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MAPCap allows high-resolution detection and
differential expression analysis of transcription
start sites
Vivek Bhardwaj 1,2,3, Giuseppe Semplicio1,3, Niyazi Umut Erdogdu 1,2, Thomas Manke 1 & Asifa Akhtar 1

The position, shape and number of transcription start sites (TSS) are critical determinants of

gene regulation. Most methods developed to detect TSSs and study promoter usage are,

however, of limited use in studies that demand quantification of expression changes between

two or more groups. In this study, we combine high-resolution detection of transcription start

sites and differential expression analysis using a simplified TSS quantification protocol,

MAPCap (Multiplexed Affinity Purification of Capped RNA) along with the software icetea.

Applying MAPCap on developing Drosophila melanogaster embryos and larvae, we detected

stage and sex-specific promoter and enhancer activity and quantify the effect of mutants of

maleless (MLE) helicase at X-chromosomal promoters. We observe that MLE mutation leads

to a median 1.9 fold drop in expression of X-chromosome promoters and affects the

expression of several TSSs with a sexually dimorphic expression on autosomes. Our results

provide quantitative insights into promoter activity during dosage compensation.
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Most genes in eukaryotes produce multiple transcript
isoforms, contributing to tissue-specific regulation of
gene expression. Isoform diversity can be achieved by

the usage of alternative exons, untranscribed regions (UTRs) and
transcript start and end sites. Recent analysis of human genome
suggests that transcript start and end site selection is a major
driver of alternative isoform usage across tissues1.

Selection of alternative transcription start sites (TSSs) also
reflects a change in promoter usage of a gene. Promoter-profiling
methods, such as CAGE2, RAMPAGE3, NanoCAGE4 and GRO-
cap5, allow a genome-wide detection of promoter usage by
identification of TSSs. A recent comparative analysis of six such
methods identifies the latest, PCR-free variant of CAGE (nAnT-
iCAGE) as the overall best method in terms of accuracy of
detected TSSs, while RAMPAGE3 comes a close second6. The
amount of time and number of steps required per library was
found to be highest for CAGE. RAMPAGE reduces the proces-
sing time (to 2 days) and the required input material (down to
5 μg), therefore providing a suitable alternative. The challenge of
further reducing the input material have been tackled in protocols
such as nanoCAGE4 and SLIC-CAGE7, which require only
nanograms of RNA, while the latest C1 CAGE protocol8 allows
detection of TSSs in single cells. These protocols have focussed on
increasing detection sensitivity of lowly abundant capped RNAs
such as eRNAs8 and on high-resolution mapping of TSS7, rather
than accurate quantification of their expression. Quantification of
transcript expression from CAGE is hindered by the PCR
amplification bias. The nAnT-iCAGE protocol removes the PCR
amplification step to correct this bias, with a lower limit down to
5 μg of starting material9. Protocols such as HeliScopeCAGE10

and RAMPAGE3 aim to tackle this by either sequencing unam-
plified RNA on a single-molecule sequencer (HeliScopeCAGE) or
by incorporating pseudo-random barcodes in the reads, followed
by post-mapping de-duplication (RAMPAGE). Detection as well
as quantification could further be improved by the use of biolo-
gical replicates and spike-in RNA controls for normalization, a
strategy that has proven highly beneficial for RNA-seq studies11;
however, promoter-profiling studies have so far not employed
these strategies. Other potential reasons for the limited scope of
promoter-profiling protocols could be the relative difficulty of
performing the protocols6, as well as low correlation of gene-level
expression estimates with RNA-seq12.

In Drosophila, promoter profiling has been used to study
promoter architecture13, promoter usage during development3,
relationships between promoter shape and transcription noise14,
detection of enhancer RNAs and divergent transcripts15,16, and to
study conserved non-coding transcription across species17.
Dosage compensation is another biological phenomenon that
could benefit from accurate quantification of promoter activity. In
Drosophila melanogaster, the imbalance of sex chromosomes
between male and female flies is compensated via the transcrip-
tional upregulation of the single male X chromosome18,19. This
process requires the male-specific lethal (MSL) complex, which is
responsible for deposition of H4K16 acetylation on promoters
and gene bodies of X-chromosomal genes20,21. The sex-specificity
of this process relies on the male-specific expression of the MSL
complex protein MSL222,23, along with a highly male-biased
expression of the roX non-coding RNAs on the X chromosome24.
Another crucial protein in the process is MLE (maleless), which
incorporates roX RNAs in the MSL complex, facilitating its
spread on the X chromosome25. Finally, the enzyme MOF (males
absent on first) deposits the H4K16ac mark on X, which is
associated with hyperactivation of gene expression26,27. Although
this global upregulation of gene expression has been quantified
previously using RNA-seq28,29 and GRO-seq30,31, the variability
of promoter usage and expression of different transcripts (such as

ncRNAs, eRNAs, etc.) has not been investigated. A high-resolu-
tion, quantitative expression profiling approach could therefore
provide more insights into the process.

In this study, we have developed a method termed MAPCap
(Multiplexed Affinity Purification of Capped RNA) that allows
multiplexed processing of samples in about 16 h and produces
long, paired-end reads, enabling high-resolution detection of
transcription start sites. Synthetically designed random barcodes
are used to remove PCR duplicates, and external spike-in controls
allow accurate quantification of changes in TSS expression. Fur-
thermore, we present a method for detection of transcription start
sites that utilizes variation between biological replicates to
improve TSS accuracy. We implement this method along with
various processing and analysis options into an easy to use R/
Bioconductor package icetea (Integrating Cap Enrichment with
Transcript Expression Analysis; https://bioconductor.org/
packages/icetea). Applying MAPCap to developing D. melano-
gaster embryos and larvae, we detect stage-specific activities of
enhancers as well as sex-specific TSS expression. We apply
MAPCap to quantify expression changes in mutants of the MLE
RNA helicase, a protein essential for balancing the X-
chromosomal gene dosage between males and females32 and
remarkably find a median 1.9-fold downregulation of TSSs on X
chromosome upon loss of MLE. Further comparison of male and
female wild-type and mutant flies indicate an unexpected
potential function of MLE in regulating the expression of sexually
dimorphic genes. Moreover, by analysing the variability of
expression defects, we find that genes which are least sensitive to
the mutation of MLE are located significantly further from the
high-affinity sites (HAS) as well as from the boundaries of
topological domains (TADs) compared to MLE-sensitive, dosage-
compensated genes located on the X chromosome. We propose
that the MAPCap protocol, combined with icetea analysis would
be a highly useful approach for de novo detection as well as
differential expression analysis of TSSs and transcript isoforms in
all species.

Results
MAPCap enriches Capped RNA from multiplexed samples. We
developed MAPCap by combining bead-based affinity purifica-
tion of mRNA Cap with a recently described RNA library pre-
paration strategy (Fig. 1a, see “Methods”). MAPCap utilizes
the “s-oligo”, originally developed for genome-wide RNA–protein
interaction (FLASH) assays33. s-oligo suppresses the frequently
found “adapter-dimers” during the ligation-mediated cloning of
RNA, a step that is also important for promoter-profiling pro-
tocols. The s-oligo is an RNA/DNA chimera, with a 5’-dangling
single-stranded RNA made up of 6 ribonucleotides of sample
index (XXXXX), sandwiched between 7 random ribonucleotides
that serve as Unique Molecular Identifier (UMI;
NNXXXXXXNNNNN). The 5’-end of the s-oligo RNA ligates to
the 3’-end of target RNA while the 3’-end of the s-oligo forms a
DNA duplex, which also serves as a primer for the reverse
transcriptase (RT), making the ligated product ready for RT after
dephosphorylation. Early multiplexing of samples makes it easier
to handle low input samples for the later stages and also reduces
technical variability between samples. Abundant RNA species
such as small nuclear RNAs (snRNAs) and small nucleolar RNAs
(snoRNAs) are selectively degraded by targeted antisense oligos
and RNase H, increasing the recovery of other capped RNA
species (Supplementary Tables 1–3). PCR amplification (14–18
cycles, depending on input RNA) creates a uniform library with
ideal insert sizes of around 150 nt (Supplementary Fig. 1a). Since
our RNA fragmentation is based on sonication, we can easily
control the insert size to allow sequencing of longer inserts if
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desired, increasing the mapping efficiency. The whole protocol,
from RNA isolation to libraries ready for sequencing, takes
around 16 h and aims to minimize the critical or difficult steps,
making it easy to perform.

To evaluate MAPCap data quality, we performed MAPCap on
stage 15 Drosophila embryos in four replicates (see “Methods”). We
obtained 4.7–8.5 million reads per sample after de-multiplexing
(Supplementary Fig. 1b). After mapping and removal of PCR
duplicates, the 5’-UTR of genes showed a high correlation of

MAPCap signal between replicates (92–94%, Pearson’s R, Supple-
mentary Fig. 1c). Similarly, high correlation was observed for the
detected TSSs (90–94%, Pearson’s R, Supplementary Fig. 1d).
Similar correlation was observed between replicates of the CAGE
data obtained from modENCODE in S2 cells (see “Methods”);
however, the correlation reduces after removal of duplicates
(Supplementary Fig. 1e, f). For further comparison, we processed
the CAGE data downloaded from modENCODE34 and the
RAMPAGE data from embryos corresponding to the same

Cap

m7G-IP

Abundant capped 
RNA removal

ssDNA 
circularization

PCR 
amplification

Linker-specific
reverse transcription

Linker ligation

Release from beads

C18Spacer
P5

P3

UMI/Indexing barcode

cDNA

Pool samples

Ribo-depletion

Total RNA

(AAAAA)OH
(AAAAA)P

(AAAAA)Cap
RNA fragmentation (AAAAA)OH +

(AAAAA)Cap +

(AAAAA)P +
Cap

Cap

P3P5 Sequencing

} s-oligo

25

50

75

100

0 25 50 75
Position in read (bp)

‘G
’ n

uc
le

ot
id

e 
(%

)

Protocol CAGE MAPCap RAMPAGE

–0.2 TSS

0.0

0.1

0.2

0.3

0.4

0.5

MAPCap (without duplicates)
Genes

–0.2 TSS TES 0.2 Kb

nAnTiCAGE

Chc CG32582
CG8565

TSS
TES

0.0

0.5

1.0

1.5

2.0
5 µg

TSS
TES

1 µg

TSS
TES

500 ng

TSS
TES

100 ng
Genes

TSS TES

G
en

es

TSS TES TSS TES TSS TES
0.0

0.2

0.4

0.6

0.8

1.0

Input RNA

(C
P

M
)

0.1

1.0

0.001 0.010

Spike-in added
(proportion to total RNA amount)

S
pi

ke
-in

 r
ea

ds
 r

ec
ov

er
ed

(p
ro

po
rt

io
n 

to
 to

ta
l m

ap
pe

d 
re

ad
s)

Rp = 0.62

6

4

2

0
0 2 4 6

MAPCap : log(CPM)

C
A

G
E

 : 
lo

g(
C

P
M

)

Rp = 0.63

6

4

2

0
0 2 4 6

MAPCap : log(CPM)

R
N

A
-s

eq
 : 

lo
g(

C
P

M
)

25

0

25

0
25

E
xp

re
ss

io
n 

(C
P

M
)

M
ea

n 
ex

pr
es

si
on

 (
C

P
M

)

0
55.3

0

15,828 15,830 15,832 15,834 15,836 15,838 kb
Genes

MAPCap

TSS

RAMPAGE

CAGE

RNA-seq
(modENCODE)

Metagene profile (+–200 bp)

TES 0.2 kb

a

c

b

d g

e

f

h

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-11115-x ARTICLE

NATURE COMMUNICATIONS |         (2019) 10:3219 | https://doi.org/10.1038/s41467-019-11115-x | www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications


developmental stage3. Cap-trapping and template-switching
protocols rely on the enhanced terminal transferase (TdT)
activity of the RT during cDNA preparation35–38. Therefore,
reads obtained from both CAGE and RAMPAGE protocols show
a high “G” nucleotide bias, which demands post-mapping
correction and can affect the accuracy of TSS detection39.
MAPCap, on the other hand, shows no such bias. This can be
attributed to a highly reduced TdT activity of our RT under
protocol conditions (Fig. 1b).

Several differences have been observed in the past between
promoter-profiling and the RNA-seq protocol in detection of
transcript types as well as gene expression estimates12,40. We
correlated the depth-normalized counts on 5’-UTRs of known
genes between MAPCap, CAGE, RAMPAGE, and the ribo-
depleted RNA-seq data from matched developmental stages
obtained from the modENCODE project (see “Methods”). We
found that, although MAPCap signal shows good correlation with
other protocols, it showed a better correlation with RNA-seq
(Pearson’s R; MAPCap= 0.63, CAGE= 0.48, Fig. 1c, d, Supple-
mentary Fig. 1g–j). This indicated that MAPCap experiments
could provide better gene expression estimates than other
protocols. PCR amplification has been shown to create a
detection and quantification bias in both DNA and RNA-seq,
as well as CAGE protocols10,41. This bias can be controlled by
appropriate removal of PCR duplicates. Random barcodes
present in the s-oligos serve as UMIs, allowing us to remove
PCR duplicates while preserving the transcript expression signal.
Similar de-duplication can be performed for data obtained from
the RAMPAGE protocol, where the frequent mismatch between
random RT-PCR primers and genome sequence could be treated
as “pseudo-random” barcodes3. A comparison of PCR duplicate
removed signal from the three protocols show that both MAPCap
and RAMPAGE preserve the signal on the TSS, while de-
duplication in the absence of random barcodes lead to near-
complete loss of signal from the CAGE protocol (Fig. 1e,
Supplementary Fig. 2a). Taken together, our results suggest that
MAPCap produces high-quality quantitative signal at the 5’-end
of transcripts.

Although the latest version of CAGE protocol, nAnTiCAGE,
does not use PCR amplification9, the CAGE data used in the
modENCODE project does. We therefore performed MAPCap
on RNA extracted from mouse embryonic stem cells (ESCs) with
a dual-hybrid genotype (Mus musculus ×Mus castenious) and
compared it to the nAnTiCAGE data available online7 (see
“Methods”). MAPCap showed an enrichment of signal at the 5’-
UTRs of genes comparable to nAnTiCAGE, along with a 55%
correlation of signal (Fig. 1f, Supplementary Fig. 2b, c).
Furthermore, we performed allele-specific sorting of signal from
our MAPCap data and found that 16% of MAPCap signal could
be assigned uniquely to the maternal or paternal allele. This
allowed us to detect 173 allele-specific TSSs (94 maternal, 79
paternal, Supplementary Fig. 2e). This initial analysis indicated

that MAPCap also provides suitable coverage to detect allelic bias
in TSS usage.

Sensitivity and accuracy of TSS detection in MAPCap. In order
to test the sensitivity of MAPCap protocol to amounts of
starting material, we next performed MAPCap on RNA isolated
from Drosophila S2 cells, ranging from 5 μg to 100 ng (see
“Methods”). Comparison of duplicate-free signal enrichment
shows that MAPCap can easily recover signal at TSSs for up to
100 ng of starting material (Fig. 1g). Further, we could detect
TSSs using the data at high accuracy for up to 500 ng of starting
material (Supplementary Fig. 2e), suggesting that MAPCap can
reliably obtain TSSs from up to 500 ng of starting material in
the absence of replicates (see next section). We then tested the
ability of MAPCap to detect various transcript concentrations.
To this end, we prepared a spike-in mix containing 10 in vitro
capped ERCC spikes (see “Methods”) in a 2-fold relative con-
centration ranging from 15.6 pM to 8 nM. We then mixed each
replicate of the embryo sample (each containing 5 μg total
RNA) with different concentrations of this spike-in mix (from
0.0004% to 0.05% of isolated RNA), at the beginning of the
protocol. The results showed that the relative concentration of
spike-ins between samples can be faithfully recovered after
sequencing (Fig. 1h). Relative ratios between individual spike-
ins within each mix could also be accurately recovered (Sup-
plementary Fig. 2f).

In order to assess the accuracy of TSS detection of MAPCap
compared to other protocols, we detected TSSs from MAPCap
data using the paraclu method42 and compared them to the TSSs
detected from CAGE and RAMPAGE with identical read-depth
and processing (see “Methods”). We evaluated the TSS detection
sensitivity, precision and F1-score between the methods by
comparing the TSSs obtained from each method to all annotated
TSSs in the Drosophila ensembl annotation (release 76), along
with the RNA-seq data obtained from modENCODE and the
DNAse-seq data obtained from comparable developmental
stage43 (see “Methods”). Since current dm6 ensembl and flybase
TSS annotations utilize the data from CAGE and RAMPAGE, we
expected these protocols to perform well in these metrics.
However, MAPCap showed sensitivity and specificity similar to
the other protocols (Supplementary Fig. 3a). Further, about
one fifth of the MAPCap TSSs classified as “false positives”
showed evidence of promoter activity, such as active histone
marks or DNAse hypersensitivity (Supplementary Fig. 3b, see
“Methods”). Overall our analysis suggests that MAPCap provides
high sensitivity while achieving accuracy comparable to existing
standards in detection of TSSs.

Detection of TSSs using biological replicates improves accu-
racy. The ease of use and multiplexing ability of the MAPCap
protocol allows performing biological replicates without adding

Fig. 1 MAPCap (Multiplexed Affinity Purification of Capped RNA) efficiently captures transcript 5’-end signal. a Overview of the MAPCap protocol. After
fragmentation and ribo-depletion, the Capped RNA is immunoprecipitated using an antibody, and the s-oligos are attached, afterwards the samples are
pooled for PCR and library preparation steps. b Nucleotide content in read positions. CAGE and RAMPAGE show a high artificial G-bias due to their cloning
steps, while MAPCap shows low bias for any specific nucleotide. c, d Correlation of signal (log2(counts per million+ 1)) between MAPCap and CAGE and
between MAPCap and RNA-seq on 5’-untranscribed region of genes. e Genome snapshot of the de-duplicated counts from MAPCap, RAMPAGE and
CAGE on transcription start site. For MAPCap and RAMPAGE, the de-duplication was performed using 5’-position of the reads and the UMIs, while for
CAGE it was performed using only 5’-position. RNA-seq track is shown for comparison. f Metagene profile comparing signal enrichment between
nAnTiCAGE and MAPCap on all genes in mouse embryonic stem cells (CPM= counts per million). g Metagene profile of signal from the MAPCap
experiment performed in S2 cells, using different quantity of total RNA (5 μg, 1 μg, 500 ng, 100 ng) as starting material. h Added relative concentration of
capped spike-ins ((amount of spike-in RNA/amount of total RNA) × 100) vs recovered relative counts ((reads mapped to spike-ins/total mapped reads) ×
100) for the embryos. The samples were added with proportionally increasing relative concentration of ERCCs
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additional time and effort. We therefore sought to develop ana-
lysis methods that could benefit from biological replicates.
Commonly used methods for TSS detection are either based on
the density of CAGE tags (paraclu42) or distance between indi-
vidual tags (distclu38). These methods rely on within-sample
clustering of tags and do not incorporate biological replicates to
improve the performance of TSS detection. Hence, we developed
a window-based TSS detection method similar to the window
based peak calling algorithms applied in chromatin immuno-
precipitation (ChIP-Seq) analysis44,45. Read counts are modelled
using negative binomial distribution and the TSSs are detected as
windows of enrichment in the genome with respect to a local
background (Supplementary Fig. 3c, see “Methods”). Con-
secutively enriched windows are then merged to detect both sharp
and broad TSS shapes. We compared the accuracy of peaks
obtained from our “local enrichment” method with those from
the popular paraclu method42 using (1) each replicate alone; (2)
reads pooled from all replicates, and (3) intersection of TSS from
each replicate. TSSs detected by the local enrichment method
using replicates show higher sensitivity as well as specificity (area
under precision-recall curve (AUPRC)= 0.838) compared to all
these alternatives (AUPRC: 0.57–0.64) (Fig. 2a, b, Supplementary
Fig. 3d). In order to test whether this method is generally
applicable to other protocols, we applied it on equally subsampled
1 million reads from the CAGE data of the S2 cells from mod-
ENCODE project. We found that, although the optimal precision
and sensitivity stays similar to the traditional (paraclu) approach,
our method detects a larger number of true positive peaks
(Supplementary Fig. 3e, f). These results suggest that the
replicate-based analysis increases sensitivity and robustness of
TSS detection in MAPCap as well as other promoter-profiling
methods.

We then evaluated whether the shape of detected TSSs by our
method represents a biologically informative signal. Earlier
analysis of CAGE data indicated that the genes with sharp,
focussed TSSs are mostly tissue specific and developmentally
regulated, while the genes with broad TSSs have housekeeping
functions46. Gene Ontology (GO) term enrichment analysis of
the sharp and broad TSSs obtained using the “local enrichment”
method confirmed previous results (see “Methods”). Genes
with sharp TSSs were enriched for processes like morphogen-
esis and development while genes with broad TSSs denoted
mechanisms such as protein localization, metabolism and
membrane organization (Fig. 2c), suggesting that TSS shapes
detected from MAPCap reflect known biological signals. Motif
enrichment analysis of sharp and broad TSSs further confirm
these results, with sharp TSSs frequently containing the
initiator (Inr) element, while broad TSSs were enriched for
core promoter motifs Motif-1 and 2 (Fig. 2d, Supplementary
Fig. 3g, see “Methods”). Known developmental genes such as
hunchback (hb) and housekeeping genes such as proteosomal
subunit Prosbeta5 also showed the expected TSS shapes (Fig. 2e,
f, Supplementary Fig. 3h, i).

After confirming the validity of our TSS detection method, we
applied it to detect the lowly abundant RNAs expressed during
development. In order to compare developmental stages, we
performed MAPCap on RNA isolated from the brains of male
and female D. melanogaster third instar (L3) larvae. Previous
analysis has shown that Drosophila brain is highly sexually
dimorphic47 and this dimorphism affects sex-specific behaviour,
such as male courtship behaviour48. Therefore, our MAPCap data
of promoter activity could serve as a useful resource to
understand these functions. We built an analysis workflow that
performs de-multiplexing, mapping, PCR de-duplication, TSS
detection and annotation of TSSs (Supplementary Fig. 4a) and
processed the MAPCap data through this workflow. TSSs were

called using a strict fold-change threshold of four-fold over the
background, followed by a comprehensive functional annotation
(see “Methods”). While most of the detected TSSs (70–73%)
originated from previously annotated TSSs or 5’-UTRs, 11–12%
of the TSSs detected in larvae appeared to originate from
enhancers or intergenic regions (Supplementary Fig. 4g). In order
to further compare the sex- and stage-specific dynamics of
enhancer RNAs, we applied our algorithm to the CAGE data of
the adult male and female fly heads, obtained from the
modENCODE project (see “Methods”). Combining this data
with our MAPCap data, we detected 2793 enhancer RNAs
(defined as union of TSS detected within in vivo validated
enhancer regions49). Interestingly, 1915 (68.6%) of these eRNAs
were detected only in one stage, while only 508 (18.2%) were
common between all 3 stages (Fig. 2g), indicating a high
variability in enhancer activity during development50. Further
comparison of the stage-specific eRNAs with those detected in all
3 stages revealed that stage-specific eRNAs have significantly
sharper TSS (P= 7.81e−200, Wilcoxon test, Supplementary
Fig. 4b) than the eRNAs commonly detected in all stages.
Stage-specific eRNAs also tend to be located significantly away
from the nearby annotated TSS, while common eRNAs mostly
overlap with an annotated TSS (Supplementary Fig. 4c), suggest-
ing that the common eRNAs either originated from housekeeping
enhancers or from a canonical TSS. We performed de novo motif
analysis of stage-specific eRNAs in order to find transcription
factors important for development. eRNAs expressed in the
embryos were enriched for binding site of Foxk1 (regulator of
myogenic progenitor proliferation51), while larvae-specific eRNAs
were enriched for Obp3 (Odorant-binding protein52) and Ascl1
(regulator of neuronal development53) (Supplementary Fig. 4d).
Motifs enriched on eRNAs in the larvae brains were also enriched
on eRNAs in adult heads, suggesting that tissue-specific
regulation of eRNAs by these factors is established early in
development. Further comparing TSS in male and female larvae
brains and adult heads revealed 485 potential sex-specific eRNAs.
Three hundred and eighty-three (78.97%) of them were female
specific (Fig. 2h). These sex-specific eRNAs were not biased to
any specific chromosome (Supplementary Fig. 4e). Taken
together, our analysis of eRNAs captured regulatory interactions
during development.

Differential expression and promoter usage in MLE mutants.
Our replicate-based experimental design, the ability to remove
PCR bias, along with the use of capped ERCC controls provides
us with the opportunity to quantify promoter activity between
conditions better than standard promoter-profiling approa-
ches. This is highly desirable in the study of dosage compen-
sation as it allows us to compare expression fold-changes
across promoters between chromosomes and sexes. In Droso-
phila, the overall gene expression as well as RNA Pol-II levels
have been compared between X and autosomes in cultured
cells30,31 and flies54. However an in vivo high-resolution ana-
lysis of dosage compensation at promoters has not been done
before. Therefore, we performed MAPCap on RNA isolated
from the brains of MLE RNA helicase mutant (also referred as
knockouts (KOs)) D. Melanogaster third instar (L3) larvae, a
stage where male lethality manifests as a result of defective
dosage compensation55. We then compared the mutants with
wild-type (control) larvae with the aim to quantify how dif-
ferent promoters respond to the resulting defects in dosage
compensation (Fig. 3a, b, Supplementary Fig. 4f, g). Further-
more, this allowed us to study in vivo MLE sensitivity of
autosomal promoters, which has not been studied previously
in detail. We also performed a ribo-depleted RNA-seq
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independently using the same set-up, in order to check the
concordance between the two protocols. Gene-level expression
estimates obtained from both protocols show high correlation
(Pearson’s R= 0.85, Fig. 3c, Supplementary Fig. 4h, see
“Methods”), motivating us to perform differential expression
analysis using MAPCap.

We first asked whether the MAPCap experiment using
biological replicates can be used to obtain differential expression
statistics, similar to RNA-seq. We computed gene-level differ-
ential expression estimates between wild-type male and female
brains on the 5’-UTRs of genes, in order to exclude expression
bias due to gene length and splicing (see “Methods”). The
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differential expression statistics from both protocols show a high
concordance (Fig. 3d, false discovery rate (FDR) Up: 9.47e−28;
Down: 2.8e−09; see “Methods”). Although RNA-seq predicted
more differentially expressed (DE) genes at a fixed FDR cutoff,
the direction of changes in MAPCap were in agreement with
RNA-seq (Supplementary Fig. 5a,c). The GO term analysis of
genes DE in MAPCap and RNA-seq also point to the same
biological processes (Supplementary Fig. 5b), suggesting that
MAPCap produces results in concordance with RNA-seq.

In order to detect changes in the level of TSS expression, we
performed differential expression analysis at all TSSs detected by
MAPCap in wild-type and mutant larvae. We utilized counts
from our capped spike-in RNAs for normalization of fold-
changes (see “Methods”). While most TSSs did not show a strong
significant sex-specific (or sexually dimorphic) expression bias
(Supplementary Fig. 5d), both MAPCap and RNA-seq identified
a high expression bias for Msl2 in males. We also detected sex-
specific activity of promoters such as male-specific activity of
Lsp1alpha and beta and female-biased activity of Sp1 promoter
(Supplementary Fig. 5a,d, see “Discussion”). The analysis of wild-
type male and female brains indicated male-specific usage of three
roX1 promoters, along with one roX2 and Msl2 promoter.
Interestingly, we observed a developmental stage- and sex-specific
promoter usage of roX1 RNA (Fig. 3e, see “Discussion”).
Comparison of wild-type with mutant larvae revealed a global
decrease in promoter activity of most expressed genes on the male
X chromosome (Up: 241, Down: 1782; at FDR < 0.05, Fig. 3f),
while females showed almost no significant effect (Up: 0, Down:
4; at FDR < 0.05). We also tried alternative normalization
methods that do not require spike-ins, such as TMM56, upper
quartile57 and RLE/DESeq258. These methods, however, pro-
duced a more balanced number of upregulated and down-
regulated TSSs. Among all methods, TMM showed the highest
bias towards the proportion of downregulated genes on X
chromosome, however, producing the smallest set of DE TSS (Up:
271, Down: 260; at FDR < 0.05; Supplementary Fig. 5i). Similar
result was obtained for gene-level differential expression analysis
in RNA-seq with DESeq2 (Supplementary Fig. 6a), suggesting
that spike-in normalization provides more useful differential
expression estimates.

Although a small number of TSSs showed sexually dimorphic
expression bias (25 female and 29 male biased TSSs at FDR < 0.1),
our visual inspection of these loci revealed an interesting effect:
these sexually dimorphic TSSs seem to be downregulated in MLE
mutants (Supplementary Fig. 5g, h). Indeed, statistical analysis
showed a clear trend: promoters with sex-specific activity were
downregulated in corresponding MLE mutants, for both males
(FDR= 4.04e−13) and females (FDR= 7.21e−11, Fig. 3f, Sup-
plementary Fig. 5e, f). While 31% (9 out of 29) of these male-
specific TSSs were on the X chromosome, only 16% (4 out of 25)
of female-specific TSSs were on the X. Taken together, this
analysis indicated a potentially unexpected function of MLE in
the regulation of sexually dimorphic promoter activity on both X
and autosomes.

Quantifying changes on X chromosome during dosage com-
pensation defects. We next focussed on the effect of MLE on
male X chromosome. Of the 1782 TSSs significantly down-
regulated in MLE mutant males, 605 (34%) were on X chromo-
some. On the contrary, only 14 (6%) of the upregulated TSS were
from X chromosome. X-chromosomal promoters showed a
median 1.92-fold downregulation in male mutants (median log2
fold-change=−0.9436, Median Std. Err= 0.472). Divided by
expression quartiles, the TSSs showed a downregulation of
1.86–2.02-fold, with the highest variability observed in TSSs with
the least expression (Supplementary Fig. 6b). Further, we found
that the TSSs on X are on average (median) downregulated by
1.38-fold compared to autosomes in males (Figs. 4a) and 1.8-fold
compared to X chromosome in females. We then examined the
effect on TSSs based on their location and biotype. Annotated
start sites and UTRs respond the strongest in the KOs, while
intergenic and antisense TSSs responded the least (Supplemen-
tary Fig. 6c). Comparing the biotypes of TSSs, we found that long
non-coding RNAs (lncRNAs; which include the strongest MLE
targets, roX1 and roX2) respond the strongest to the MLE KO.
Interestingly, we find that TSS-distal enhancer RNAs show a
downregulation remarkably similar to the protein-coding tran-
scripts (median fold-change: eRNA= 0.488, protein-coding
0.499; P= 0.83, Wilcoxon test, Fig. 4b), suggesting that eRNAs
are equally dosage compensated as protein-coding genes.

We next asked which factors are associated with the change in
TSS expression in MLE mutant males. When we compared the
expression of MLE sensitive (FDR < 0.05) and insensitive (FDR >
0.5) promoters on the X chromosome, we found that MLE-
sensitive promoters have significantly higher expression than the
MLE-insensitive promoters (Fig. 4c, P= 1.82e−06; two-sided T
test). Promoters with very low expression could also show no
significant change due to the low power of differential expression
analysis58. We therefore restricted the comparison between these
groups to a subset of promoters with normalized counts between
100 and 100,000, which have similar mean expression between
the two groups (P= 0.1644, two-sided T test). We first tested how
the genes with MLE-sensitive and -insensitive promoters
compare to a previously published study that assigned a dosage
compensation score to transcripts based on their expression
during the onset of dosage compensation in early embryonic
development28. Genes with MLE-sensitive promoters seem to be
tightly dosage compensated (median compensation score=
0.998), while genes with MLE-insensitive promoters show a
compensation score similar to those on autosomes (Supplemen-
tary Fig. 6d). Further comparing these two groups, we found that
the MLE-sensitive promoters were located significantly closer to
the HAS, which are considered to be sites important for MSL
complex recruitment on the X chromosome (Fig. 4d, P= 1.07e
−08; two-sided T test). Furthermore, MLE-sensitive promoters
were found to be significantly closer to the boundaries of TADs in
flies (Fig. 4e, P= 2.12e−09; two-sided T test). Overall, this
analysis suggested that promoter location plays an important role
in its sensitivity to dosage compensation.

Fig. 2 Replicate-based analysis improves accuracy of transcription start site (TSS) detection. a Evaluation of true and false positives on MAPCap
(Multiplexed Affinity Purification of Capped RNA) data of embryos. TSS was detected by paraclu using individual replicates (embryos 1–4), pooled
replicates (embryo_pooled), or individual replicates followed by intersection (embryo_intersect) and compared with the “local enrichment” method
(replicate based) that uses all four samples. The detection accuracy improves using this method. b Precision-recall curve (PRC) of subsampled MAPCap
data, comparing paraclu (embryos 1–4, pooled and intersect) with replicate-based method (AUPRC= area under PRC). c Comparative Gene Ontology
enrichment of “sharp” (upto 20 bp) and “broad” (>20 bp) TSSs detected by the local enrichment method. dMAPCap signal (counts per million), as well as
motif presence (detected by FIMO) for the “sharp” and “broad” TSS. e, f Genome snapshot of MAPCap signal and the detected TSS using the “local
enrichment” method on a developmental gene (hunchback, hb) and a housekeeping gene (proteosomal subunit, Prosbeta5). g TSS detected on validated
enhancer regions (eRNAs) in embryo, L3 larvae brains (MAPCap), and adult heads (modENCODE CAGE). h Overlap of eRNAs detected between male and
female larvae brains and adult heads show that most eRNAs are stage-specific (yellow) rather than sex-specific (blue)
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icetea simplifies TSS detection and expression analysis from
promoter-profiling data. We implemented the processing and
analysis methods described in this manuscript in an easy-to-use R
package called icetea. icetea can perform sample de-multiplexing
and removal of PCR duplicates for MAPCap and RAMPAGE

protocols. It also employs our new TSS detection approach that
takes advantage of biological replicates (Fig. 4f). Further functions
for quality control and quick annotation of detected TSS are also
implemented (Supplementary Fig. 6e, f, see “Methods”). Differ-
ential TSS expression analysis can be performed between groups
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of samples using either previously established internal normal-
ization methods (see “Methods”) or external/spike-in normal-
ization, allowing accurate quantification of changes in transcript
expression. icetea is especially suitable for end-to-end analysis of
paired-end 5’ profiling techniques, such as MAPCap and

RAMPAGE. However, it can easily be used for analysis of CAGE,
GRO-Cap and other promoter-profiling protocols. icetea is open
source and available for use via Bioconductor (https://
bioconductor.org/packages/icetea) and the source code is avail-
able on GitHub (https://github.com/vivekbhr/icetea).
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Discussion
In this study, we introduce MAPCap, an easy to perform
promoter-profiling technique that allows processing dozens of
samples in about 16 h of time. We further combine MAPCap with
the icetea software that simplifies TSS detection and analysis of
differential TSS activity using biological replicates in about
7–8 steps. The MAPCap protocol along with icetea analysis
provides most of the benefits of CAGE and RNA-seq but at a
fraction of total cost and time of performing both the protocols.
We demonstrate that MAPCap shows sufficient enrichment at
TSS for starting material up to 100–500 ng. This is >10-fold lower
than the latest CAGE protocols9,59, 5–10-fold lower than RAM-
PAGE37 and in the same range as nanoCAGE60. Two recent
protocols, SLIC-CAGE7 and C1-CAGE8, have shown ≤10-fold
input requirements than MAPCap, but they require more PCR
cycles, together with specialized reagents and equipments. In this
comparison, we multiplexed low-input samples with those with
higher RNA abundance (5 μg), which might affect TSS enrich-
ment of these samples due to RNA composition bias56. Therefore,
we expect that multiplexing samples with similar RNA abun-
dance, along with a replicate-based analysis implemented in
icetea, could further improve TSS detection and differential
analysis on low-input samples. Instead of cap-trapping (nAnT-
iCAGE) or template-switching (nanoCAGE, RAMPAGE),
MAPCap utilized affinity purification using an antibody, elim-
inating several protocol-specific optimization or difficult steps.
Further, the s-oligos used by MAPCap can also be used for in vivo
RNA–protein interaction analyses33 or for RNA-seq, allowing a
wider scope of integrative analysis. We propose that this
approach would prove optimal for transcript annotation and gene
expression analysis of newly assembled as well as annotated
genomes.

Analysis of MAPCap data revealed the dynamics of sex-
specific promoter usage as well as transcript expression. Com-
parison of promoter activity between wild-type males and
females showed male-specific expression of multiple subunits of
Larval serum protein 1 (Lsp1) on the X chromosome (Supple-
mentary Fig. 5d). Lsp1 and 2 proteins are highly expressed in fat
bodies, which are commonly found associated with brain and are
important for metamorphosis and reproduction61. Lsp1alpha is a
recently evolved gene that has been shown to lack dosage com-
pensation on its endogenous site the X chromosome, although it
is capable of dosage compensation at an ectopic location62,63.
Confirming this observation, we find Lsp1alpha as one of the
least MLE-sensitive promoter in our analysis (FDR= 0.91).
Interestingly, the beta and gamma subunit of the Lsp1 hetero-
hexamer complex, which are located on chromosomes 2 and 3,
respectively, also show male-specific expression, although they
do seem to show some level of MLE sensitivity (FDR= 0.08 and
0.14, respectively). Similarly, we detect other sex-specific
expression of genes involved in mating behaviour and repro-
duction, such as male-specific Obp99b and female-biased
expression of Sp164, peb65 and other genes (Supplementary
Fig. 5a, d). Interestingly, many of these sex-biased genes, even
those on autosomes, show MLE sensitivity in females. Unlike
males, MLE is seen to bind on all chromosomes in females66;
however, the function of MLE on female autosomes is less well
studied. Our observations point towards a role of MLE in reg-
ulating the expression of sex-specific genes in both males and
females, independent of X chromosome.

We also observed stage- and sex-specific expression of roX1
isoforms through utilization of different promoters (Fig. 3e). roX1
RNA, which becomes sexually dimorphic during development67,
is predicted to produce five transcript isoforms using three dif-
ferent promoters. While embryos seem to utilize the 3’-most
promoter, female larvae (with a very low roX1 expression) tend to

use the middle and 3’-promoter equally. Male larvae, which
clearly show a very high expression of roX1, mostly utilize the
middle promoter. As this promoter variability leads to a shorter
isoform in male larvae, this points to a developmental stage-
specific role of roX1 isoforms in dosage compensation. All three
promoters display a loss of expression upon MLE KO, suggesting
that MLE is required for the stable expression of all three roX1
RNA isoforms67,68.

After appropriate external spike-in normalization, TSSs on the
male X chromosome show a median 1.92 downregulation upon
MLE KO. Further comparison between chromosome and sexes
corroborates previous analysis of dosage compensation, which
suggested a median 1.1–1.8-fold dosage compensation between X
and autosomes69 and a 1.6-fold dosage compensation between
sexes70. It should be noted that these analyses are based on
hemizygosity/copy number changes between genes while ours is
based on a direct perturbation of the dosage compensation sys-
tem. Promoter-proximal MAPCap analysis clearly indicates sig-
nificant changes in TSSs upon depletion of MLE. It will be
interesting to use methods such as NET-seq71 and TT-seq72 in
order to distinguish between the contribution of initiation and
elongation rates in dosage compensation.

Further, our analysis indicated factors that influence variability
in dosage compensation at promoters. Previous analyses from our
group73 and others74 have shown that X chromosomal HAS for
the MSL complex are located close to TAD boundaries and form
a cluster of spatial interaction on X chromosome. Using our data,
we investigated whether the distance to the HAS or TAD
boundaries could have a functional consequence in promoter
activity during dosage compensation. We find that certain pro-
moters have a low sensitivity to MLE, indicating that transcripts
originating from these loci might “escape” dosage compensation
in males. These MLE-insensitive promoters have lower wild-type
expression compared to the MLE-sensitive promoters and are
located further from HAS as well as TAD boundaries. This
sounds counterintuitive since at least a subset of HAS have been
shown previously to support a recruitment of MSL complex
independent of MLE75–77 and therefore promoters close to HAS
can be hypothesized to dosage compensate without MLE. How-
ever, despite studies suggesting a weak recruitment, the functional
activity of the MSL complex at these promoters is uncertain. Our
analysis does not resolve the issue whether MSLs could be
recruited to HAS without MLE, but it does suggest that these
promoters fail to dosage compensate in the absence of MLE.
Interestingly, a recent study of roX1/2 double mutants (which
produce an effect largely similar to MLE mutants) has performed
a similar analysis and arrived at a similar conclusion that genes
>30 kb away from HAS are less sensitive to the absence of roX
and to the bound MSL complex78. Furthermore, our observations
on the relationship between MLE sensitivity and TAD boundaries
seems to be in line with observations on X inactivation in
mammals, where genes shown to escape inactivation are shown to
be near TAD boundaries79.

By combining our promoter-profiling protocol MAPCap and
analysis software icetea, the data sets and analyses presented in
our study serve as a useful resource on sex-specificity and MLE
sensitivity of Drosophila promoters. As our approach is annota-
tion-agnostic, it could easily be applied in future to genomes of
other species in order to understand genome-wide differences in
promoter activity between tissues, sexes and conditions. Further,
the ability to de novo detect and quantify differential expression
of TSSs would prove useful for studies that require detection and
relative quantification of lowly expressed RNAs, such as tissue-
specific changes in eRNA expression, effects of genomic
imprinting or changes in lncRNA expression between wild-type
and mutants/KOs. Finally, we envision that our fast and
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easy-to-use approach would be suitable for clinical investigation
of changes in non-coding RNA expression in diseases.

Methods
Cells. S2 cells (gift from the Butros Laboratory, Heidelberg) were cultured in
Express Five SFM media (Thermo Fisher) supplemented with 10% (v/v) Glutamax
(Thermo Fisher). Cultures were maintained adherent or in shaking incubators at
27 °C at a speed of 80 rpm. Cells were kept at a density of 1–16 million/mL.

Fly culture and genetics. Fruit flies (D. melanogaster) were reared on standard
cornflour-molasses medium [1 L water, 12 g agar–agar threads, 18 g bakery yeast,
10 g soya flour, 80 g cornflour, 22 g molasses, 80 g malt extract, 2.4 g 4-
hydroxibenzoic acid methylester (Nipagin), 6.25 mL propionic acid] at 25 °C, 70%
relative humidity and 12 h dark/12 h light cycle. mle9 is a gamma ray-induced loss-
of-function allele (deletion) of mle, generated by Scott M and Lucchesi J, and first
reported in refs. 32,80. mle9, cn, bw/CyO flies (BDSC #5873) have been ordered
from the Bloomington Drosophila Stock Center (BDSC) and rebalanced with the
help of w; CyO, Act5C-GFP/If to generate the w; mle9, cn, bw/CyO, Act5C-GFP
flies used in this study.

Generation of capped ERCC spikes. ERCC mix 1 was reverse transcribed using
SuperScript III (Invitrogen). Ten spike sequences were chosen from the ERCC
spike DNA and PCR primers were designed to produce ~500-bp long DNA
fragments (Supplementary Information). At the 5’-end, we inserted a T7 class II
promoter ϕ 2.5, which has been shown to create more homogenous 5’-end tran-
scription promoter sequences81. Spikes were in vitro transcribed using the T7-
FLASHScribe Transcription Kit (CellScript) according to the manufacturer’s
instructions and purified using the MegaClear Kit. In vitro capping was performed
with Vaccinia Capping System (NEB). Potentially uncapped RNAs were degraded
by treatment of spikes with Polyphosphatase (Epicentre) and Terminator exonu-
clease (Epicentre). Samples were cleaned using Oligo Clean and Concentrator
(OCC, Zymo Research) and concentrations were measured on Qubit. A master mix
was created where each subsequent spike was added at half the concentration of the
previous spike, starting from 8 fmol/μL.

MAPCap library preparation. For detailed protocol, please refer to Bhardwaj
et al. (Nature Protocol Exchange, https://doi.org/10.21203/rs.2.9396/v1). Briefly, RNA
from S2 cells, embryos (stage 15, 50 embryos per replicate) and dissected brains from
third instar larvae (10 brains per replicate) was extracted using the DirectZol Kit
(Zymo Research). RNA was eluted in 25 μL of RNase-free water. The concentrations
were adjusted and capped ERCC spikes were added at 0.05% of input amount. For
our stage 15 embryos, we diluted each replicate to 5 μg of total RNA and added the
spike-ins ranging from 0.0004% to 0.05%. To remove abundant capped RNAs
(snRNAs, snoRNAs) as well as rRNA contamination, we added antisense DNA oligos
(Supplementary Information) targeting the RNA species detected from a preliminary
MAPCap run. Eight-μL of oligo mix were added together with 4 μL of 10× terminator
buffer A (Epicentre). The RNA was heated to 70 °C for 2min followed by an active
cooling in the Thermomixer (Eppendorf) to 37 °C. Upon reaching this temperature,
1 μL of RNaseH (Life/Invitrogen) was added and incubated at 37 °C for 30min. The
samples were then heated to 70 °C for 2 min, put immediately on ice for 1min and
1 μL of Terminator exonuclease was added for 1 h at 30 °C. RNA was purified using
RNA clean and concentrator (Zymo Research) and eluted with 100 μL TE buffer. The
samples were fragmented using a Covaris E220 Ultrasonicator (200 cycles/burst,
Duty cycle 5, 175W, 10%) for 180 s per sample. Fragmented RNA was incubated
with 2.5–5 μg of anti-m7G antibody (SYSY, cat. no. 201001) pre-coupled to Protein G
magnetic beads for 1 h in IPP buffer (50mM Tris-HCl pH 7.4, 150mM NaCl, 0.1%
NP-40) rotating at 4 °C. Beads were washed three times with IPP and RNA 3’-ends
were dephosphorylated using PNK for 30min at 37 °C. Beads were washed and the s-
oligo was ligated using T4 RNA Ligase 1 for 1 h at 25 °C. s-oligos contain barcode
and random nucleotides in the following pattern NNNNNTTTTTTNN (N= ran-
dom nucleotide; T= barcode nucleotide). Excess s-oligos were washed away with IPP
buffer and samples were pooled together. After 30min of treatment with rSAP at
30 °C to dephosphorylate the s-oligo, the RNA was released from the beads using
Proteinase K treatment and column purification (Oligo Clean and Concentrator
(OCC), Zymo Research). Isolated RNA was reverse-transcribed using SuperScript III
(Invitrogen) for 10 consecutive minutes at 42, 50, 55 and 65 °C. After 30min
treatment with RNaseH, the cDNA was column-purified using OCC and circularized
with CircLigase2 for 2–16 h. One-μL of circularized cDNA was taken to determine
the amplifications cycles using quantitative PCR. After PCR amplification, the
libraries were cleaned up twice using 1× Ampure beads (Beckman Coulter), quan-
tified with Qubit (Thermo Fisher Scientific) and the quality was assessed on Bioa-
nalyzer (Agilent). MAPCap libraries were sequenced on Illumina NextSeq 500, 3000
or HiSeq 2000.

MAPCap in mouse ESCs. The hybrid mouse female ESC line F1–21.6 (129Sv-
Cast/EiJ) was grown on Attachment Factor (Gibco) coated dishes in 2i medium
containing Dulbecco’s modified Eagle’s medium (Gibco) supplemented with
15% KnockOut Serum Replacement (Gibco), Penicillin/Streptomycin (Sigma),

1000 U/mL LIF (Millipore), sodium pyruvate (Gibco), non-essential amino acids
(Gibco), Glutamax (Gibco), 100 µM β-mercaptoethanol (Gibco), 5 µg/mL insulin
(Sigma), 1 µM PD0325901 (Axon) and 3 µM CHIR99021 (Axon). Cells were
maintained in a humidified incubator at 37 °C and 5% CO2.

Total RNA was prepared from 70–80% confluent 10-cm dishes using Trizol
(Ambion) according to the manufacturer’s instructions. Poly(A)-RNA was isolated
from 5 µg of total RNA (mixed with spike-ins added at 0.05% of input) using
Dynabeads Oligo-(dT)25 (Thermo Fisher). In order to remove traces of rRNA
contamination in poly(A)-RNA samples, anti-sense DNA oligos were used with a
sequential RNaseH and terminator exonuclease treatment. RNA fragmentation, IP
and library preparation were performed as described above.

Processing of MAPCap data. Paired-end FASTQ files were trimmed for adaptors
using Trimmomatic82 (v 0.3.7). Samples were de-multiplexed by icetea (v0.99,
demultiplexFastq) using provided barcode information and mapped to the dm6
genome using Rsubread83 (v 1.22.3, mapping wrapper provided in icetea). For de-
duplication, we consider all reads mapping to the same 5’-position and having the
same random barcode as duplicates and only keep the first instance of each such
alignment (using icetea—filterDuplicates). BigWigs were created using deepTools84

(v3.0.2) bamCoverage and bamCompare, with the option “–offSet 1–binSize
1–normalizeUsing CPM”. Quality control was performed using deepTools and
multiQC85 (v1.3). Genomic regions were plotted using pyGenomeTracks86 (v2.0).
The MAPCap data processing workflow (described in Supplementary Fig. 3A) is
available at https://github.com/vivekbhr/cage_pipeline. For allele-specific mapping
of mouse ESC data, we mapped the MAPCap data on a modified GRCm38 (mm10)
genome using STAR (v2.6.1)87 with options “–sjdbOverhang
100–readFilesCommand zcat–outSAMunmapped Within–outSAMtype BAM
SortedByCoordinate–outSAMattributes NH HI NMMD”. The genome was created
using SNPsplit88 using options “–dual_hybrid–full_sequence” and strains
129S1_SvImJ and CAST_EiJ using the VCF files (v5) from the mouse reference
genome project89. After mapping, the alleles were sorted using SNPsplit sort with
option “–paired”. TSS were detected using the paraclu method42 on sorted paternal
and paternal genomes using parameters described in section “Evaluation of TSS
accuracy”.

Processing of external data sets. For comparison with MAPCap, external data
sets were downloaded from GEO (Supplementary Table 1). We trimmed the first
“G” nucleotide using trimgalore (v0.4.4) for CAGE, with parameters:
trim_galore–clip_R1 1–trim-n; and for RAMPAGE, with
parameters:–paired–clip_R1 4–trim-n. Data were mapped to the dm6 genome
using subread (subjunc; parameter: -d 10; same as with MAPCap). PCR duplicates
were removed in CAGE data using picard MarkDuplicates (v2.13.2), while for
RAMPAGE data using icetea (filterDuplicates) considering the 15 bp sequence
from read 1 as the random barcode. To calculate correlation of signal, we counted
reads on all non-overlapping 5’-UTRs of genes (22,148 regions from 13,378 genes)
using the bioconductor package GenomicAlignments (summarizeOverlaps,
mode= “IntersectionNotEmpty”). Fragments were counted for all data sets instead
of the single-end CAGE data. Counts were normalized using counts per million
(CPM) for correlation and plotting. To additionally compare correlation between
replicates at the detected TSS, we downsampled MAPCap (embryo) and CAGE (S2
cells) data to 1 million reads and performed peak calling using paraclu on pooled
reads before or after duplicate removal. We then computed Pearson correlations
and plotted the signal (log(CPM+ 1)) between replicates on these detected TSSs.

For evaluation of TSS, we processed the DNAse-seq data of late-stage
embryos43 and S2 cells90 using snakePipes (v1.1.2) DNA-mapping workflow91 with
the parameters “–trim–fastqc–mapq 5 dm6”. We then performed peak calling
using MACS2 (v 2.1.2)44 using parameters “-f BAM -g 142573017 -q 0.001”.
Replicates were merged for S2 cells before peak calling. We also processed the
ChIP-seq data for three active histone marks (H3K4me3, H3K4me2 and H3K27ac)
from modENCODE92 and processed them using snakePipes DNA-mapping
(parameters: “–trim–fastqc–mapq 5–dedup dm6”) and ChIP-seq (parameters:
“–single-end”, MACS2 -q “0.005”) workflows. The union of resulting peaks were
considered “active peaks” for the analyses.

For comparison of MAPCap and nAnTiCAGE in mouse ESCs7, we mapped
both data sets using STAR (v2.6.1)87 on the GRCm38 (mm10) mouse genome. We
downsampled the mapped files to 1 Mil and the duplicate-removed file (for
MAPCap) to 100K reads. We performed the quality checks, correlation of signal
and metagene profiles on all annotated genes (Ensembl-91) using deepTools (v3.1).

Evaluation of TSS accuracy. For evaluation of TSS detection accuracy, we used
the paraclu method42 to cluster CAGE tags from CAGE, RAMPAGE and MAPCap
data. We used the 12–14 h sample from modENCODE, and merged the 12, 13 and
14 h samples from RAMPAGE to compare with merged (embryos 1–4) samples
from MAPCap data. All samples were then downsampled to 5 million reads
(keeping only R1 for MAPCap and RAMPAGE) and paraclu was run with the
parameters: min_value= 1, min_density_rise= 1, min_pos_with_data= 1, min_-
sum= 1, min_width= 3, max_width= 300 (i.e. all criteria such as minimum reads
used for clustering and minimum density of reads per cluster etc. were kept to the
lowest, and tag clusters of length 3–300 bp were considered for analysis).
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The score (sum of reads at detected TSS) provided by paraclu for each tag
cluster was used to calculate precision and sensitivity. Scores between 10 and 1000
were plotted for the evaluation of true and false positive (TP/FP) and precision-
recall curve (PRC). For the calculation of true and false positives, we used the
RNA-seq data of 12–14 h embryo from modENCODE93 and calculated transcript-
level TPMs using Salmon (v0.9.1)94. Transcripts with TPM > 1.0 were considered
“expressed” and the expressed transcripts that overlapped with a DHS peak but
were not detected by the promoter-profiling methods were considered “false
negatives”. TSSs that were detected by the methods in genic regions but did not
overlap with a known TSS (±100 bp) in dm6 (ensembl-79) annotation were
considered “false positives”. For comparison between MAPCap and other
protocols, we obtained optimal F1-score for each protocol independently by testing
various density_rise (between 1 and 30) and min_sum (between 1 and 50) cutoffs.
To add orthogonal evidence for unannotated TSSs, we overlapped the false positive
peaks with DNAse-seq data from late-stage embryos and ChIP-seq “active peaks”
(see above). For comparison between icetea and paraclu, we additionally also
compared the TP/FP and PRC at various density_rise cutoffs (difference between
maximum and minimum signal at TSS). To show application of icetea on data
from MAPCap and CAGE at equal depth, we downsampled the MAPCap data
(embryos, 4 replicates) and CAGE data (S2 cells, 2 replicates) to 1 million reads
and repeated the above analysis.

TSS detection and differential TSS usage analysis using replicates. For the
detection of TSSs using replicates, we first count the 5’-end of reads in 10 bp sliding
windows (w) across the genome for all samples (with a slide of 5 bp). For each
window, we also calculate all 5’-ends of the reads falling into the corresponding
2 kb background region (b) centered at the window. Counting is done in a strand-
specific way, using the intersectionStrict mode. We then calculate the fold-change
(delta) of each window with respect to the background as:

δ ¼ Avgðω̂Þ=Avgðb̂Þ ð1Þ
where Avgðω̂Þ and Avgðb̂Þ are mean logCPM values across replicates, obtained by a
fitting single-group negative binomial (NB) glm implemented in mglmOnegroup
function of the edgeR package95:

Ŷwi � NBðMiPwj; ϕwÞ ð2Þ
for window w and sample i, where Mi is the library size of sample i, ϕw is the
dispersion of the window w and Pwj is the relative abundance of the 5’-ends in
window w for the experimental group j for sample i.

For comparison between replicate-based and paraclu method, we ran paraclu
on samples using parameters described in the previous section, while for our
method we obtained TSSs using a two-fold local background cutoff, followed by
merging the nearby enriched windows. After merging, we re-calculated the average
(mean) fold-change of the merged windows and took another cutoff of 1.5-fold, in
order to obtain the final TSS. The “TSS score” (mean fold-change of merged
windows) was used to evaluate the true and false positives for the analysis. Since the
range of scores obtained per TSS is very different between paraclu and our method,
there is no comparable cutoff for comparison of precision and sensitivity.

For differential TSS usage analysis, strand-specific counting is performed in the
same way, on the union of TSSs detected across samples. Library sizes were
normalized using the size factors obtained from ERCC counts using median of
ratios method from DESeq2. The differential expression analysis was then
performed in DESeq2 using “nbinomWaldTest” function. TSSs with and adjusted
P < 0.05 were considered significantly different between tissues and sexes.

To perform differential gene expression analysis from MAPCap data, we
summed the counts obtained from all 3’-UTRs of a gene into one and performed
the normalization and differential expression using DESeq2. Spike-in
normalization was performed the same way as above.

TSS annotation. For a comprehensive annotation of our detected TSSs, we first
created a mutually exclusive set of annotations from dm6 (ensembl-79) GTF file, by
first separating genic from intergenic regions, followed by ranking them in this
order (5’-UTR > CDS > 3’-UTR > Introns; and sense > antisense). Further the fea-
tures were re-annotated by overlapping them with enhancers49 and repeats
(RepBase release 20140131). The annotation pipeline is available as part of the full
MAPCap data processing pipeline at https://github.com/vivekbhr/cage_pipeline.

Promoter width and motif analysis. To evaluate the promoter width distribution
obtained from icetea analysis, we divided our 12,921 detected TSSs into “broad”
and “sharp” categories, by taking arbitrary cutoffs: > 20 bp (36.7%) and <20 bp
(63.3%), respectively. We performed GO enrichment analysis of the two categories
for biological processes (BP) terms and plotted them using the clusterProfiler
bioconductor package96 (P < 0.01, q < 0.05). Further, we extracted the FASTA
sequences associated with the two categories from the dm6 genome using the
BSgenome package. We used 1000 randomly selected sequences from each category
(without replacement) and extracted a 20, 50 and 100 nucleotide region centred at
TSS for sharp TSS, broad TSS and eRNA TSS analysis. De novo motif enrichment
analysis was performed via meme97 (v 4.11) using the parameters: -dna -nmotifs 10
-minw 3 -maxw 12 -seed 123 -maxsize 10000000. For visualization purpose, we ran

FIMO98 (v 4.11.1) using the PWMs obtained from our de novo meme predictions
on the genome, using the parameters: –max-strand–thresh 1e-3, and converted the
resulting output to a bigWig file with binarized scores (1= presence, 0= absence).
We additionally downloaded the TATA motif from the JASPER database99 (2018)
and created the bigwigs the same way. Plotting was done using deepTools84 (v3.1)
computeMatrix and plotHeatmap functions using bin size of 1 (-bs 1).

Comparison between RNA-seq and MAPCap. To perform a fair comparison
between MAPCap and RNA-seq, we extracted RNA from an independent set of fly
brains using the same set-up as MAPCap. Brains were obtained from female and
male L3 larvae, where three pools of larvae were utilized as replicates. Five µg RNA
per replicate was used and samples were sequenced using the ribo-depleted Illu-
mina TruSeq protocol at the depth of ~20 million each. The data were then
processed via snakePipes RNA-seq pipeline91 (v1.0.0 beta) using the options “-m
alignment,deepTools_qc–star_options–limitBAMsortRAM
60000000000–outBAMsortingBinsN 30 dm6”. snakePipes performed alignment
using STAR87 (v2.6.1a), counting of reads on Ensembl GTF (release 79) via fea-
tureCounts100 (v1.6.1) and quality-checks via deepTools84 (v3.1.2). The gene-level
counts obtained from featureCounts were then used for differential expression
analysis via DESeq258 (v1.20.0).

Most downstream analyses were performed on R (v 3.5.0) and bioconductor101

(v3.7). For the comparison of MAPCap and RNA-seq signal at genes, we obtained
gene-level counts from MAPCap, using featureCounts with same parameters as
RNA-seq. We then converted both RNA-seq and MAPCap counts to average log-
CPM for each group, using edgeR95 (v3.22.3), and checked correlation. For
comparison of differential expression results, we counted reads on 5’-UTRs of
genes using GenomicAlignments bioconductor package (v1.16.0) using function
summarizeOverlaps (mode= “IntersectionNotEmpty”). Since non-coding genes do
not have a 5’-UTR, this analysis excluded non-coding genes, leaving 13,378 genes
(out of 17,403 total genes). We then plotted DE genes from RNA-seq on to the t-
statistic obtained from MAPCap fold-changes using barcodePlot from limma102

(v3.36.2) and performed gene-set enrichment tests using camera103.

Comparison of MLE sensitivity and genomic features. All DE promoters upon
MLE KO in male larvae at FDR < 0.05 were considered “MLE Sensitive” (605
promoters on X, 417 genes), while all promoters at FDR > 0.5 were considered
“MLE insensitive” (1047 promoters on X, 461 genes). Since the mean expression
between the two groups are significantly different, we picked promoters within the
DESeq2-normalized counts between 100 and 100,000, where the mean expression
between the groups are comparable (P= 0.164, two-sided T test). This includes 377
MLE-sensitive TSS (295 genes) and 136 MLE-insensitive TSSs (80 genes).

We obtained the HAS using the ChIRP-seq data of roX RNA in D. melanogaster
from GSE69208104. Peak calling was done with MACS2 with parameters: callpeak
-f BAM–qvalue 0.01 -g 120,000,000, and the top 250 peaks were used as HAS. To
obtain the TAD boundaries, we re-processed previously published Hi-C data from
Kc167 cells86,105,106 on to dm6 genome using hicExplorer (v1.8.1)86. TAD calling
was done with the parameters: –minDepth 20000–maxDepth 50000–step
2000–delta 0.01–maxThreshold 0.27–lookahead 5. Finally, distance of promoters to
HAS and TAD boundaries were calculated using GenomicRanges107 (v1.32.7) in
bioconductor.

TSS analysis methods implemented in the icetea package. The icetea package
developed during this study implements functions for an end-to-end analysis of
data from MAPCap as well as other promoter-profiling methods. Icetea analysis
begins by creation of an S3 object of class “CapSet”, which holds the metadata for
each step of the analysis, along with the detected TSS (as a GRangesList object).
The CapSet object can be created either using the raw (multiplexed) FASTQ files or
directly using mapped and/or filtered BAM files. FASTQ demultiplexing can
performed using the protocol-specific barcode positions, and the data can be
mapped using a wrapper to the RSubread package. In order to remove PCR
duplicates, the filterDuplicates function of the icetea package iterates through
genomic positions and matches the random barcode/UMI at each position. In case
of reads with same barcode and 5’-position, only the first instance of the read is
kept. This function is currently supported for both MAPCap and RAMPAGE data.
TSS detection is performed using the local enrichment method (described above)
where the sliding window width can be specified by the users for flexibility. Broad
TSS are automatically detected by aggregating multiple instances of consecutively
enriched windows (user-defined threshold). In order to compare TSS activity
between groups of samples, icetea implements various normalization methods,
such as TMM (Robinson and Oshlack56) and RLE (Love et al.58) (size factors
calculated from all detected TSS), “window TMM” (TMM size factors calculated
using large windows in the genome), upperquartile57 and “external” (such as size
factors calculated using spike-ins, used in this paper).

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.
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Data availability
Raw sequencing data sets, normalized bigWigs and RNA-seq differential expression
results have been deposited to GEO under the accession number GSE125831. Detected
TSS and differential TSS results are available on Zenodo [https://zenodo.org/record/
2638160].

Code availability
Icetea is available open source at https://github.com/vivekbhr/icetea. All the data
presented in the manuscript have been processed via the cage analysis pipeline available
at https://github.com/vivekbhr/cage_pipeline.
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