligaments
and menisci.

Because of its potential to also cause harm, inflammatory responses are regulated
in a very complex manner, depending in part on the initiating factors, the extent of the
response that is needed (i.e., the size and location of the wound) and the ability to initiate
the downregulation of the response via both removal of the inciting events and elabora-
tion of anti-inflammatory molecules, such as resolvins and related molecules [24–27]. In
“normal” circumstances, the inflammatory response can be acute in nature followed by
a resolution. However, if the inciting stimulus is not removed, this can lead to a state of
chronic inflammation and fibrosis, with the development of pathology and loss of func-
tion of the affected tissues (i.e., pulmonary fibrosis, liver cirrhosis). After the transition
from an acute inflammatory state to a more chronic state, such inflammation can become
more difficult to control, possibly due in part to epigenetic alterations in the site of the
response [28–30]. As some epigenetic alterations may be reversible [29,31,32], this may be
an effective approach to enhance the potential for regeneration of damaged MSK tissues
where a chronic inflammatory state is evident.

The timing of the onset of the ability to mount an inflammatory response during
development has provided some interesting insights into the relationship(s) between tissue
development and inflammation. Thus, the organization template of tissues and organs
appears prior to an ability to mount an effective inflammatory response; however, some
aspects of this relationship are still controversial as discussed in [23,33,34]. Injuries in some
locations, such as cutaneous wounds, heal by regeneration if incurred early in fetal life,
but they heal with the formation of scar tissue after the onset of effective inflammatory
response capabilities are in place. Further study of scarless versus scar-forming wound
healing may provide new clues to how to regulate the responses in adults to further
attempts for successful tissue regeneration as discussed in [35].

Inflammatory responses are also influenced by sex steroids, and thus the response
pattern would be influenced by both puberty in males and females, and in females after
menopause, reviewed in [36,37]. It is well known that inflammatory processes can decline
in the elderly, and this appears to involve estrogens [38,39].

2. Interactions between Inflammation and Injured Connective Tissues of the MSK
System-Loss of Function

After skeletal maturity, injury to load bearing connective tissues, such as some lig-
aments, tendons and menisci can lead to the host attempting to initiate repair using the
wound healing apparatus, or a failure to initiate such a response as in the case of complete
rupture of the anterior cruciate ligament (ACL) of the knee, or after generation of a defect in
articular cartilage. In the case of the ruptured ACL, the two ends of the ligament cannot find
each other and thus a reconstruction with an autologous tissue section of a tendon [40,41]
or an allogeneic tissue is required. In this circumstance, the reconstruction operation is
another inflammatory stimulus with additional tissue damage due to the drilling of bone
and cutting to gain access to the interior of the joint. In the case of articular cartilage defects
due to the lack of innervation and a microvasculature, they are believed to contribute to a
lack of healing unless some interventions are initiated, discussed in [42].

For those connective tissues that evoke an inflammatory response when injured, the
result is the formation of scar tissue (outlined in Figure 1). In the case of the injured medial
collateral ligament (MCL) of the knee, the injured tissue becomes rapidly “healed” with an
early scar tissue that is comprised of a ~50–50 mixture of collagen II and collagen I [43,44]
(the normal ligament is ~90% collagen). In contrast to the normal MCL, the collagen fibrils
in the early scar tissue exhibit a random orientation that gradually becomes aligned along
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the length of the tissue over time [43]. However, even when aligned, the collagen fibrils
are of a small diameter compared to the biphasic size distribution in the normal tissue.
By two years post-injury, some large collagen fibrils appear but the ligament is much
weaker than normal for much of this time period [44]. For the MCL, this weakness does
not compromise function as it is a stabilizing ligament that operates normally in the toe
region of its stress–strain curve. However, this model does show that in the context of an
inflammatory response, the healing process does not lead to a regeneration of the normal
tissue even after a protracted period of time post-injury or post-surgery. The process does,
however, lead to a partially functional tissue.
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Figure 1. Sequence of events following injury to soft tissues of the MSK system. Following injury
to most soft tissues of the MSK system, a sequence of events leading to scar tissue formation and
maturation occurs (A). This sequence of events involves an inflammatory response that resolves over
time as the scar tissue forms and matures. In some tissues, these events do not lead to a healing
response and involve an inflammatory response that may become chronic with development of
pathology and loss of function (B).

The situation in a reconstructed ACL is somewhat different, but again shows that
an inflammatory process can likely lead to a functional compromise of the tissue. When
implanted, a patellar tendon or hamstring tendon graft is likely stronger than the original
ACL but has some properties that differ from the ACL as discussed in [45]. Using an
allogeneic ACL graft should provide at least something of equivalent strength. However,
over time, such reconstructions begin to undergo creep and stretch out [46–48], with the
implanted material becoming more scar-like. The basis for this response pattern could be
in part, due to damage to the grafts while preparing for the reconstruction, and/or due
to the inflammation associated with the operation contributing to a local inflammatory
environment that persists. Interestingly, treatment of the graft environment with an anti-
inflammatory glucocorticoid can prevent or diminish this effect [49,50]. In contrast to the
MCL, the ACL operates in a high stress environment and so the functional compromise
over time that is observed following reconstruction can lead to dysfunction of the knee as
discussed in [46].

The consequences following an injury to the menisci of the knee are likely more
complex than those for the ligament injuries. The mechanical environment for a meniscus
is complex, with the central area exposed to compressive loads, while the periphery is more
ligament-like and is subjected to hoop stresses, discussed in [16]. Injuries to the periphery
often do heal, depending on the extent and type of injury, perhaps due to its nascent blood
supply and innervation. However, being in a high stress environment often leads to repair
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failure, and if the tissue has to be surgically removed, it can lead to an increased risk for OA
as reviewed in [51]. Of relevance to this discussion is the fact that some injuries to menisci
of the knee in young individuals do heal with some interventions [52], likely via the more
anabolic environment operative during active growth and maturation.

Injuries to articular cartilage do not heal, and even surgical interventions to promote
repair either do not work well or are only temporary in outcome. Initiation of surgical
interventions to stimulate repair by microfracture of the bone beneath the cartilage leads to
fibrocartilage and not hyaline cartilage [53,54], and if left alone, many defects will progress
to overt OA over time. Transplantation of chondrocytes from non-loading parts of the joint
to defects arising in highly loaded areas of the cartilage do offer some repair potential as
reviewed in [55,56].

The above discussion leads to two important conclusions: (1) inflammation associated
with injury or surgical interventions to mechanically active connective tissues of the MSK
system serve an important function in relation to scar formation, but need to be controlled
as scar tissue compromises the function of many of these tissues; and (2) a return to function
of injured connective tissues in mechanically active environments is often compromised
and new approaches are needed to facilitate regeneration and return to function (outlined in
Figure 1). However, even the use of newer interventions with tissue engineered constructs
to regenerate compromised tissues will need to consider effective control of inflammatory
processes which could compromise the effectiveness of such approaches over the long term.

3. Factors That Can Complicate Post-Injury Processes and Inflammation

The repair of connective tissues of the MSK system damaged by injury and/or disease,
particularly in skeletally mature subject or older individuals where the natural healing
process has been compromised during the aging process, may be an influencing factor.
As individuals age, the immune and inflammatory processes can diminish, as reviewed
in [36]. In females, inflammatory responses may be altered after menopause, possibly via
the effects of loss of estrogen on macrophage functioning [38,39]. Inflammatory responses
in females can be altered during pregnancy as discussed in [57,58]. Therefore, females may
generally regulate inflammatory processes differently than males. Therefore, sex and stage
of life are important variables to be aware of in planned studies.

While normal healthy young adults can usually heal without complications, there are
factors that can potentially interfere with healing processes in addition to those mentioned
above. These include the presence of diseases, such as diabetes, inflammatory autoimmune
diseases and obesity, reviewed in [59,60]. In a preclinical rat model, the presence of induced
type 2 diabetes led to altered healing of an injury to the Achilles tendon [61–63], and it
is well known that, in humans, those that are diabetics often do not heal well or exhibit
delayed healing, reviewed in [60]. Obesity can lead to development of metabolic syndrome,
with an on-going low level of inflammation, reviewed in [64]. Obesity can also lead to
altered structure of tendons, such as the Achilles tendon [65,66], which may increase risk of
injury. Based on these considerations, co-morbidities can likely also impact the healing of
injured connective tissues, such as tendons, reviewed in [60], and others.

Obviously, the use of some medications to treat co-morbidities could also influence out-
comes depending on the type and dosages being used. Treatment with anti-inflammatory
medications, such as NSAIDS [67–69] or high or continuous doses of glucocorticoids [70,71],
could potentially adversely affect outcomes after interventions with cell therapy approaches.
Therefore, the presence of co-morbidities and their treatment, as well age and sex, should be
recognized and addressed before initiating interventions to enhance the repair/regeneration
of injured connective tissues of the MSK system. Failure to do so could complicate the
results of clinical trials using experimental interventions, such as cellular therapies.
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4. The Role of Mechanics in Connective Tissue Repair and Regeneration: The
Interface with Biology Is Critical

While many tissues function in the context of a mechanical environment, such as
the lung, skin, and the cardiovasculature system, tissues of the musculoskeletal system
function in a variety of compressive, shear or tensile environments, and their complex
structures reflect such requirements in unique and specialized environments. While the
composition and functioning of tissues, such as tendons, ligaments, menisci and articular
cartilage can undergo changes with aging [2,72–74], it is not known in detail if they have
evolved to their optimum to last for >80–90 years. It is clear that structure and function
relationships are critical to the performance of functional activities. The prevailing wisdom
is that engineering of artificial MSK tissues should lead to a construct that mimics the
original that developed in utero and during growth and maturation, discussed in [75].

There are various approaches to address the issue of the biomechanical environment
with regard to the development of constructs to facilitate the repair and regeneration of
damaged or diseased MSK tissues. The first is to use an artificial scaffold containing
cells, with the scaffold supplying a somewhat rigid but biodegradable template after im-
plantation to allow the cells to adapt to the in vivo conditions in a mechanically active
environment [76,77]. A second approach is to condition the in vitro generated scaffold
containing matrix molecules, such as collagen I to which cells have been added, in a biome-
chanically active environment in vitro, prior to implantation [78]. These two approaches
allow for the cells in the constructs to adapt to early loading and respond with enhanced
secretion of extracellular matrix components, as well as adapt to loading and make ad-
justments to the cellular apparatus to allow survival and functioning when implanted.
While some of the studies have used cells derived from tissues, others have shown that
undifferentiated mesenchymal stem cells can also respond to mechanical loading in vitro
in unique manners [79–82].

In studies with a tissue engineered construct [TEC] containing synovium-derived MSC
and the matrix generated by these cells in culture as discussed in [83], the TEC were gener-
ated in the absence of loading in vitro. Following implantation, the cells appear to respond
to the in vivo loading environment and form a hyaline-like repair tissue based on in vivo
cues and the cells that are presented [84]. In this model, it would likely not be advantageous
to expose the cells to mechanical loading regimens in vivo as the self-aggregation of the
in vitro generated TEC is critical for the subsequent in vivo implantation. Exposure to
in vitro loading may interfere with the post-implantation process. For other applications
focused on the repair of MSK tissues functioning in tensile-loading environments, in vitro
loading could be beneficial.

While there is some variation in the use of mechanical loading of constructs for the
repair and regeneration of damaged MSK tissues, their use depends on the type of tissue
being repaired (i.e., ligament, tendon or cartilage) and the in vivo loading environment
that the constructs will be subjected to following implantation. In some circumstances,
in vitro loading prior to implantation could lead to the generation of a construct with a
better organized matrix and increased mechanical integrity, but in other situations, such
loading could compromise some of the attributes of the construct. Therefore, the use of
in vitro loading depends on the applications a construct will be used for in vivo.

5. Enhancing Repair/Regeneration of Injured Connective Tissues of the MSK System

Given the limitations or variables affecting healing after an injury, much research
has focused on developing new approaches to enhance repair, often with the goal of
tissue regeneration. One approach involves the use of Platelet-rich Plasma (PRP) [85–87],
while others have used growth factors [88] and molecular blocking approaches (anti-sense,
specific antibodies, enzyme inhibitors) as reviewed in [89–93].

PRP is usually derived from autologous blood and then injected into the site of a
wound such as that in a tendon [94,95], ligament [96–98] or meniscus [99]. As platelets
contain a number of growth factors and other relevant molecules, by injecting the PRP
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into the wound site at the time of surgical repair after degranulation the platelets can
release their contents and create an enhanced anabolic environment. Such preparations
have also been used in the conservative treatment of OA of the knee where the PRP is
believed to alleviate the symptoms of pain and perhaps exert an anti-inflammatory effect
in the intra-articular space reviewed in [85–87]. Unfortunately, in the latter scenario the
efficacy of the PRP can be variable and not all patients respond positively. Whether this
variability is due to the platelets and their content, or the method of preparation is not well
defined. There are several methods that have been used for the preparation of PRP [85]
as well as host variables that could impact the efficacy (e.g., co-morbidities, medications,).
Some applications of PRP for the treatment of MSK diseases, tissues and conditions are
summarized in Table 1. As this is a large literature, the citations in Table 1 are representative
of the field in general.

Table 1. Applications of Platelet-Rich Plasma in Cell Therapy for Connective Tissue Repair
and Regeneration.

Tissue Species Condition Article Type Year Citation

Sports Injuries Humans Several Review 2022 Herdea et al. [100]
Humans Several Review 2009 Sanchez et al. [101]

MSK Canine Several Review 2021 Sharun et al. [102]
Cartilage Human OA Review 2022 Cash et al. [103]

Human Knee OA Review 2022 Sax et al. [104]
Human OA Review 2022 Trams et al. [105]
Human OA Review 2020 Kydd & Hart [86]
Human Defects Trial 2022 Venosa et al. [106]

Tendons Human Epicondylitis Review 2022 Li et al. [107]
Human Tendinopathy Review 2022 Barman et al. [108]
Human Tendinopathy Review 2022 Cash et al. [103]
Human Tendinosis Trial 2006 Mishra & Pavelko [109]

Ligaments Porcine ACL Trial 2007 Murray et al. [110]
Human ACL Review 2013 Braun et al. [111]
Human ACL/MCL Review 2022 Kunze et al. [97]

IVD Human Degeneration Review 2020 Chang et al. [112]
Animal Degeneration Review 2017 Li et al. [113]
Human Degeneration Review 2017 Basso et al. [114]
Human Low Back Pain Trial 2022 Akeda et al. [115]

Menisci Human Sports Review 2022 Herdea et al. [100]

OA = Osteoarthritis; ACL = Anterior cruciate ligament; MCL = Medial collateral ligament; IVD = intervertebral
disc. Citations are representative of the field and many more exist in PubMed for some categories.

As an alternative to PRP as a source of growth factors and other anabolic molecules,
some studies have used specific growth factors as supplements in an attempt to enhance
the healing of injuries to these connective tissues [116–118]. Thus, some studies have used
growth factors, such as angiogenic factors [119] and others, such as IGF-1 [118,120], in an
attempt to enhance healing. One of the limitations of this approach is the short half-life of
growth factors or the binding of growth factors to extracellular matrix (ECM) components,
which makes them unavailable for interacting with cells.

Use of approaches that can lead to blockages of specific steps or molecules during
healing has also been tried by many investigators, but with limited success as reviewed
in [90,91,93,121]. Some of the limitations relate to the half-life of the molecules, the speci-
ficity of the interventions or a failure to disseminate throughout a dense scar tissue, even
when early in the process [121].

It should be noted that most, if not all, of the previously described studies did not
attempt to control any on-going inflammatory processes that were occurring in conjunction
with the injury or any surgical intervention. The use of anti-inflammatory drugs imme-
diately after induction of the injury and/or a surgical intervention is shown to inhibit
sequelae to an injury or the inflammation in a joint. This is shown in both rabbits [49]
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and pig models [50]. However, one would have to be careful not to use concentrations of
such anti-inflammatory molecules so as to not interfere with the normal healing process.
Furthermore, high doses of drugs, such as high dose glucocorticoids, may have unintended
consequences regarding mesenchymal stem cells in a joint that could participate in the
healing process [70].

Thus, going forward, if attempts are made to improve the healing environment to
achieve better healing outcomes, an approach using both anti-catabolic/inflammatory
elements and a pro-anabolic aspect should be utilized in order to optimize their potential.

6. Use of Single Cell Preparations of Mesenchymal Stem/Signaling Cells (MSC) to
Enhance the Repair/Regeneration of Damaged Mechanically Active
Connective Tissues

Cells called mesenchymal stem cells, mesenchymal stromal cells or mesenchymal
progenitor cells have been studied primarily since the early 1990s, reviewed in [122,123].
These cells express a subset of cell surface antigens and can be induced to differentiate
in vitro into cells of various lineages, such as osteogenic, adipogenic and chondrogenic cell
lineages. They can be isolated from bone marrow, adipose tissue, skin, brain and many
tissues reviewed in [123]. Differences in the ability to differentiate towards the different
lineages were noted between cells isolated from different locations [122–124]. However,
MSC isolated from individual tissues demonstrates extensive heterogeneity, discussed
in [123–125].

While the cells that were labeled mesenchymal stem cells ~30 years ago, attempts to use
preparations of free MSC to repair damaged connective tissues by the injection of millions
of cells into a local space, such as a joint, or systemically into the circulation, they have not
yielded a reproducible effective repair of the damaged tissues, possibly due to a failure to
home and be retained at the injury sites [108]. Some of this limitation may be overcome by
engineering membrane expression of molecules to enhance localization, reviewed in [123].
While the injection of free MSC into osteoarthritic knees did not lead to overt repair of
the damaged cartilage, it was noted that injection of such cells from various sources could
lead to a lessening of the pain and inflammation of OA, reviewed in [126,127]. Some
studies indicate that MSC were injected, but many reports used preparations that were not
pure MSC and instead were a mixture of cells labeled Bone Marrow Aspirate Concentrate
(BMAC) that may contain BM, MSC or BM stromal cells, but also other cells from the BM
discussed in [87,128]. A recent report [129] indicated that BMAC was more efficacious than
PRP, but it cannot be concluded that this was due to the MSC in the preparations.

This failure of free MSC to initiate effective repair of damaged tissues led Caplan to
hypothesize that perhaps MSC should be relabeled Medicinal Signaling Cells (MSC) as they
may function by secreting or releasing vesicles containing factors or mediators that enhance
the ability of endogenous cells to initiate effective repair [130]. In this scenario, MSC would
release factors that would interact with residual endogenous cells at a site of injury to
then repair their own tissue. While this is an interesting possibility, such abilities may be
compromised by an inflammatory environment at the site of tissue injury [131,132]. Thus,
in the intra-articular environment is an inflammatory process which led to an alteration of
the synovial fluid MSC that compromised their ability to aggregate, likely via the actions
of the mediator MCP-1 [131]. Therefore, unless such inflammation is curtailed, the MSC
might still be compromised in fulfilling a role as a signaling cell,

Furthermore, if indeed MSC are signaling cells, they should likely not be used as a
treatment of “last resort” in situations like OA when the articular cartilage is in a severely
degenerated state so there may be little template available to initiate effective repair. With
regard to other injured tissues, such as tendons and ligaments, it remains to be determined
whether the addition of MSC treatments will help “re-direct” early scar-forming cells
towards a more normal tendon or ligament structure. Of note is that once injured, there is
also an initial inflammatory environment, but also there is a loss of biomechanical integrity
and thus the initial scar tissue is not biomechanically loaded in a real functional manner, and
it takes some time for the collagen fibrils of a scar to realign to allow for function loading
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again [43]. How the MSC would interpret the direction of need in such circumstances
remains to be determined.

While the concept of MSC with a signaling role may still have some potential limi-
tations, there are recent lines of evidence that indicate that MSC can release extracellular
vesicles (EV), sometimes labeled exosomes, that are membrane enclosed packets containing
growth regulators, miRNAs, and other relevant molecules as reviewed in [133–136]. In a
repair context, once MSC are localized they could release EV-containing molecules that
could enhance the endogenous healing process, as these EV could then be taken up by
endogenous cells leading to enhanced healing. Thus, the molecules contained in EV would
be somewhat protected from degradation that might occur if they were secreted as indi-
vidual molecules, particularly by proteinases or RNases in an inflammatory environment.
However, while EV may enhance healing under controlled conditions, it remains to be
determined how effective they may be when injected in vivo into inflammatory conditions.

In addition, it also remains to be determined whether the differentiation potential of
MSC as progenitor or stem cells should be dismissed in favor of strictly a signaling role,
discussed in [125]. Certainly, both roles may be useful in the enhanced repair of tissues
when used in a tissue engineering approach to generate constructs that appear to enhance
the healing of human cartilage defects when implanted [137]. Some applications of MSC
for the treatment of MSK diseases and conditions for specific tissues are summarized in
Table 2. As this is a large literature, the examples indicated are representative of this large
and expanding field.

Table 2. Applications of Mesenchymal Stem/Progenitor Cells for Connective Tissue Repair
and Regeneration.

Tissue Species Condition Article Type Year Citation

Orthopedic Disease Humans Several Review 2022 Malekpour et al. [138]
Humans Several Review 2022 Ren et al. [139]
Horses Lameness Original 2019 Longhini et al. [140]

Cartilage/OA Human General Review 2021 Zha et al. [141]
Human General Review 2021 Vahedi et al. [142]
Human Defects Review 2021 Meng et al. [143]
Human Defects Trial 2018 Shimomura et al. [137]

Tendons Preclinical General Review 2016 Leong & Sun [144]
General Injury Review 2021 Liu et al. [145]
Human Tendinopathy Review 2021 Meeremans et al. [146]

Ligaments Preclinical ACL Review 2015 Jang et al. [147]
Human ACL Review 2015 Jang et al. [147]

Menisci Preclinical Injury Review 2015 Yu et al. [148]
Human Injury Review 2017 Chew et al. [149]

All Injury Review 2021 Rhim et al. [150]
All Injury Review 2022 Zhou et al. [151]

IVD All Degenerated Review 2021 Croft et al. [152]
All Degenerated Review 2022 Liang et al. [153]
All Degeneration Review 2022 DiStefano et al. [154]

Muscle Rat Injury Original 2021 Barbon et al. [155]

OA = Osteoarthritis; ACL = Anterior cruciate ligament; IVD = Intervertebral disc. Citations are representative of
the field and many more exist in PubMed.

7. Use of MSC in Tissue Engineered Constructs to Enhance Repair of Injured or
Diseased Tissues

While the use of free MSC has not yielded consistent success in repairing damaged
tissues, using them in constructs generated in vitro has led to some successes for some tis-
sues. MSC isolated from a variety of tissues have been isolated and then often incorporated
into synthetic scaffolds, scaffolds with other ECM-like matrix components, an endoge-
nous natural protein matrix or a hybrid synthetic/natural matrix, reviewed in [156–159].
Recent advances in bioprinting may offer more sophisticated and complex scaffold-cell
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constructs [160–162]. Such constructs are then implanted into defects in tissues or in an
injury site. As many of the scaffolds used are biodegradable, it is then hoped that they will
be replaced by a natural matrix over time. Interestingly, in nearly all reports of studies
assessing the efficacy of such implants, there is no mention that the inflammatory environ-
ment generated by the implantation procedure has been controlled or addressed in any
manner. In spite of this limitation, some successes are reported, particularly in the repair of
articular cartilage which does not heal effectively without intervention.

While many studies have reported the use of MSC in biodegradable scaffolds, several
studies using a Tissue-Engineered Construct (TEC) consisting of synovium-derived MSC in
a matrix secreted by these cells in vitro for the repair and regeneration of difficult to repair
tissues, such as articular cartilage [83,163], menisci [164–166] and intravertebral discs [167].
The initial cartilage studies were performed in a large animal model (pigs [83,163]), while
more recent studies have resulted from implantation into patients with articular cartilage
defects in a pilot “proof of principle” design [137,156]. The advantages of the autologous
TEC approach are: (1) it does not require an artificial scaffold as the matrix generated
by the in vitro culturing serves that purpose; (2) once released from the culture dish, it
spontaneously aggregates into a construct with the cells and matrix intermixed; (3) when
implanted into an injury site it adheres to the residual tissue and does not require fixation,
possibly due to the fibronectin in the construct; (4) the cells in the TEC are not differentiated
prior to implantation but then appear to differentiate in vivo and respond to local environ-
mental factors including the mechanical loading conditions, or interact with endogenous
cells to facilitate repair. In the case of articular cartilage repair, after implantation, the TEC
leads to development of the layered structure of articular cartilage with a change in matrix
molecules production appropriate for the in vivo conditions [84,165]. In the pilot studies
in patients with articular cartilage defects, the implanted tissues have been assessed post-
implantation [122,123]. While there is some variation in the structures resulting from the
TEC implantation, all defects were filled, and some appeared to be regenerated [137,156].

It should be noted that the TEC implantation studies in both the preclinical models and
the pilot human studies, the authors did not attempt to control any inflammation resulting
from the implantation surgery or the initial event leading to the formation of the defects. In
addition, they did not add any potential anabolic stimuli, such as PRP, to possibly negate
the inflammation and provide further enhancement of healing. These latter points are
interesting since all of the patients were skeletally mature (both males and females) and
thus the post-implantation differentiation occurred in the absence of any factors present
during early growth and maturation prior to puberty. As these studies were focused on
limited defects in the articular cartilage, there was likely sufficient residual cartilage present
to serve as a template and/or provide local factors required to maintain cartilage which
were active when provided the right cell/matrix construct. It remains to be determined
in detail how a local mechanical environment contributes to the development of articular
cartilage, menisci, or intravertebral discs in conjunction with biological cues, discussed
in [75].

While the studies in both preclinical models and in the pilot studies with patients
with articular cartilage defects have exhibited very promising results, the outcomes are
likely still in need of improvement. It was noted in the porcine studies that the repair
cartilage exhibits hyaline-like characteristics but does not lead to regeneration of the surface
layer [168] that has been called the lamina splendens [169]. As this superficial surface
layer has been suggested to serve a barrier function for the hyaline cartilage [170] as well
as a lubrication function [171], failure to regenerate this barrier may compromise long
term survival of the repair tissue, reviewed in [172–174]. This conclusion is supported by
the studies of Takada et al. [170] who reported that if the lamina splendens is disrupted,
materials can gain entrance or exit from the cartilage, and it predisposes the development
of OA. In rats, it appears that the lamina splendens arises during early post-natal life [170];
but whether it arises with a similar timeframe in humans could not be found. However,
it has been found in other species discussed in [172]. Furthermore, what the stimulus
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is for the development of a lamina splendens is also not known, but it could relate to
the biomechanical environment and the presence of unique growth and differentiation
regulators in early post-natal life. However, the importance of the lamina splendens has
led to some research effort to synthesize an artificial structure which could serve some of
the functions of the lamina splendens [175]. This is an area for future research, given the
lubrication and barrier function of the lamina splendens.

Additionally, regarding the presence of endogenous growth regulators, in the human
TEC studies [137,156], the patients ranged in age from 28 to 46 years old and were therefore
somewhat young. Preliminary preclinical studies in the porcine model demonstrate that the
TEC approach is equally effective in skeletally immature and mature pigs [83], but studies
were not performed with older pigs. Thus, it remains to be determined whether there is any
age-dependent decline in the effectiveness of the TEC approach that may be attributed to an
age-related decline in growth regulators in the tissues, or even after menopause in female
patients. If such a decline is observed, it may be overcome with the use of autologous
PRP [85,86], as long as the platelets in older individuals have not also been compromised.

With the preferred use of autologous MSC by both patients and some regulatory
agencies, the use of MSC from young versus older/elderly patients is also a consideration
as MSC numbers and function in some available depots also decline with age [176] and
there is the potential for perhaps epigenetic alterations due to life experiences or exposure to
chemicals that could potentially contribute to the compromised function [177]. To overcome
this potential limitation of autologous MSC, some parents are having their children’s
cord blood MSC frozen in case they are needed, or the use of standardized allogeneic
MSC from a source, such as an expanded cord blood MSC, has been proposed [178,179].
Thus, optimization of conditions to achieve the best success may require both the most
appropriate MSC and the best in vivo conditions that can be obtained.

8. The Way Forward

While progress has been made toward using cell therapies to improve healing out-
comes, there is still a need for further improvements. As discussed above, the attention
has been focused on the implantation of cells, such as MSC, rather than trying to optimize
the in vivo implantation environment. Likely, the way forward will require addressing
more attention towards optimizing both what is implanted and the environment that it is
implanted into. Clearly, attention to such variables will be complex and it is very likely that
“one size does not fit all”.

The adverse effect of inflammatory processes on the repair and regeneration potential
of cellular therapies is of central concern, and such processes will have to be controlled if
expectations of further success regarding cellular therapies are to be achieved. While the
successes achieved thus far have provided support for further investment and research,
some of the diseases or conditions that could benefit from cellular therapies will likely be
more complex and challenging.

Using articular cartilage repair/regeneration as an important example due to the
current successes and the need as cartilage-related conditions, such as osteoarthritis, affects
tens of millions around the world, and with alternatives to cell therapies (i.e., drugs,
exercise, injury prevention) of limited impact thus far. Osteoarthritis is both a disease of
mechanics [180] and inflammation [181], and of the whole joint and not just the articular
cartilage [182,183]. The term osteoarthritis is actually an umbrella term that encompasses
several subtypes of OA including post-traumatic OA, metabolic OA associated with obesity
reviewed in [20,42,181,184], post-menopausal onset OA discussed in [42], with idiopathic
OA a large subpopulation of patients for which a link to a cause has not been clearly defined.
Thus, OA, which can develop if a cartilage defect is not repaired, is heterogeneous and
complex, and one cell therapy solution likely will not apply to all subtypes of the disease.

While the transition from repairing fresh cartilage defects using cell therapies may
identify the need to develop several different lines of approach, there are likely some
principles that the approaches should share. The first is that, unless the biomechanical
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environment is restored or the biomechanical compromise addressed, any cell therapy
may not achieve long-term restoration of function. Second, as most OA patients are older
and many will have co-morbidities, any cell therapy intervention will likely require a
co-intervention to augment the need for an anabolic supplementation, such as PRP or EV.
Thirdly, and relevant to point two, there will be a need to control inflammation, often in
the context of diabetes, which can contribute to an altered inflammation [60]. In addition,
rather than an acute inflammation as perhaps with a cartilage defect, those with OA may
have converted to a chronic form which may require different strategies. Fourthly, the cell
therapy cannot be considered the intervention of last resort when most of the articular
cartilage is degraded, and the disease is considered end-stage. At this point there is little
cartilage template remaining for a cellular therapy to enlist in the repair/regeneration
effort. As the MSC in a TEC may not only contribute to the repair of the tissue damage by
replacement, the undifferentiated MSC in the TEC can also release EV that could travel to
remaining chondrocytes in the residual cartilage to contribute to the repair effort. Thus,
repair via cell therapy interventions should likely be initiated early in the disease process
rather than later.

While the above discussion has focused on repair of articular cartilage, some of the
principles discussed can also be applied to the healing of other connective tissues of the MSK
system, including menisci, intravertebral discs (IVD), as well as ligaments and tendons.
In the case of tendons, tendons in different locations exhibit different properties [185],
tendon properties can change with aging [74,186,187] and some tendons, such as the
supraspinatus, can undergo age-related degeneration without overt symptoms [188–190].
Thus, cell therapy treatment could be envisioned to address tendinopathies rather than
overt ruptures. Similar issues can likely also be applied to other tissues, such as menisci
and IVD.

Another separate set of variables that could affect the efficacy of cellular therapies is
genetics and epigenetics. Genetics and epigenetics could affect the MSCs, with age-related
epigenetic changes potentially affecting the functionality of the MSC later in life when they
are needed for cell therapies [191–193]. Genetics and epigenetics could also affect the target
tissues of the cellular therapies. For example, some individuals with Marfan’s Syndrome
or the spectrum of Ehlers–Danlos Syndrome [194] may appear to have mutations in some
of their ECM proteins that impair function and increase risk for injury or tissue failure
reviewed in [193,195–197]. Thus, the outcome of the cellular therapy may not be optimal
when using autologous cells and allogeneic cells may be preferred [198] or correcting
the MSC via in vitro alterations [195]. While the examples presented are rare, there may
also less overt variation in connective tissue molecules that predispose to injury or poor
healing that do not present with symptoms, and these could also influence outcomes of
cell therapies.

As the use of cellular therapies including the use of MSC continues to expand into
more complex disease scenarios, it is clear that the use of multiple modalities in addition
to the MSC will be needed. Some of the variables may be more readily assessed, but as
continued improvement in genetic analysis and characterization of the epigenome become
more common place, an element of precision medicine will be applied to the use of complex
cellular therapies for MSK connective tissue repair and regeneration.

9. Conclusions

Attempts to enhance the repair and regeneration of injured connective tissues of the
musculoskeletal system using cell therapies has been the subject of intense research over
the past 30+ years. With the discovery of cells with the ability to differentiate into several
relevant lineages (e.g., chondrocytes, bone cells, and others) reviewed in [122], this effort
intensified. Using cells labeled mesenchymal stem cells (MSC), expectations ran high, but
achieving success was more challenging.

Early after the discovery of adult “stem or progenitor” cells, there was considerable
anticipation that they would rapidly be used to repair a variety of tissues damaged by
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injury or disease, particularly during the aging process. This hope rapidly became hype,
and a number of what have been called rogue clinics and companies began selling stem
cell-based cell therapy approaches directly to patients or consumers for a number of
conditions [199–201]. Such rogue entities preyed on desperate patients, and many such
clinics in North America have been recently curtailed by the FDA and Health Canada in the
USA and Canada, respectively. Such rogue applications of stem cell therapies emphasize the
need to continue to develop methods and interventions to use these cells more effectively
and with a solid base of scientific and clinical justification. This will require building on
past successes and failures to evaluate new directions and approaches.

Learning from these past scientifically and ethically approved research efforts, it
is emerging that many of the relevant connective tissues that could benefit from stem
cell interventions have complex structures, are designed to work in complex mechanical
environments, and when injured this creates an inflammatory environment. Furthermore,
when injured or subjected to a disease process, the situation arises as an adult or an elderly
individual when the anabolic environment of youth (growth and maturation) is no longer
evident. Thus, attention to the environment that cells, such as MSC, are placed in, either
as individual cells or incorporated into constructs, needs to be addressed if the MSC are
to achieve more of their potential to impact the return of functionality in these connective
tissues. That is, control of an environment where a catabolic inflammatory process is
needed, supplementation of the environment with appropriate anabolic mediators is also
needed (either as molecules, PRP or extracellular vesicles), and for some circumstances
using cellular therapy early in a disease process while the remaining endogenous tissue
can serve a template function may additionally be critical. Finally, controlling the impact of
co-morbidities (i.e., diabetes) may also be required. Thus, improving the environment into
which the cells are placed may be critical for further success. Similarly, picking the right cells
for the job may also be critical as MSC from different sources can exhibit different properties
even though they can have a similar phenotype, as discussed in [123,124]. Thus, the right
cells in the right environment at the right time are needed are discussed in [202–204], and
there is likely a need for a more “precision medicine” approach as “one size does not fit
all” [202].

While some progress is being made in the applications of cellular therapy, including
MSC use in tissue engineered constructs as reviewed in [165,198], and many lessons have
been learned as outlined above, several questions related to the issue of tissue regeneration
still remain. The first relates to human heterogeneity and how such heterogeneity translates
to variation in connective tissue structure and function. A second relates to the question
of whether absolute regeneration is required to obtain optimal functioning in a specific
mechanical environment? That is, would 80 or 90% regeneration at a structural level
be sufficient for people in the 60–70 years old age range, but perhaps not acceptable for
someone 30–40 years of age and wanting to maintain a very active lifestyle? Some of these
philosophical questions may also need to be factored into the expectations of how success
is defined going forward.
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