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A B S T R A C T   

With the acceleration of the mining process, the goaf has become one of the main sources of 
danger in underground mines, seriously threatening the safe production of mines. To make an 
accurate prediction of the risk level of the goaf quickly, this paper optimizes the features of the 
goaf by correlation analysis and feature importance and constructs a combination of feature 
parameters for the risk level prediction of the goaf to solve the problem of redundancy of eval
uation indexes. Multiple machine learning algorithms are applied to 121 sets of goaf data 
respectively, and the optimal algorithm and the best combination of feature parameters are ob
tained by evaluating the mining area with multiple indicators such as accuracy and kappa co
efficient. The best combination of features parameters are ground-water, goaf layout, volume of 
goaf, goaf volume, span-height ratio, and mining disturbance, and the optimal algorithm is Extra 
Tree (ET), which needles the goaf risk level prediction problem with the accuracy of 94%. This 
model can be used to solve the problem of how to quickly and accurately predict the risk level of 
the goaf.   

1. Introduction 

In recent years, with the acceleration of the mining process worldwide, the number of goaves has gradually increased, and the goaf 
has become one of the main sources of danger in underground mines, caused serious casualties and property damage, seriously 
threatening the safe production of mines [1]. Untreated goaf will cause surface collapse, a large area of rock block falling, or the 
formation of goaf ponding, which will lead to water seepage of the working face, causing casualties and property losses [2,3]. 
Currently, there are several key points in research on goaf areas: firstly, spontaneous combustion in goaf areas [4]; secondly, the 
danger of methane explosions in goaf areas [5,6]; thirdly, the issue of goaf collapse. Therefore, it is of great significance to carry out 
stability evaluation and risk prediction of goaf for mine safety production. This study primarily focuses on the third point, utilizing 
methods such as data mining and machine learning to rapidly and accurately predict the stability level of goaf areas, thus contributing 
to the safety of underground mining operations. 

For the evaluation of the stability of goaf, more methods have been proposed by domestic and foreign scholars. HU et al. and Yan 
et al. [7,8]proposed a Bayesian discriminant analysis method to identify the hazard of complex goaf in mines. The method identifies 
the stability of goaf by selecting nine factors affecting the risk stability of goaf as discriminant indicators and establishing a 
discriminant analysis model. Dong et al. [9]based on uncertainty metric evaluation (WME) and hierarchical analysis (AHP) theory, 
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used multiple indicators to conduct a comprehensive risk evaluation of goaf. Ma et al. [10]used a mechanical method combined with 
the Voronoi diagram method to establish a dynamic analysis model for the stability of the coal pillar-roof system. Sun et al. [11] 
combined theoretical analysis, geological and geophysical investigation, found four anomalous zones, and analyzed that mining and 
hydrology are the two important factors affecting goaf. However, the above methods did not consider the problem of too many data 
features in the extraction zone and the duplication of the information contained, and there is usually some redundancy in the selection 
of indicators and the use of data. 

To avoid the problem of selecting complex indicators, some scholars used numerical simulation to achieve the stability judgment of 
the mining area [12]. Ao et al. [13]proposed a 3D geoengineering model to depict intricate geological formations and formulated a 
corresponding 3D stability analysis model grounded in geotechnical principles. This enabled the assessment of grouting re
inforcement’s impact and mining area stability. Gao et al. [14]used the synthetic rock mass (SRM) model to obtain rock properties and 
used UDEC triangulation to simulate roadway damage. Shi et al. [15] developed a numerical computation model to analyze various 
surface deformation indicators across distinct mining sequences of multiple coal seams. This investigation unveiled the temporal 
impact of mining operations on surface deformation patterns within the subsidence zone, facilitating the determination of the most 
favorable mining sequence. However, the numerical simulation process needs to simplify the boundary conditions and other phe
nomena, which cannot truly restore the complex geological structure of the mining area and other engineering parameters, and the 
simulation method is usually based on a certain theory or framework, once the theory or framework has problems, it will make the 
simulation results differ greatly from the actual, so that the accuracy of the simulation results cannot be guaranteed. In conclusion, to 
address the issue of excessive redundancy in evaluation indicators for goaf, this study has decided to employ the Pearson correlation 
coefficient to calculate the correlation coefficients between indicators, following the standards set by scientific research. Additionally, 
by integrating machine learning techniques, the study aims to determine the importance of evaluation indicators. The combination of 
these two methods will yield the optimal combination of evaluation indicators suitable for predicting the stability of goaf. 

With the continuous development of artificial intelligence and machine learning in recent years, relevant intelligent algorithms 
have been gradually used in underground mine engineering fields. Zhou et al. [16]used ten supervised learning methods to predict the 
rockburst intensity level, and compared with the traditional rockburst intensity level prediction methods, the machine learning-related 
methods have the advantages of high accuracy and high speed; Qi et al. [17]used five machine learning algorithms to The stability of 
the empty field hanging gang was predicted and the hyperparameters of the five machine learning algorithms were optimized by the 
Firefly algorithm, and good results were achieved. Jarosław Brodny et al. [18] employed a neuro-fuzzy model for near-term methane 
prediction in coal mines. This model integrated actual ventilation parameter measurements and harnessed the Methane Hazard Index 
derived from the neural fuzzy model, they evaluated and forecasted the current level of methane hazard. This research approach 
provides a novel and innovative method for assessing methane hazards. Prasanjit Dey et al. [19]combined Internet of Things (IoT) 
sensor devices with machine learning methods, employing a hybrid CNN-LSTM network to predict the miner’s health quality index and 
CH4 gas concentration in coal mines. Their approach yielded promising results, showcasing its effectiveness. Arif Hussain Soomro et al. 
[20]utilized wireless sensor networks (WSN) and artificial neural networks (ANN) to predict the outburst of gas, ensuring the safety of 
miners. 

As the monitoring data of the goaf often present multidimensional and nonlinear characteristics, a large amount of information is 
contained in different dimensional data, and intelligent algorithms have certain advantages for mining the implicit information in 
these data. In recent years, gradually some scholars have combined machine learning with the problem of goaf, Wang et al. [21]used 
wavelet support vector machine to predict the residual subsidence of abandoned goaf; Luan et al. [2]used the support vector machine 
approach for stability prediction of goaf; Qin et al. [22]used the improved TrAdaBoost algorithm based on the migration learning 
theory that predicts the stability level of the goaf. However, the problem of a large number of dimensions and strong correlation of the 
data in goaf remains unresolved, and the use of machine learning methods often requires a large amount of data as support [23], and 
the amount of sample data of the goaf used in previous studies is small and not sufficient to reveal the universal laws. 

Based on this, this paper combines correlation analysis and feature importance analysis to optimize the feature parameters of the 
goaf, and constructs a combination of feature parameters for the evaluation of the stability of the goaf to solve the problem of 
redundancy of indicators of the goaf; according to the data characteristics of high-dimensional small samples of the goaf, various 
machine learning algorithms applicable to this problem are applied to 121 sets of goaf data, and the goaf is evaluated by accuracy, 
kappa coefficient, precision, recall and F-measure. In this paper, we obtained the optimal algorithm and the best combination of 
feature parameters for the evaluation of the stability of the goaf and formed a model that can quickly and accurately predict the risk 
level of the goaf. This model is applicable for the rapid and accurate assessment and prediction of goaf stability in mines, making a 
valuable contribution to the safe extraction of underground minerals. 

2. Method 

2.1. Algorithm selection 

Integration algorithms, being a prevalent machine learning technique, exhibit significant advantages across a multitude of do
mains. There are three types of integration algorithms, including bagging [24], boosting [25], and stacking [26]. 

The main idea of bagging is to build multiple independent base evaluators, and then combine the results of each evaluator to get the 
final result, because each base evaluator does not correspond to the same training set, so multiple base evaluators are independent of 
each other; The boosting algorithm does not change the training set in each round, but continuously adjusts the weight values ac
cording to the error rate, so the base evaluators are interrelated, and it iterates through multiple base evaluators to arrive at the final 
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result; Stacking is a combination of different trained models, and each model is voted independently to reach the conclusion, which is 
not discussed in this paper because it is less interpretable and not commonly used in practice. 

In this paper, we select typical algorithms for machine learning: Support Vector Machine (SVM) [27], Naive Bayes (NB) [28], 
K-nearest neighbor (KNN), Gradient Boosting Tree (GBDT) [29], Decision Tree (DT) [30], Multilayer Perceptron (MLP) and integrated 
algorithms: Random Forest (RF) [31,32], Extra Trees (ET) [33], Extreme Gradient Boosting algorithm (XGBoost) [34], AdaBoost (ADA) 
[35,36]. The reasons for adopting the above-mentioned methods in this paper are mainly threefold: (a) The selected algorithms in this 
study are widely applied in the field of engineering and demonstrate relatively good predictive performance. (b) Predicting the sta
bility level of goaf areas involves a multidimensional, nonlinear computational problem. The machine learning algorithms mentioned 
above can utilize multiple input variables and learn nonlinear relationships, making them suitable for analyzing goaf stability issues. 
(c) Some machine learning algorithms are considered top-tier data mining algorithms. Comprehensive introductions and utilization 
methods of these algorithms can be located within the respective references cited in this paper. 

2.2. PSO algorithm 

Particle swarm optimization (PSO) is one of the most widely used optimization algorithms, applicable in various fields such as 
electrical and electronic engineering, automation control systems, communication theory, operations research, mechanical engi
neering, fuel and energy, medicine, chemistry, and biology [37]. Its concept is derived from the study of bird feeding behavior, where 
individuals in a bird group collaborate and share information to find the optimal solution. The specific algorithm flow and pseudo-code 
are shown in Fig. 1. The advantages of the PSO algorithm can be summarized as follows: (1) It exhibits good robustness and can be 
easily adapted to different application environments with minor modifications. (2) It possesses strong distributed capabilities, as it is 
essentially a population-based evolutionary algorithm, making it suitable for parallel computing implementations. (3) It can quickly 
converge to the optimal value. (4) It is easily combinable with other algorithms to enhance performance [38,39]. 

Fig. 1. PSO algorithm flow and pseudocode.  
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3. Index analysis and data preprocessing 

3.1. Index analysis 

The factors affecting the stability of the goaf are mainly rock mechanics factors, environmental factors of the goaf. Among the 
quantitative indicators are: rock compressive strength X3, goaf volume X6, the exposed area of goaf roof X7, buried depth X8, and span- 
height ratio X9, and the qualitative indicators are: rock structure X1, geological structure X2, ground-water X4, goaf layout X5, mining 
disturbance X10, and condition of adjacent goaf X11. The goaf’s structure in three categories, as shown in Fig. 2. And the stability level 
of goaf is divided into four categories, as shown in Table 1. 

3.2. Data preprocessing 

In this paper, 121 sets of data on the goaf were collected by reviewing the literature [40–42]. Among them, the risk level I is 25 
groups, II is 40 groups, III is 39 groups, and IV is 17 groups. 

Because of the large number of features of the collected goaf data and the presence of missing values of individual features, the data 
need to be pre-processed. For some of the data with missing values, by comparing the effects of filling methods using the mean, median, 
quantile, plurality, and random values of normal data, the median interpolation method was finally used to interpolate the ground
water of 34 groups of data present in the dataset, and 17 groups of goaf arrangements to minimize the impact of their missing data on 
the overall sample. 

In this paper, we use the ggplot function in R language [43,44] to visualize the distribution and correlation of the data, as shown in 
Fig. 3 (a). The upper half indicates the correlation coefficients between the two variables, and the middle part indicates the probability 
distribution of indicators corresponding to the four levels of risk. The bottom half represents the distribution of data between the two 
variables, which shows that the dispersion of the data is high and the quality of the data set is good. 

In the field of machine learning, unbalanced datasets can lead to overfitting, and the risk class datasets collected in this paper are 
unbalanced, including 25 sets of data for hazard class I, 40 sets of data for hazard class II, 39 sets of data for hazard class III, and 17 sets 
of data for hazard class IV. The SMOTE algorithm [45,46]uses a linear interpolation method between two minority class samples 
synthesizing new samples, thus effectively alleviating the overfitting problem caused by the imbalance of the data set. In this paper, the 
SMOTE algorithm is used to oversample the dataset, and the processed dataset is shown in Fig. 3 (b), with the data at four levels of 40, 
40, 39, and 40. 

Because of the large differences in the values and magnitudes of each feature of the collected goaf data, this paper standardizes the 
data of each feature to reduce the influence of factors such as large differences in feature values and different magnitudes on the 

Fig. 2. Indicators affecting the risk level of the goaf.  
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evaluation model. The RobustScaler method is used because of the existence of outliers in the actual collected mining area data set, and 
its standardization is shown in equation (1), where median is the median of the sample data and IQR is interquartile of the sample data. 
This method is used to maximize the retention of outliers in the dataset, thus enhancing the robustness of the model. In machine 
learning, the commonly used data partitioning methods are 70% (training set)/30% (testing set) or 80% (training set)/20% (testing 
set). However, due to the limited size of the goaf dataset used in this study, which consists of only 121 instances, the number of in
stances available for testing is relatively small. Using only 20% of the data as the testing set would result in a test set of only 32 in
stances, which would introduce greater randomness in the results. Therefore, we have chosen to allocate 30% of the data as the testing 
set to ensure more reliable and robust testing results. Then to improve the generalization of the model, the dataset is randomly dis
rupted using the function of shuffle. 

vi
′=

vi − median
IQR

(1)  

3.3. Hyperparameter tuning 

Parameter tuning is an important task in machine learning. In this paper, the PSO is used to adjust the hyperparameters of the 
following algorithm, and the specific tuning results are shown in Table 2. 

4. Feature combination selection 

4.1. Analysis of relationship 

The existence of a correlation between each feature can hurt make the accuracy of machine learning decrease. In this paper, the 
correlation coefficient between each feature is calculated using the Pearson correlation coefficient method [47,48], which is calculated 
as in equation (2), where cov(X,Y) represents the covariance between X and Y variables, and σ is the standard deviation of the var
iables. In this paper, the correlation coefficients between each feature are visualized in Fig. 2, and the magnitude of the absolute value 
of the value represents the strength of the correlation between the features, with a negative sign representing the negative correlation 
between the features and the opposite positive correlation, where * is an average correlation, ** is a strong correlation, and *** is a 
significant correlation. 

The correlations between the two feature variables were counted by number and the weights of ***、** and * were set to 0.3, 0.2, 
and 0.1, respectively, to derive the correlations between each feature and the remaining features. From Fig. 2 and Table 3, it can be 
seen that the correlations among the 11 features are strong, so it is necessary to reduce the features. After analysis, X3, X5, X,6 and X7 
have relatively low correlations with other features, so they can be regarded as independent features for selection. 

ρX,Y =
cov (X, Y)

σXσY
=

E((X − μX)(Y − μY))

σXσY
=

E(XY) − E(X)E(Y)
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

E
(
X2
)
− E2(X)

√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

E
(
Y2
)
− E2(Y)

√ (2)  

4.2. Feature importance analysis 

In this paper, the following six algorithms: Random Forest (RF), Xgboost (XGB), ExtraTrees (ET), Adaboost (ADA), Gradient 
Boosting Decision Trees (GBDT), and Decision Trees (DT) are used to rank the importance of features affecting the goaf. The features 
affecting the stability of the goaf are ranked in importance, and the ranking results are shown in Fig. 3 (a) below. 

Fig. 4(a–f) shows the ranking of the importance of the features by different algorithms for the stability problem of the goaf. The gray 
shaded part in the figure represents the threshold value of the importance of 0.10. When the importance of a feature exceeds 0.1 in the 
corresponding algorithm, the corresponding position in Table 4 is marked with a tick. From Fig. 4(a–f) and Tables 4 and it can be 
concluded that the importance of features X4, X5, X6, X7, X9, and X10 is relatively high, while the importance of X1, X2, X8, X11, etc. is 
relatively low. 

Combining the above feature correlation and importance analysis with the actual engineering situation, nine sets of feature 
combinations applicable to the stability risk level prediction of the goaf are derived, as shown in Table 5. 

Table 1 
Stability class of goaf.  

Stability level Stability status or risk of instability 

I The goaf very good stability and no risk of instability 
II The goaf good stability and low risk of instability 
III The goaf is less stable and the risk of instability is greater 
IV Stability of the goaf is extremely poor and the risk of instability is very high  
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Fig. 3. Distribution and correlation of data sets (a illustrates the visualization of goaf data, while b presents a comparison of the proportions of the 
four goaf grades before and after preprocessing). 
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5. Model construction and evaluation indexes 

5.1. Model construction 

The technical route for the construction of the risk level prediction model for the extraction area is shown in Fig. 5, which includes 
the following steps.  

(1) The 121 sets of risk level data samples collected from the mining area were pre-processed by applying SMOTE and RobustScaler 
methods to construct a database applicable to the risk level prediction model of the mining area.  

(2) A combination of correlation analysis and feature importance ranking was used to construct a combination of features suitable 
for this study.  

(3) The selected feature combinations and the selected machine learning algorithms are combined to perform ten-fold cross- 
validation, hyperparameter optimization, etc. 

(4) A multi-indicator is used to evaluate the model and derive the most suitable feature combination and machine learning al
gorithm for the risk level prediction model of the goaf. 

5.2. Model evaluation methods 

For the prediction task of subsidence risk levels in goaf areas, accuracy, kappa coefficient, precision, recall, and F1 score are 
employed as the evaluation criteria for the proposed model in this paper. These metrics are computed through the confusion matrix as 
shown in Fig. 6. 

Accuracy is a measure of whether a multiclassification problem is classified accurately, is calculated as in equation (3), where n is 

Table 2 
Results of hyperparameter regulation by different algorithms.  

Algorithm Tuning parameters Explanation Settings 

RF n_estimators The number of trees in the forest 186 
max_depth The maximum depth of the tree auto 
min_samples_leaf The minimum number of samples required to split an internal node 2 
max_samples_split The minimum number of samples required to be at a leaf node 1 

GNB prior the prior probability of the class None 
var_smoothing  0.000000001 

GBDT loss Loss function to be optimized log_loss 
n_estimators Number of advancement phases to be executed 175 
learning_rate Learning Rate 0.1 

DT criterion Feature selection criteria Gini 
splitter Characteristics classification criteria best 
min_samples_leaf The minimum number of samples required to be at a leaf node 1 
min_samples_split The minimum number of samples required to split an internal node 2 

SVM C Penalty Factor 1.0 
kernel Specifies the kernel type to be used in the algorithm RBF 

KNN n_neighbors The value of k in KNN 1 
weights The weights of the nearest neighbor samples for each sample uniform 
algorithm The algorithm used for the restricted radius nearest neighbor method auto 

MLP hidden_layer_sizes The ith element represents the number of neurons in the ith hidden layer 286 
activation Activation function for the hidden layer relu 

XGB booster Iterative application of the model gbtree 
learning_rate Learning Rate 0.05 
n_estimators The number of weak learners 167 

ADA n_estimators The number of weak learners 154 
learning_rate the contribution of the weak learners in the final combination 0.8 
base_estimator Base classifier estimatorCart 

ET n_estimators The number of trees in the forest 41 
criterion The function to measure the quality of a split Gini 
max_depth The maximum depth of the tree 14 
min_samples_leaf The minimum number of samples required to split an internal node 1  

Table 3 
Correlation coefficient score.   

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 

*** 8 10 6 6 3 5 6 5 6 7 6 
** 2 0 0 3 2 2 2 5 2 1 1 
* 0 0 2 1 3 2 0 0 0 2 2 
scores 2.8 3 2 2.5 1.6 2.1 2.2 2.5 2.2 2.5 2.2  
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Fig. 4. Feature importance ranking chart (a to f represent the importance of calculating the influence of goaf indicators using the RF, XGB, ET, ADA, 
GBDT, and DT algorithms). 

Table 4 
Sorting the importance of each feature (corresponding to the use of √ tags with importance exceeding 0.1).   

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 

RF     ✓    ✓ ✓  
XGB  ✓  ✓ ✓     ✓  
ET     ✓ ✓ ✓  ✓   
ADA   ✓  ✓  ✓  ✓  ✓ 
GBDT    ✓ ✓ ✓ ✓  ✓ ✓  
DT   ✓ ✓ ✓     ✓   

Table 5 
Combination of evaluation features selected in this article.   

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 

A ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 
B  ✓ ✓ ✓ ✓ ✓ ✓  ✓ ✓ ✓ 
C   ✓ ✓ ✓ ✓ ✓  ✓ ✓ ✓ 
D   ✓ ✓ ✓ ✓ ✓  ✓ ✓  
E    ✓ ✓ ✓ ✓  ✓ ✓  
F   ✓  ✓ ✓ ✓  ✓ ✓  
G   ✓   ✓ ✓  ✓ ✓  
H   ✓  ✓ ✓ ✓  ✓ ✓  
I   ✓  ✓ ✓ ✓   ✓  
J   ✓  ✓ ✓ ✓  ✓    
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the total number of samples, C is the number of sample categories, and xii is the number of samples on the diagonal of the confusion 
matrix. 

Accuracy=

(
1
n
∑C

i=1
xii

)

(3) 

The kappa coefficient is an index to evaluate the merits of the classification model. The kappa coefficient is taken as 0.0–0.20 for 
slight agreement, 0.21–0.40 for fair agreement, 0.41–0.60 for moderate agreement, and 0.61–0.80 for substantial agreement, 0.81–1 
almost perfect, calculated as in equation (4), where n is the total number of samples, C is the number of sample categories, xii is the 

Fig. 5. Technical roadmap.  
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number of samples on the diagonal of the confusion matrix, xi. and x. i are the number of samples in the rows and columns of the 
confusion matrix, respectively. 

Kappa=
n
∑

i = 1Cxii −
∑

i = 1C(xi · · x· i)
n2 −

∑
i = 1C(xi · · x· i)

(4) 

Recall, Precision, and F1 values are important indicators of the classification problem, which are calculated as equation (5), 
equation (6), and equation (7), respectively. 

Recalli =

(
xii

x+C

)

× 100%=

⎛

⎜
⎜
⎝

xii

∑C

i=1
xiC

⎞

⎟
⎟
⎠× 100% (5)  

Precisioni =

(
xii

x+C

)

× 100%=

⎛

⎜
⎜
⎝

xii

∑C

i=1
xiC

⎞

⎟
⎟
⎠× 100% (6)  

F − measure =
2 Recall × Precision
Recall + Precision

(7)  

6. Results and discussion 

6.1. Results analysis 

The accuracy of different algorithms and their corresponding feature combinations on the test set is obtained by combining them as 
shown in Table 6. For a clearer and more intuitive representation of its accuracy and the size of the kappa coefficient, the results are 
drawn into a three-dimensional graph as shown in Fig. 7(a–b), where the x y axis represents the feature combination and the algorithm 
used, and the z axis represents the size of the corresponding value. 

From Fig. 7 and Tables 6 and it can be seen that the best-performing model is the ET, the accuracy and kappa coefficient of this 
model are significantly better than other algorithms, with the highest accuracy of 94% and the average accuracy of 88.9%; the highest 
kappa coefficient reaches 0.916 and the average kappa coefficient reaches 0.8473, and the accuracy of this algorithm reaches 88% and 
above for all the feature groups except for the group I feature In addition to the 81% accuracy in Group I, the algorithm achieves 88% 
accuracy and above in the rest of the feature groups. The next model is the RF, with the highest accuracy of 88%, the average accuracy 
of 84%, the highest kappa coefficient of 0.834, and the average kappa coefficient of 0.79. The algorithm is slightly less sensitive to 
feature selection than the ET, and achieves 77% on the group I features. In addition, the XGB and KNN models also performed well, 
with the XGB model achieving a maximum accuracy of 88% with a kappa coefficient of 0.833 and an average accuracy of 83.56% with 
an average kappa coefficient of 0.781. The KNN model achieved a maximum accuracy of 88% with a kappa coefficient of 0.834, while 
the average accuracy was 83.7% with an average kappa coefficient of The average kappa coefficient was 0.784. 

The GNB and ADA algorithms, on the other hand, performed poorly on this dataset, with the highest accuracy rates of only 58% and 
60%, and the corresponding kappa coefficients of 0.45 and 0.464, respectively. 

Fig. 6. Confusion matrix of partial algorithm.  
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Table 6 
Performance of ten algorithms in ten evaluation index combinations.  

Feature combination Evaluating indicator Algorithm Mean value 

KNN SVM MLP DT ET GBDT RF XGB ADA GNB 

A Accuracy 0.88 0.73 0.85 0.83 0.92 0.81 0.85 0.88 0.83 0.58 0.816 
kappa 0.834 0.641 0.807 0.778 0.888 0.751 0.806 0.832 0.778 0.45 0.7565 

B Accuracy 0.85 0.71 0.83 0.79 0.9 0.83 0.88 0.83 0.92 0.6 0.814 
kappa 0.805 0.616 0.779 0.723 0.86 0.779 0.834 0.779 0.889 0.478 0.7542 

C Accuracy 0.88 0.77 0.79 0.79 0.88 0.81 0.83 0.83 0.83 0.65 0.806 
kappa 0.833 0.697 0.723 0.724 0.834 0.751 0.778 0.778 0.777 0.533 0.7428 

D Accuracy 0.88 0.67 0.75 0.79 0.9 0.81 0.85 0.81 0.88 0.54 0.788 
kappa 0.833 0.559 0.667 0.724 0.862 0.751 0.806 0.75 0.833 0.394 0.7179 

E Accuracy 0.83 0.75 0.81 0.81 0.92 0.83 0.85 0.9 0.9 0.62 0.828 
kappa 0.778 0.669 0.751 0.751 0.888 0.779 0.806 0.861 0.86 0.422 0.7565 

F Accuracy 0.85 0.71 0.77 0.79 0.88 0.81 0.83 0.81 0.9 0.56 0.791 
kappa 0.806 0.616 0.696 0.721 0.834 0.751 0.778 0.749 0.861 0.422 0.7234 

G Accuracy 0.85 0.67 0.71 0.79 0.9 0.88 0.85 0.88 0.88 0.52 0.793 
kappa 0.806 0.558 0.606 0.723 0.86 0.834 0.805 0.833 0.832 0.364 0.7221 

H Accuracy 0.85 0.75 0.79 0.81 0.94 0.81 0.85 0.88 0.88 0.5 0.806 
kappa 0.807 0.669 0.723 0.75 0.916 0.75 0.805 0.833 0.832 0.334 0.7419 

I Accuracy 0.83 0.69 0.77 0.75 0.81 0.77 0.85 0.77 0.81 0.44 0.749 
kappa 0.779 0.588 0.694 0.668 0.751 0.696 0.806 0.694 0.751 0.251 0.6678 

J Accuracy 0.81 0.71 0.75 0.79 0.88 0.85 0.85 0.83 0.85 0.56 0.788 
kappa 0.75 0.615 0.666 0.72 0.834 0.805 0.805 0.778 0.805 0.421 0.7199 
Mean accuracy 0.851 0.716 0.782 0.794 0.893 0.821 0.849 0.842 0.868 0.557  
Mean kappa 0.8031 0.6228 0.7112 0.7282 0.8527 0.7647 0.8029 0.7887 0.8218 0.4069   
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In order to verify the generalizability of the algorithm, the training set is shuffled in this paper, and then the dataset is tested using 
k-fold cross-validation, which divides the entire dataset into k copies, so that k-1 copies are used as the training set, leaving one copy as 
the test set, and the accuracy of this test set is obtained, and the above work is repeated k times, and the accuracy of k times of 
validation is averaged as the final accuracy. The value of k is chosen as 10 recommended by T. T. Wong et al. [34], and the accuracy 
rates of different algorithm combinations and their corresponding feature combinations are calculated as shown in the following table. 

As can be seen from Fig. 8 and Table 7, in the cross-validation results, The highest mean accuracy values are for ET, RF, and ADA, 
and when features C and E are chosen, the mean accuracy values increase to 77.1% and 76.12%, respectively. In conclusion, based on 
the results of the ten-fold cross-validation, it can be seen that the extreme random tree ET, RF, and ADA algorithms have high 
generalizability. 

In summary, the models that performed well in this task are ET, RF, and ADA, which have one thing in common: they are all based 
on the tree model as the base classifier model. While models such as SVM that use a distance metric to measure the class to which they 
belong perform generally. GNB performs poorly because the collected data set has more noise and does not exactly match the normal 
distribution, while GNB performs better when the data is in a normal distribution and less well when there is more noise. The average 
value of accuracy and kappa coefficient of group E features is the highest among the feature combinations, and it also performs well in 
cross-validation. 

The above analysis was integrated to make ten algorithms to predict the risk level of the four-level mining area on the E group 
features, respectively, using Precision, Recall, and F-measure values as the measurement criteria, and the calculation results are shown 
in Table 8. Among them, the accuracy ranges from I to IV are 0.58–0.90; 0.56–1; 0.61–1; 0.6–1, the recall ranges are 0.7–1; 0.36–0.93; 
0.5–0.92; 0.75–1, and the F1 values range from 0.64–0.91; 0.43–0.93; 0.57–0.87; 0.67–1, respectively, as shown in Fig. 9(a–c). Among 

Fig. 7. Accuracy and kappa coefficient (X,Y axis represents the feature combination and the algorithm used, and the Z axis represents the size of the 
corresponding value. Figure a illustrates the accuracy values corresponding to different algorithms and feature combinations, b represents the kappa 
values corresponding to different algorithms and feature combinations). 

Fig. 8. Accuracy of 10-fold cross validation (X,Y axis represents the feature combination and the algorithm used, and the Z axis represents the size of 
the corresponding value). 
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them, the predicted Precision, Recall, and F1 values of MLP for level IV mining area reached 1, the Precision values of KNN, DT, and ET 
for level II mining area reached 1, and the Precision value of KNN for level III mining area reached 1. Through the above analysis and 
Fig. 9(a–c), the prediction of mining area of level III and IV is better than that of level I This is related to the fact that there are more 
noise points in the present data set for grades I and II. 

6.2. Discussion 

This study conducted an analysis of evaluation indicators for the collected data from goaf areas and compared it with previous 
research [19]. In comparison to previous studies, the evaluation indicators in this study are more concise, requiring less data collection. 
This implies a reduction in cost and workload associated with data collection for predicting goaf stability levels. 

To reduce the number of indicators while maintaining interpretability, this study employed feature importance and Pearson 
correlation coefficient for indicator selection and analysis. This approach helps identify the most important and relevant indicators for 
predicting goaf stability, thereby establishing a more interpretable evaluation indicator system. In contrast, some scholars have 
employed methods like PCA for dimensionality reduction of indicators, which may result in decreased interpretability of the evalu
ation indicators. 

Furthermore, this study conducted a comparative analysis of multiple machine learning algorithms to determine the most suitable 
algorithm for predicting goaf stability levels. In contrast to previous studies that solely used a single algorithm [2,21], this research 
improves scientific rigor and reliability by comparing and evaluating multiple algorithms using various performance indicators. The 
findings demonstrate that the ET (Extra Trees) algorithm performs best in predicting goaf stability. This discovery is of significant 
guidance for future predictions of goaf stability classification. By employing machine learning algorithms suitable for this problem, the 
prediction accuracy of goaf stability can be enhanced, providing a scientific basis for related work. 

In conclusion, this study achieved favorable results in predicting goaf stability by streamlining evaluation indicators, employing 
indicators analysis methods with better interpretability, and comparing multiple machine learning algorithms. These findings are of 
great importance for further enhancing goaf stability evaluation methods and prediction techniques. 

7. Conclusion  

1. In this study, a risk level dataset containing 121 groups in the goaf is constructed, and the SMOTE algorithm is used to make the 
dataset balanced for the problem of unbalanced dataset, RobustScaler is used to standardize the dataset for the case of outliers in 
the data to enhance the robustness of the dataset. 

Table 7 
10 fold cross validation accuracy.   

KNN SVM MLP DT ET GBDT RF XGB ADA GNB Feature combination mean 

A 0.825 0.694 0.744 0.769 0.844 0.787 0.831 0.787 0.831 0.537 0.7649 
B 0.831 0.713 0.738 0.756 0.875 0.787 0.806 0.781 0.838 0.55 0.7675 
C 0.831 0.719 0.762 0.8 0.856 0.794 0.825 0.775 0.806 0.544 0.7712 
D 0.844 0.656 0.681 0.819 0.85 0.794 0.819 0.769 0.825 0.531 0.7588 
E 0.781 0.675 0.719 0.744 0.863 0.831 0.806 0.818 0.844 0.544 0.7625 
F 0.813 0.619 0.719 0.744 0.863 0.806 0.831 0.8 0.819 0.494 0.7508 
G 0.788 0.644 0.619 0.794 0.831 0.787 0.831 0.819 0.813 0.412 0.7338 
H 0.8 0.694 0.731 0.769 0.844 0.794 0.831 0.794 0.825 0.475 0.7557 
I 0.8375 0.631 0.719 0.731 0.775 0.762 0.806 0.794 0.763 0.438 0.72565 
J 0.8 0.681 0.75 0.769 0.844 0.781 0.832 0.788 0.813 0.525 0.7583 
Algorithm mean 0.81505 0.6726 0.7182 0.7695 0.8445 0.7923 0.8218 0.7925 0.8177 0.505   

Table 8 
Algorithm performance on Group E features.  

Category Evaluating indicator KNN SVM MLP DT ET GBDT RF XGB ADA GNB 

I Precision 0.71 0.58 0.69 0.71 0.83 0.71 0.69 0.75 0.90 0.60 
Recall 1.00 0.70 0.90 1.00 1.00 1.00 0.90 0.90 0.90 0.90 
F1-values 0.83 0.64 0.78 0.83 0.91 0.83 0.78 0.82 0.90 0.72 

II Precision 1.00 0.86 0.89 1.00 1.00 0.90 0.91 0.92 0.93 0.56 
Recall 0.64 0.43 0.57 0.64 0.86 0.64 0.71 0.79 0.93 0.36 
F1-values 0.78 0.57 0.70 0.78 0.92 0.75 0.80 0.85 0.93 0.43 

III Precision 1.00 0.61 0.79 0.90 0.91 0.79 0.91 0.91 0.91 0.67 
Recall 0.75 0.92 0.92 0.75 0.83 0.92 0.83 0.83 0.83 0.50 
F1-values 0.86 0.73 0.85 0.82 0.87 0.85 0.87 0.87 0.87 0.57 

IV Precision 0.75 1.00 1.00 0.80 0.92 1.00 0.92 0.92 0.92 0.60 
Recall 1.00 0.92 1.00 1.00 1.00 0.83 1.00 1.00 1.00 0.75 
F1-values 0.86 0.96 1.00 0.89 0.96 0.91 0.96 0.96 0.96 0.67  
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2. To solve the problem of redundant evaluation indexes in the goaf, this paper combines and compares various machine learning 
methods with correlation analysis and feature importance ranking, and comes up with a combination of features applicable to the 
risk level prediction of the goaf: groundwater, goaf layout, goaf volume, roof exposed area, goaf span height ratio, and mining 
disturbance.  

3. The performance on the test set, the cross-validation results, and the prediction results of each risk level are combined to conclude 
that the ET, RF and Adaboost algorithms perform well and have better evaluation results for the goaf of risk levels III and IV, with 
the accuracy of ET reaching 94%, while the performance of SVM, GNB, and other algorithms is not so satisfactory. 

This study selected multiple indicators that affect the stability of goaf areas and developed a concise evaluation system for assessing 
the stability of goaf areas. This evaluation system helps to reduce the workload associated with collecting field data. Ten commonly 
used machine learning algorithms were applied to predict goaf stability, and through comparative analysis, a more suitable algorithm 

Fig. 9. Accuracy, Recall, and F1 values of different algorithms and different risk levels when Group E features are used (a, b, and c represent the 
values of Accuracy, Recall, and F1 values, respectively). 
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for goaf stability prediction was identified. These findings provide a reference for future research on goaf prediction. By utilizing the 
prediction model proposed in this study, it becomes possible to effectively identify the stability level of goaf areas and take timely 
measures to ensure the safety of underground mines. The conclusions drawn from this study contribute to the field of underground 
mining. 

However, with the continuous advancement of machine learning techniques and the generation of high-quality data, there is 
potential for the application of faster and more optimal algorithms as well as larger volumes of high-quality data in this field. These 
areas represent promising directions for future research. 
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