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Abstract: Fluorescence spectroscopy has become a prominent research tool with wide applications in
medical diagnostics and bio-imaging. However, the realization of combined high-performance,
portable, and low-cost spectroscopic sensors still remains a challenge, which has limited the
technique to the laboratories. A fluorescence lifetime measurement seeks to obtain the characteristic
lifetime from the fluorescence decay profile. Time-correlated single photon counting (TCSPC) and
time-gated techniques are two key variations of time-resolved measurements. However, commercial
time-resolved analysis systems typically contain complex optics and discrete electronic components,
which lead to bulkiness and a high cost. These two limitations can be significantly mitigated using
contact sensing and complementary metal-oxide-semiconductor (CMOS) implementation. Contact
sensing simplifies the optics, whereas CMOS technology enables on-chip, arrayed detection and
signal processing, significantly reducing size and power consumption. This paper examines recent
advances in contact sensing and CMOS time-resolved circuits for the realization of fully integrated
fluorescence lifetime measurement microsystems. The high level of performance from recently
reported prototypes suggests that the CMOS-based contact sensing microsystems are emerging as
sound technologies for application-specific, low-cost, and portable time-resolved diagnostic devices.

Keywords: contact sensing; CMOS; fluorescence spectroscopy; time-resolved; time-gated; TCSPC;
microsystems; lab-on-a-chip

1. Introduction

Fluorescence spectroscopy and microscopy have been ubiquitous research tools, serving a variety
of applications ranging from biomedical diagnostics [1–5] to bio-imaging such as cellular [6–8] and
molecular imaging [9,10]. In fluorescence analysis, samples are labeled using fluorescent molecules
that absorb an excitation light and emit fluorescence at a longer wavelength. This fluorescence emission
is subsequently detected and quantified. Steady-state and time-resolved fluorescence measurement
are the two basic types of fluorescence measurements. A steady-state measurement is performed by
exciting the fluorescent labeled sample with a beam of continuous light and recording the emission
spectrum. Time-resolved fluorescence measurement is a technique where the fluorescence decay profile
is recorded with high temporal resolution after a pulsed excitation. Since steady-state observation
is the average of the time-resolved phenomena, much of the information that characterizes the
fluorescent molecular interactions and the surrounding chemical environment is lost [11]. Compared
to steady-state fluorescence measurement, time-resolved fluorescence measurement provides superior
sensitivity and selectivity in many analytical applications. The measurement where the fluorescence
lifetime is extracted from the fluorescence decay profile is fluorescence lifetime measurement
(FLM) [12].
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Two types of FLM techniques are prominent, namely time-gated [13] and time-correlated single
photon counting (TCSPC) [14]. The time-gated method measures a fluorescence decay curve either
using several time gates with equal width or by time gate scanning. In the former method, lifetimes
shorter than hundreds of picoseconds are typically difficult to resolve [13]. The time gate scanning
method achieves higher temporal resolution at the expense of photon collection efficiency, as the
narrow gate excludes the majority of the detected photons [15]. At present, most of the FLMs are
performed using TCSPC, which achieves both high temporal resolution and high optical efficiency [16].
In commercially available TCSPC instruments, the temporal resolution, which depends on the time
bin width, is typically as low as hundreds of femtoseconds. With a high-frequency excitation source,
acquisition time as short as several milliseconds can be achieved with these commercial equipment [17].

A wide variety of FLM instruments are commercially available. However, they are typically bulky
and expensive, targeting bench-top, laboratory-based applications [18,19]. This is due to two key
technological limitations in both the electronic and optical domains. First, the high pico-to-nanosecond
temporal resolution requires complex signal processing electronics. Discrete electronic components
render highly parallel, highly integrated (e.g., greater than one million transistors) implementations
difficult, which limits device throughput. Second, an elaborate optical path involving a system of
lenses is often applied to focus the extremely low intensity fluorescence emission light onto the
photon detector as well as the laser into a very small plane for scanning imaging. Existing FLM
systems are typically not suitable for ubiquitous utility, for example, in point-of-care and implantable
applications [20], where low cost and high portability are required.

To minimize system size, cost, and improve throughput, the aforementioned limitations must be
overcome. In terms of electronics, reduction of complexity, size, and power consumption is achieved
through implementation utilizing the CMOS technology. Nanometer-scaled CMOS technology allows
large photon detection array and signal processing electronics to be fabricated on the same chip, which
enables array implementation with high parallelism [21]. In terms of optics, to eliminate the need
for complex and bulky optical elements, contact sensing has been extensively studied in recent years.
Contact sensing is a method in which samples are placed in close proximity to the sensor surface
without intermediate optics. Due to the short distance between the sensor and sample, the optical loss
can be small. Optically efficient contact sensing systems have been demonstrated covering widespread
applications, such as cell manipulation process [22], high-resolution imaging [23], and detecting
cellular functions at the single-cell level [24].

In this paper, we present a study of recent advances in CMOS fluorescence lifetime analytic
microsystems, in which the combination of contact sensing and time-resolved circuits are expected
to play a key role on the roadmap of application-specific, low-cost, and portable diagnostic devices.
Section 2 describes the principle of FLM, including time-gated and TCSPC techniques. Section 3
reviews the advanced CMOS FLM microsystems. Section 4 reviews CMOS contact steady-state and
time-gated microsystems. Section 5 explores the feasibility of contact TCSPC systems implemented in
the CMOS technology. Section 6 concludes the paper.

2. FLM Techniques

2.1. Time-Gating

Time-gated fluorescence is a prevalent time-resolved fluorescence technique where a pulsed
excitation source is used to illuminate the sample. The time-gated method measures a fluorescence decay
curve either within several time gates with equal widths or by time gate scanning. In the former method,
to measure mono-exponential fluorescence decay, two time gates with equal width are typically enough,
whereas for multi-exponential decay more time gates are required [25]. The fluorescence lifetime with
a mono-exponential decay is calculated from Equation (1) [26].

τ =
∆T

ln(N1/N2)
(1)
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where ∆T is the time interval between two time gates with equal width, N1 and N2 are the photon
numbers within the time gates, respectively, as shown in Figure 1a. Empirically, when the time gate
width ∆T is equal to 2.5 τ, the error between the calculated and the theoretical lifetime is the smallest.
Since the measured fluorescence decay is the convolution of the instrument response function (IRF)
with the theoretical fluorescence decay of the equipment, the signal becomes exponential after the
IRF drops to a negligible level. Therefore, the photons detected in the first part are not counted. For
measuring lifetimes below 500 ps, this typically leads to a very low efficiency [27].

Alternatively, in the time gate scanning method, photons are detected in a narrow time gate of
tens of picoseconds synchronized with the excitation pulse. After repeating sufficient times, the time
gate shifts automatically by a picosecond time step and detection is repeated, as shown in Figure 1b.
At the end of the measurement, a histogram is constructed [12]. However, since time gating rejects the
majority of the detected photons, detection efficiency is compromised.
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Figure 1. The two methods of time-gated fluorescence detection. (a) The fluorescence decay curve
detected using two time gates with equal width; (b) the time gate scanning method.

2.2. TCSPC

TCSPC has been the most widely used time-resolved fluorescence technique due to its high optical
efficiency and temporal resolution. A typical TCSPC apparatus consists of a pulsed excitation source,
a single photon detector, a timing electronics, and a computer to extract the fluorescence lifetime, as
depicted in Figure 2a. The detector is typically a PMT for a conventional system and a single photon
avalanche detector (SPAD) for a system with CMOS electronics. The timing electronics typically
consists of a time-to-digital converter (TDC), or a time-to-amplitude converter (TAC) combined
with an analog-to-digital converter (ADC). In general, TAC achieves higher resolution and ADC
linearity, but suffers limited temporal measurement range and operating temperature range. TDCs are
more compatible with CMOS implementation and less sensitive to external disturbances. Therefore,
TDC has garnered an increasing amount of interest in recent years [28]. When the fluorophore is
excited, a synchronization pulse from the excitation source driver is delivered to the START input of the
timing electronics. After the excitation is turned off, the fluorophores in the sample emit fluorescence,
which is detected by the single photon detector. Once a photon is detected, the detector delivers a
pulse to the STOP input of the timing electronics. The time interval between the START and STOP
pulse is the photon time-of-arrival and this timing mode is called “start–stop watch” mode, shown as
Figure 2b. After a large amount of excitation–detection cycles, a histogram depicting the fluorescence
decay is obtained by attributing the arrival times of photons to the corresponding time bins.

The single photon pulse from the detector is a sequence that captures the photon arrival statistics,
which is a Poisson process. Some signal periods contain one photon, whereas many signal periods
record no photons. The excitation intensity is typically moderated so that multiple photons arriving
during the same period is rare, which is necessary to prevent a form of distortion known as photon
pile-up. The pile-up effect is due to the fact that subsequent photons within the same period cannot be
detected, which results from the dead time incurred by the detection of the first photon.
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Figure 2. Time-correlated single photon counting (TCSPC) operation principle. (a) System schematic;
(b) timing diagram of the start-stop watch mode [29].

3. CMOS Implementation of FLM

CMOS has become a prominent technology for implementation on very-large-scale integration
(VLSI) chips. CMOS circuits allow a high density of logic functions integrated on a single chip and a
high processing speed. Benefitting from a high level of integration, CMOS implementation has shown
great potential in parallel processing [30,31], high noise immunity, and low power consumption [32,33].
With these advantages, highly integrated, low-cost, and low-power consumption FLM systems are
achieved by fabricating a large number of single photon detectors and signal processing circuits
on the same chip. Therefore, CMOS FLM systems are experiencing breakthroughs in integration
level, pixel area, array size, time resolution, and power consumption. The main parameters in recent
state-of-the-art CMOS FLM systems are listed in Table 1.

Table 1. Main parameters of several CMOS FLM microsystems including their single photon detector
and photon counting module. The best merits for each option are in bold. TG stands for time-gated.

Detector Type Pixel Area 1 Array Size Total Area 2 Time
Resolution 4

Power
Consumption

Integration
Level Technique Refs

SPAD 200 × 200 16 × 4 3.18 × 3.1 80 ps 4a Nil Pixel-level TG [34,35]
SPAD 50 × 50 32 × 32 Nil 50 ps Nil Pixel-level TCSPC [36]
SPAD Nil 32 × 32 Nil 54 ps Nil Pixel-level TCSPC [37]
SPAD Φ 6 µm 3 128 × 1 3.12 × 1.1 21.4–8.9 ps Nil Pixel-level TCSPC [38]
SiPM Φ 8 µm 32 × 32 1. 3 × 1.7 50 ps 9.5 mW Chip-level TCSPC [16]
SPAD 250 × 250 1 × 1 0.3 10 ps <80 mW Pixel-level TCSPC [39]
SPAD 25 × 25 32 × 32 Nil ~ns 4b Nil Pixel-level TG [15]
SPAD 24 × 24 512 × 128 13.5 × 3.5 4 ns 4b 1.65 W Pixel-level TG [40]
SPAD Φ 30 µm 64 × 32 9.6 × 4.8 120 ps 4b 50 mW Pixel-level TG [41,42]
SPAD Φ 30 µm 32 × 32 9 × 9 312 ps 430 mW Pixel-level TCSPC [43]
SPAD 48 × 48 64 × 64 Nil 62.5 ps 8.79 W Pixel-level TCSPC [44]

SPAD 40 × 40 64 × 64 4 × 4 350ps 1.4 W Chip-level TCSPC
and TG [45]

SPAD Nil 1024 × 8 24.7 × 0. 8 250 ps Nil - TG [46]
SPAD 23.8 × 100 256 × 2 6.61 × 0.958 320 ps Nil Pixel-level TCSPC [47]
SPAD 64 × 47 1 × 400 0.77 × 5 49.7 ps 7 mW Column-level TCSPC [48]
SPAD Φ 100 µm 60 × 1 9.3 × 2 250 ps Nil Pixel-level TCSPC [1]

Lock-in pixel 7.5 × 7.5 256 × 256 Nil 250 ps 4b Nil Pixel-level TG [49]
Lock-in pixel

(DOM) 7.5 × 7.5 256 × 256 Nil ~ns Nil Pixel-level TG [50]

Lock-in pixel
(LEFM) 11.2 × 5.6 256 × 512 7 × 9.3 10 ps 4c 540 mW Pixel-level TG [51]

1 The unit of pixel area is in µm2. 2 The unit of total area is in mm2. 3 This is the diameter of each pixel. 4 For the
TCSPC microsystems cited here, the time resolution represents the time bin width of the TDC or the least significant
bit. For time-gated microsystems, the definition of the time resolution varies. 4a This is the estimated measurement
error, based on SPAD rms jitter. 4b This is the time gate width. 4c This is the standard deviation of the fluorescence
decay profile.
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In the pursuit of higher temporal resolution and increased throughput, FLM systems need to be
designed with a higher level of integration and parallelism. Chip-level, column-level, and pixel-level
are three integration levels of the FLM microsystems.

On the chip-level, the SPAD and TDC are both fabricated on the same chip whereas they are in
separate block and the TDCs process the data from the SPADs sequentially. A fluorescence lifetime
imager integrates the on-chip TDC with a 64 × 64 SPAD array is proposed in [45]. In this design,
the array of detector pixels, the timing generation circuitry, and a set of latches are the primary blocks
of the proposed fluorescence lifetime imager. The latches at the output of each column is utilized
to store the timing information and output state of each pixel in this column. In another design,
1024 circular SPADs with an 8 µm diameter active area arranged in a 32 × 32 array and an 8-channel
TDC arranged in a 2 × 4 array are integrated on a chip-level to achieve single photon counting [16].
In this system, for each excitation period, the core architecture for recording the photon arrival time is
formed by eight TDC pairs. This novel design can greatly avoid the pile-up distortion. However, for
TCSPC applications, the probability of detecting a photon per excitation period is about 1%. Therefore,
TCSPC microsystems on a chip-level integration suffer a relatively long acquisition time.

On the column level, a column of SPAD pixels, or several of them, sharing a TDC. This enables
all pixels to detect photons while reducing the space necessary for TDCs. An efficient sharing of the
TDC with eight SPAD pixels is presented in [48]. A 1 × 400 array of backside-illuminated SPADs for
photon detection is in the top tier substrate while the time-to-digital conversion is in the bottom tier.
Upon this two-tier design, the area of the whole microsystem is greatly reduced. However, if more
than one photons arrive during the same excitation period, only one of them is counted. This level of
TDC sharing may cause a slightly distortion of decay if the light intensity is not low enough.

On the pixel level, TDCs are integrated in each pixel which means that each pixel corresponds to
specific photon timing and counting circuits to achieve high data rate processing through parallelism.
A 16 × 4 array of SPADs with in-pixel photon counting circuits in the time-gated method are
implemented with 0.35 µm high-voltage CMOS technology [34,35]. Owing to the highly parallel
processing, a 32 × 32 array of low dark count SPADs with in-pixel TDC achieves imaging with a
frame rate over 50 fps [37]. A 512 × 128 SPAD array with in-pixel TDC enables a fluorescence lifetime
imaging frame rate as high as 156 kfps [40]. The disadvantage of the pixel-level integration is that
the fill factor of the imager is dramatically reduced and consequently reduces the photon detection
efficiency, rendering the imager unsuitable for applications with very low light intensity. To improve
the fill factor of SPADs, 3-D integration technology, in which the photon counting circuits are fabricated
on a separate silicon wafer, has been proposed [52,53]. The SPAD array fabricated in the top silicon
layer of a silicon-on-insulator (SOI) wafer is flip-chip bonded to the photon counting circuits wafer.
After etching the silicon substrate of the SOI wafer, the SPADs could be illuminated from the backside
through the buried oxide layer.

In the context of the fill factor, the draining-only modulation (DOM) lock-in pixels based on the
time-gated method have a simple pixel structure, thereby achieving a spatial resolution higher than that
of SPADs [50]. However, it suffers a relatively low transfer speed and that parallel output is difficult
to realize. Another time-gated two-tap lock-in pixel using lateral electric field charge modulation
(LEFM) and two-stage charge transfer techniques is proposed in [51]. The sensor achieves a high
time resolution by the LEFM technique and obtains a low temporal noise by true correlated double
sampling (CDS) operation, and a high spatial resolution because of the compact pixel configuration.

As depicted in Table 1, with higher integration level and larger array size, the power consumption
of the microsystems is higher. The power consumption in chip-level systems is a little higher than
that in column-level because they have a larger array size. Systems implemented on the pixel-level,
i.e., pixel-parallel implementations, normally suffer from high power consumption. The largest array
size is achieved by the time-gated method, whereas the other best performances are realized by the
TCSPC method.
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Although there is always a tradeoff among integration level, array size, and power consumption,
the development of CMOS FLM microsystems has already reached a relatively mature stage. Different
types of systems can be fabricated according to their own application requirements.

4. Recent Advances in Contact Sensing

For fluorescence measurement, the fluorescent emission is typically orders of magnitude weaker
than the excitation light. Without sufficient filtering to block the excitation and lens to focus the
emission, a high background noise caused by the detected excitation photons typically distort the
decay. Typical optical setups for wide-field fluorescence measurements consist of objective lens,
imaging lens, excitation filter, dichroic mirror, and emission filter. CMOS fluorescence imaging sensors
are commonly tested with a microscope [46,47,51,54–56], as shown in Figure 3.
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Figure 3. Schematic and photo of a conventional optical system of time-resolved fluorescence system
(MF32). LASP is the motherboard of the SPAD array daughterboard. © (2010) Optical Society of America.
Adapted, with permission, from [57].

In the optical path, both the objective lens and imaging lens are utilized to focus the light thus
avoiding stray light. Excitation filter is typically a bandpass or short-pass filter that passes only the
fluorophore absorption wavelengths while rejecting other (parasitic) wavelengths that are generated by
the source. These parasitic wavelengths, if not filtered, can often be picked up by the detector, resulting
in undesirable background noise. The excitation filter can also be a neutral density (ND) filter for a
single-wavelength excitation source. The dichroic mirror spectrally separates excitation and emission
light by transmitting and reflecting light as a function of wavelength. Therefore, at the dichroic surface,
the excitation light is reflected to stimulate the fluorescent sample, while emission light transmits.
The emission filter is typically a long-pass filter that transmits emission light with longer wavelengths
and rejects excitation light with shorter wavelength. To further prevent the excitation reaching the
imager, a mirror is used to reflect the emission light reaching the CMOS imager perpendicular to the
excitation light. With the optical system, a high level of excitation rejection can be achieved due to the
spectral and spatial separation. However, to settle the complex optical path, it requires a large space,
which renders the whole system bulky. For conventional imaging systems, the ultimate limitation
of the spatial resolution is the diffraction of light, which is dependent on the wavelength and the
numerical aperture. For contact imaging systems, the spatial resolution is a function of both the pixel
size and the distance between the sample and the pixels [58]. Although current contact imaging
systems cannot typically rival the spatial resolution of conventional systems, they can circumvent
the bulky and complex optical path and maintain the ability of imaging fluorescent samples at the
micro level. Many fluorescent lab-on-a-chip (LoC) devices and systems performing imaging have been
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demonstrated in [59–61]. In the following subsection, state-of-the-art CMOS fluorescence detection
and imaging systems using contact sensing are surveyed.

4.1. Steady-State Contact Sensing

In contact sensing systems, the samples are very close to the sensor surface and no lens is required
to focus the light. Therefore, the main design challenges are introducing the sample in close proximity
above the sensor and providing adequate excitation rejection (giving the space constraint between
the sample and the sensor). For most contact fluorescence sensing systems, a polydimethylsiloxane
(PDMS) microfluidic chip, due to its transparency and tractability, is commonly used for the transport
and storage of fluorescent samples. The transparent PDMS provides a hermetic seal to silicon dioxide
and allows for the transmission of the excitation light in the visible and near-ultraviolet wavelength
range. A multi-layer thin-film filter with a total thickness that is hundreds of micrometers is coated or
placed directly onto the sensor to reject excitation light while transmitting the emission light.

An approach to miniaturizing the fluorescence measurement system by combining PDMS
microfluidics with a filtered CMOS imager is presented in [59]. The thin-film filter is formed by
the depositing alternate λ/4 layers of silicon dioxide and silicon nitride. This multi-layer thin-film
filter has a high transmittance at the fluorescence emission wavelength range while providing a strong
rejection of the excitation wavelength. The PDMS microfluidic chip, including 11 channels that are
100 µm wide and 14 µm deep, and spaced 100 µm apart, is placed directly onto the thin-film filter
so that it is close to the fluorescence imager. This class of microfluidic integrated system is suitable
for high-throughput biological drug delivery and analysis. One disposable microfluidic chip, with a
1 µm-thick silicon nitride membrane, is assembled on the interference filter coating on the surface of a
CMOS color imager with 5 mega pixels [60]. This system can be used to measure the concentration of
fluorescent samples and imaging fluorescent mammalian cells with a 15–20 µm diameter. A handheld
fluorimeter imager with an integrated PDMS well and long-pass optical filter is presented in [61].
The polymer film filter with high rejection chromophore embedded is coated on the fluorescence
imager. These handheld bioassay instruments can detect the metabolic activity and viability of cells,
which can be utilized for cytotoxicity and pathogen measurements.

The microfluidic channel can also be used to guide the excitation light other than sustaining the
fluorescent sample, meaning it acts as optical waveguide. Since the refractive index of the liquid core
is lower than the channel walls, the light, based on the principle of anti-resonant reflection optical
waveguide (ARROW), can only propagate in the channel rather than the channel walls [62]. ARROW
enables an extended interaction length, thereby improving the interaction efficiency between excitation
light and analytes. A chip-size fluorescence spectrometer with an ARROW fluidic platform and a
linear variable band-pass filter integrated on a CMOS imager for analyzing moving objects is proposed
in [63]. The prototype of the chip-sized spectrometer is shown in Figure 4a. The liquid waveguide
structure is defined on an acrylic sheet and a glass substrate with four glass beads sandwiched
between them. The fluorescence dyes in the fluid are then continuously excited by the excitation light
that propagates through the liquid waveguide. Through using multiple fluorescent dyes to identify
biological molecules, this device enables point-of-care, real-time detection, and analysis of pathogens.
Based on the micro-electromechanical systems (MEMS) fabrication, ARROWs can be easily integrated
on-chip. An ARROW structure guiding emission intersects with a solid-core waveguide for guiding
excitation, as shown in Figure 4b [64].
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Figure 4. (a) The cross section and top view of the fluidic channel. The excitation light is coupled
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they move along the channel. Reproduced from [63] with permission from The Royal Society of
Chemistry. (b) The prototype of the ARROW chip for sample preparation and single nucleic acid
measurement. Reproduced from [64] with permission from The Creative Commons Attribution 4.0
International License.

A contact measurement system with higher performance of thin-film filter permits higher
measurement sensitivity of fluorophores. A thin-film filter with optical density (OD) above 6.0 within
the desirable wavelength range integrated on a 128 × 128 fluorescence imager array is presented
in [65]. The emission intensity of the cyanine-3 fluorophore is measured as a function of fluorophore
concentration and the estimated measurement sensitivity is as high as 5000 fluorophore/µm2.

The thickness of the thin-film filter is smaller than the wavelength, which set a strict requirement
on fabrication. With a special design of the CMOS imager, the emission filter can be non-essential
for a fluorescent measurement microsystem, thereby further shortening the distance between the
sample and the imager. An on-chip filter-less fluorescence imager is demonstrated to successfully
detect the fluorescent sample and is able to detect fluorescence intensity of approximately 1/300 of the
excitation [66]. According to the principle of the wavelength-dependent optical absorption coefficient,
the optical intensity of a specific wavelength can be obtained based on the penetration depths in
silicon. A spectral-multiplexed filter-less fluorescence contact imager with a microfluidic chip for
deoxyribonucleic acid (DNA) detection is proposed in [67]. The filter-less CMOS microsystem utilizes
the polysilicon gate as a band-pass filter. The spectral-multiplexing capability of the microsystem has
been validated in the detection of DNA targets with two colors (e.g., red and green) of CdSeS/ZnS
quantum dots labels, simultaneously. The detection limit at a sample volume of 10 µL for two targets
is 240 nM and 210 nM, respectively.

An appropriate way to introduce the excitation light can improve the excitation rejection capability
of the contact microsystem. One approach to excitation rejection is utilizing miniaturized optics to
guide excitation away based on the principle of total internal reflection (TIR). An on-chip wide-field
holographic fluorescent imaging platform without any lenses and mechanical scanners is presented
in [24], as shown in Figure 5. Lens-less imaging is achieved by reflecting the excitation beam at the
bottom of the sample container. The incident angle of the excitation beam is adjusted by the prism.
To eliminate the scattering excitation at the bottom facet of the prism, the index matching gel is applied
at the interface of the prism and the glass. The emission light does not obey TIR, thereby directly
reaching the entire field-of-view of the imager-array. Such a wide field-of-view contact fluorescent
imaging platform enables highly efficient detection and high-throughput screening of rare cells.
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Figure 5. On-chip lens-free holographic fluorescent imaging platform with a wide field-of-view of
2.5 cm × 3.5 cm. Adapted from [24] with permission from The Royal Society of Chemistry.

Typically, the excitation source of a fluorescence measurement system is a standalone module.
To achieve a highly integrated fluorescence detection system and be potential for implantable
applications, the excitation source needs to be integrated on-chip [68]. Such a highly integrated
and implantable fluorescence imaging system can be utilized to observe various neural activities of the
mouse brain in a freely moving state with high-sensitivity. The excitation is rejected by a combination
of dedicated thin-film filters. A weak green fluorescence emitted by green fluorescence protein (GFP)
is observed in positive cells from mouse brain slices [20].

4.2. Time-Gated Contact Sensing

In FLMs, the excitation source is pulsed; and, if the pulse width is narrow enough, the detected
photons are actually the emission photons. However, the realizable pulse width of the excitation is
often wider than desired. Therefore, a filter is still needed to reject the excitation light that can reach
the detector, although emission filters are not essential for FLMs in theory. Therefore, compared to the
steady-state measurement where the excitation is rejected spatially and spectrally, FLMs have greater
excitation rejection ability because the excitation light can be rejected temporally other than spatially
and spectrally. For the time-gated method, only the photons in the detected time window are detected.
By properly designing the width and location of the time windows, the majority of excitation photons
can be rejected.

With simplified optics, the samples can be placed close to the detector surface to achieve contact
sensing, via micro-capillary, microfluidic channel, micro-reservoir, and so on. The following is a survey
of CMOS time-gated systems demonstrating different variations of contact sensing.

A contact time-gated fluorescence system utilizing micro-glass capillary to hold the fluorophore
solution is presented in [69]. The glass capillary with an internal diameter of 550 µm and full of
fluorescent solution [70] is suspended close to the photon detector array surface. The pulsed excitation
beam excites the fluorescent samples from a direction perpendicular to the capillary. The SPAD array
with each pixel occupying a 180 × 150 µm2 area is used to detect the emission light. This time-gated
fluorescence measurement system has been successfully demonstrated to detect the fluorescence
emission without the aid of any focusing optics or optical filters. The average value of the measured
lifetime of this system is 19.54 ns, which is in accordance with the lifetime of 19.97 ns measured by a
commercial TCSPC system. This contact time-gated microsystem shows that the excitation photons
are almost eliminated by the time gate.

An on-chip, filter-less all-digital time-gated CMOS fluorescence imager for DNA detection is
presented in [71]. A layer of PDMS is coated on the chip surface to sustain the fluorescent samples as
well as to avoid short circuits. Three 200 nL volume spots are fabricated on the surface of the PDMS
in which three different concentrations—36 µM, 18 µM, and 9 µM—of Cy5-linked oligonucleotide
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(30 mer) are dropped for detection. Based on the time-gated method, the excitation is eliminated
by appropriately selecting the width and position of the time gate, and the weak emission is then
observed. This filter-less system achieves a detection limit of DNA of 14.6 µM (8.8 × 108 molecules
per pixel) [71].

An angle-sensitive SPAD array able to conduct lens-less 3-D fluorescent lifetime imaging is
presented in [72,73]. By the diffraction gratings, the incident angle of light is extracted and 3-D
localization of the fluorescent sources at a micrometer scale is enabled. The fluorescent sources are
distinguished based on their lifetimes obtained by the time-gated method.

A time-gated fluorescence contact detection microsystem with probes immobilized directly on
the sensor surface is presented in [21]. Since the laser diode is right above the detector array, a 23-layer
SiO2/TiO2 thin-film filter with OD 5 is still utilized to achieve high background rejection.

To maximize the photon collection efficiency, the analytes should be placed in immediate
proximity to the sensor surface [74]. For DNA detection, the DNA probes can be immobilized on
the surface of the sensor by contact-pin spotting [75] or covalent attachment techniques [76]. To aid
a good attachment, the surface of the sensor should be firstly cleaned and epoxy-derivatized with
3-glycidoxypropyltrimethoxysilane. The sensitivity of this time-gated sensor is as low as several
108 photons per square centimeter on average [76].

A highly integrated and portable time-gated fluorescence system combining excitation, filtering,
and detection is described in [34], as shown in Figure 6. The excitation is an 8 × 8 array of AlInGaN
blue micro-pixelated LEDs with an array of drivers implemented by CMOS technology. The narrow
pulse width of 777 ps enables a short lifetime resolution. The shortest lifetime measured in this work is
1.3 ns. The fluorescent sample is sustained in a micro-cavity slide and sealed by a cover slip, and these
are placed between the LED chip and the detection chip. The emission light is then detected by the
detector array opposite the LED chip. A 514 nm long-pass filter is chosen to further distinguish the
emission from the 450 nm excitation. By eliminating the PMTs, bulk optics, and discrete electronics, this
design has already achieved a high level of system integration. In order to further reduce the device
dimensions, the optical filter is intended to be removed and the microfluidics is to be incorporated to
deliver the sample.
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5. Perspective

The TCSPC method has higher photon collection efficiency than the time-gated method because
without any time gates all detected photons contribute to the measurement. However, the TCSPC
method suffers worse background rejection performance relative to the time-gated method, thereby
relying more on the performance of the emission filter. Therefore, the contact TCSPC system is not
as common as the contact time-gated system, although the CMOS TCSPC microsystems are more
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pervasive than CMOS time-gated microsystems. In fact, two preliminary prototypes have been
demonstrated in [44,77] and have shown the feasibility of CMOS contact TCSPC microsystems.

The first prototype is an 64 × 64 active microarray platform implemented in the CMOS technology
for time-resolved Förster resonance energy transfer (TR-FRET) oligonucleotide assays [77]. The probes
are firstly immobilized on the substrate and labeled with a donor fluorophore. The target analytes
are labeled with an acceptor fluorophore. The extent of hybridization of probe and target analyte is
then estimated by the changes of the lifetime of the donor. The 22-layer TiO2/SiO2 thin-film long-pass
filter deposited on the surface of the microarrays achieves a 30–40 dB rejection at the excitation
wavelength and 92% transmission at the emission wavelength. The detection limit of the target analyte
concentration is 20 nM.

The second prototype is a pixel-level integrated CMOS array for high-speed fluorescence lifetime
imaging [44]. The performance of this imager is demonstrated by directly placing a dish of fluorescein
dyes over the detector array. A ceramic cover is used to cover a portion of the SPAD array to define the
imaging pattern. A 550 nm emission filter is employed to reject the excitation light.

In terms of minimizing the requirement of the high performance thin-film filter, utilizing a very
short excitation pulse and applying some optical waveguide structures as depicted in [78] to separate
the excitation and emission are also useful methods.

Combining the advantages of contact sensing and CMOS technology, the CMOS contact
TCSPC sensor demonstrates superior performance both temporally and spatially. Since this unique
combination for TCSPC has barely been studied, as only the above two key examples can be given,
the development of high-performance, high-throughput, low-power, low-cost, and portable TCSPC
sensors is a promising direction of future work.

6. Conclusions

TCSPC is the most pervasive time-resolved fluorescence measurement technique for its high
temporal resolution and photon collection efficiency. Well supported by contact sensing and the CMOS
technology, the CMOS contact TCSPC system has been shown to have a high level of integration, low
power consumption, high throughput, a small size, and reduced cost. Based on ample demonstrations
of steady-state and time-gated systems combining contact sensing and the CMOS technology, CMOS
contact TCSPC microsystems are expected to enable high-frame-rate fluorescence lifetime imaging and
emerging applications, particularly in the portable domain.
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