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Alignment-free classification tools have enabled high-throughput
processing of sequencing data in many bioinformatics analysis pipe-
lines primarily due to their computational efficiency. Originally
k-mer based, such tools often lack sensitivity when faced with se-
quencing errors and polymorphisms. In response, some tools have
been augmentedwith spaced seeds, which are capable of tolerating
mismatches. However, spaced seeds have seen little practical use in
classification because they bring increased computational and mem-
ory costs compared to methods that use k-mers. These limitations
have also caused the design and length of practical spaced seeds to
be constrained, since storing spaced seeds can be costly. To address
these challenges, we have designed a probabilistic data structure
called a multiindex Bloom Filter (miBF), which can store multiple
spaced seed sequences with a low memory cost that remains static
regardless of seed length or seed design. We formalize how to
minimize the false-positive rate of miBFs when classifying se-
quences from multiple targets or references. Available within Bio-
Bloom Tools, we illustrate the utility of miBF in two use cases: read-
binning for targeted assembly, and taxonomic read assignment. In
our benchmarks, an analysis pipeline based on miBF shows higher
sensitivity and specificity for read-binning than sequence alignment-
based methods, also executing in less time. Similarly, for taxonomic
classification, miBF enables higher sensitivity than a conventional
spaced seed-based approach, while using half the memory and an
order of magnitude less computational time.

probabilistic data structures | spaced seeds | sequence classification | Bloom
filters | alignment-free

In computational biology, sequence classification is a common
task with many applications such as contamination screening

(1), pathogen detection (2–4), metagenomics (3–5), and targeted
assembly from shotgun sequence data (6, 7). Although this task
can be carried out via sequence alignment (8), not all use cases
require information on exact genomic coordinates, and sequence
alignment algorithms perform more computation than necessary
in such use cases. As the scale of modern datasets (both of the
query and the reference sequences) grew rapidly, it has spurred
the development of faster alignment-free, hash-based similarity
methods (5). Here, we introduce a probabilistic data structure
based on the Bloom filter (BF) (9), called multiindex Bloom
filter (miBF). It implicitly stores data to reduce memory usage
and employs multiple spaced seeds to represent sequences to
better handle sequence polymorphisms and errors compared to
other hash-based sequence classification methods.
The most common hash-based, alignment-free indexing meth-

ods are k-mer based. These methods work by breaking a reference
sequence into subsequences of length k base pairs, and indexing
them (often in a hash table). To query sequences, a given query is
also broken into k-mers and interrogated against the index in
search of shared k-mers. If a significant number of k-mers are
found in this search, then the query is assigned to the reference
(i.e., classified). In such applications, k-mers must be long enough
so that they are unlikely to be common among multiple indexed

targets, especially if there is substantial sequence similarity be-
tween targets. However, k-mers cannot compensate for minor
differences between references and queries, such as single-
nucleotide variations. These limitations have motivated us to use
spaced seeds (10) [also called gapped q-grams (11)].
Spaced seeds are a modification to the standard k-mers, where

some wildcard positions are added to allow for approximate
sequence matching. They were originally proposed in Pattern-
Hunter in 2002 (10) and have been used since to improve the
sensitivity and specificity of homology search algorithms (12–16).
It has been illustrated that employing multiple spaced seeds to-
gether can increase the sensitivity of homology searches (17).
They have also been used in metagenomics studies to improve
the sensitivity of sequence classification (18, 19).
Probabilistic data structures are a class of data structures that

focus on representing data approximately; consequently, query
operations can sometimes produce false positives. The use of
probabilistic data structures in bioinformatics has expanded in
recent years, owing to their low memory usage and speed. To
control the false-positive rates (FPRs) of these data structures,
users can adjust the memory they use or the number of opera-
tions they perform. For example, in BF (9), false positives are
reduced by lowering the filter occupancy (increasing the memory
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usage) or by increasing the number of hash functions used per
element exploiting the joint probability of multiple independent
events (increasing the number of operations performed).
We note that, in bioinformatics applications, typically the data

being indexed have certain aspects that may be exploited but are
often overlooked. For instance, current sequence analysis methods
that utilize probabilistic data structures for key–value associations
consider every inserted key as an independent event (20, 21),
assigning a single FPR for each key query. However, unlike in
many other applications of these data structures in other computer
science domains, in bioinformatics applications, multiple keys may
relate to a decomposition of the same sequence and are thus not
independent (22).
The use of BFs for sequence classification was first introduced

to the field by the tool Fast and Accurate Classification of Se-
quences (23). Later, BioBloom Tools (BBT) (1) offered heuristics
to optimize the runtime and reduce the effect of false positives.
Although BBT proved effective when using a small number of
references, classifying queried sequences into multiple references
requires the use of a BF for each reference, resulting in an O(n)
time complexity per query, where n is the number of references.
Here, we have extended the functionality of BFs for the classifi-
cation against multiple references, providing key–value associa-
tions, through a data structure called a miBF. While miBF shares
similarities with other BF extensions, such as Bloomier filters (24),
sequence Bloom trees (25), quotient filters (26, 27), quasi-
dictionary (21), Pufferfish (28), Othello (20, 29), and interleaved
BFs (30), miBF has properties that allow it to synergize with
spaced seeds. See SI Appendix for comparisons of the time and
memory complexities of these data structures.
At suggested parameterization, miBF requires around 20 bits

per key per hash, assuming 16-bit values to enumerate the ref-
erences. Look-up time of miBF is constant and requires at most
two cache misses per key lookup. Unlike other BF-related data
structures, the FPR for a single key lookup in miBF may differ
depending on the classification result, in addition to the pa-
rameters of the miBF and length of the sequence being queried.
We implemented a generic sequence classifier using the miBF

and present its utility in two use cases: read-binning for targeted
assembly, and metagenomic classification. We compared the
performance of the miBF-based classifier against state-of-the-art
tools BWA-MEM and CLARK/CLARK-S for the two use cases,
respectively. The data structure and the classifier used here are
provided through our software repository at https://github.com/
bcgsc/biobloom.

Results
Filtering Reads for Targeted Assembly. Targeted assembly can im-
prove the throughput and reduce the complexity of assembly for
applications such as clinical diagnostics for structural variants or
other mutations. A typical procedure when performing targeted
assembly is the extraction, or binning, of sequencing, reads in the
target loci, before using the reads for de novo assembly. This
binning can be done via alignment or sequence classification since
exact genomic coordinates are not necessary for this application.
Here, we compare the binning of reads with BWA-MEM (31) and
BBT with miBF using a set of simulated reads. For this experi-
ment, we simulated Illumina reads to a depth of 100× (2,303,019
read pairs) using pIRS (v1.1.1) (32) from genomic loci around 580
COSMIC (v77) genes (33) and an equal number of non-COSMIC
genes randomly selected from RefSeq (34). We indexed the set of
580 genes into a BWA-MEM FM-index and a BBT miBF using a
set of four spaced seeds (SI Appendix, Note S1).
Compared to BWA-MEM, BBT obtained a higher overall

sensitivity (99.996% vs. 99.801%) and lower overall FPR (0.400%
vs. 3.757%). On a per-gene basis, BBT outperforms BWA-MEM
in terms of the F1 score (Fig. 1 and SI Appendix, Fig. S1). When
the reads by both tools were assembled using ABySS (35), a Quast

analysis (36) on the target gene list showed comparable assembly
results (SI Appendix, Table S1), and no misassemblies. However,
there were a few unmapped sequences assembled in the BWA-
MEM binned set, suggesting some off-target sequences were as-
sembled (SI Appendix, Table S1). We compared the runtime of
each tool, finding that BBT runs at least 2× faster than BWA-
MEM, and scales better on more threads (SI Appendix, Fig. S2).
Memory usage of the classification stage of BBT on this set of 580
genes was 20 MB. Tests were performed on a machine with Intel
Xeon E7-8867 2.5 GHz.
We also compared BBT and BWA-MEM for their memory

usage and time of indexing, but because the indexed set of
COSMIC genes was small, it does not offer a fair use case for
indexing. Instead, to compare the scalability of the two tools, we
indexed a 3.5G fasta file consisting of ∼1,000 bacterial sequences,
using the same seed design for the miBF and default parameters
for both tools. BWA-MEM indexing algorithm does not offer
parallelization, and it took 1.5 h to index in the entire file. Using a
single thread BBT took 6.7 h to index the same file, which
dropped to only 0.7 h using 16 threads. BWA-MEM used only 5
GB of memory to index this file, whereas BBT used 33 GB.

Metagenomic Classification. Although BBT is a generic classifica-
tion tool, when given the proper reference sequences, it can be
used as the workhorse for a metagenomics classification pipeline.
To demonstrate this, we compared BBT with CLARK (4) and
CLARK-S (19) (the spaced seed variant of CLARK). We com-
pared CLARK-S because it is the only metagenomic classifica-
tion tool that we know of that supports multiple spaced seeds to
improve classification sensitivity. We also compared the method
to CLARK, the predecessor to CLARK-S, because it is well
characterized against other tools (37).
We first generated a bacterial and viral genome database

(constructed May 2018) for both CLARK-S and CLARK and
used the same reference sequences and taxon IDs to construct
the miBF (SI Appendix, Note S2). To index the genomes,
CLARK took 24.0 h, CLARK-S took 24.5 h, and BBT took 8.5 h.
We requested 64 threads for each tool, but CLARK/CLARK-S
generally did not use more than 1 CPU at a time, while BBT
used around 13 CPUs on average, suggesting that CLARK/
CLARK-S have room to optimize parallelism for indexing.
Memory usage when indexing was 170 GB for CLARK, 206 GB
for CLARK-S, and 190 GB for BBT.
There are differences between the miBF index and CLARK/

CLARK-S databases beyond our implicit representation of se-
quences. First, unlike CLARK and CLARK-S, in miBF, we do
not remove sequences shared between different taxa but dis-
tribute them between taxa, and if repetitive they will be marked
as “saturated” (Methods). Also, although CLARK-S and BBT
both use multiple spaced seeds, miBF does not use the same set
of seeds as CLARK-S because of our restrictions on seed designs
(Methods). In addition, because our seed design does not affect
memory usage of the miBF, we were also free to use longer seeds
(SI Appendix, Note S2).
In these benchmarks, we used the simulated metagenomic

datasets from the CLARK-S publication (19). However, because
the National Center for Biotechnology Information databases
have changed since the original CLARK-S publication, we had to
omit reads simulated from genomes that no longer have a corre-
sponding species taxon. Nevertheless, since we omit the same
reads in all runs and use the same reference sequences, our results
still yield a fair comparison. We generated two sets of simulated
reads as outlined in the CLARK-S paper; the difference between
the “default” and “unambiguous” sets is the unambiguous set does
not have reads with all 32-mers shared between any two taxa IDs,
but we note that, because the database has changed, this distinc-
tion may no longer hold completely true. The default datasets are
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more representative of real datasets, and the unambiguous data-
sets are more idealized for CLARK and CLARK-S.
CLARK only produces a single best match, whereas CLARK-

S also produces a secondary hit. Like CLARK-S, BBT produces
secondary hits, but unlike CLARK-S, BBT can report more than
one secondary hit. Thus, we compared the performance of all
three tools using only the best hits (Fig. 2A) and compared the
performance of CLARK-S and BBT using multiple hits
(Fig. 2B). In this test, BBT reports only 5.4% of the reads to have
multihits, and of that, a majority (75.2%) hit only two targets
(Fig. 2B). CLARK-S provides a secondary hit 40.7% of the time,
thus suffering in precision when considering multiple hits.
For best hits, as expected, CLARK-S has higher sensitivity

than CLARK in almost all cases, reproducing the results found
in the original CLARK-S paper (Fig. 2A and SI Appendix, Tables
S2 and S3). In our tests, BBT has the highest sensitivity, allowing
it to yield the highest F1 score in all but one case (Unambiguous
simBA-525 dataset). In addition, we tested BBT with parame-
terizations to increase precision by filtering ambiguous elements
(Fig. 2 C and D and SI Appendix, Note S2). In most datasets,
BBT outperformed CLARK and CLARK-S in sensitivity at the
same precision, with the exception of the Unambiguous simBA-
525 dataset and Default Sio50 dataset.
Included with the CLARK-S datasets are three negative

control datasets totaling in 3 million 100-bp pair reads. Un-
expectedly, some of the reads in the negative control datasets
had mapped in both CLARK-S (six reads) and BBT (one read).
This contradicts with the results reported in the original
CLARK-S paper where no reads were mapped in any of the
negative controls. In BBT, we expected no false positives either
because the minimum FPR parameter (-s) was specified to be
less than 10−10 (default). We hypothesize this may be due to the
difference in the databases, possibly some of the new reference
genomes having sequences similar to those found in the negative
control. Overall, we think this should not be a cause for concern,
representing a FPR in parts per million.

We tested the runtime of each method at a differing number
of threads (Fig. 2E). We show that CLARK is the fastest tool,
followed by BBT and finally CLARK-S. This trend holds when
more threads are used, although BBT seems to scale better than
CLARK, rivalling it at a higher number of threads. Execution
times of BBT and CLARK stay within an order of magnitude of
each other, while CLARK-S takes an order of magnitude longer
to run. In our test, CLARK used 87 GB, BBT used 89 GB, and
CLARK-S used 175 GB. Database loading speed was not in-
cluded in our benchmarks and was comparable between the
three methods.

Discussion
We have presented the miBF, a probabilistic sequence classifi-
cation data structure that can perform multiple key–value asso-
ciations and synergizes well with multiple spaced seeds. Like
BFs, the memory usage of miBF does not depend on the size of
the hashed elements. With a BF, querying for the set of origin
between multiple reference sets requires the construction and
use of multiple BFs, leading to O(n) time complexity when in-
terrogating against n reference sets/filters. In contrast, querying
for the set of origin for an element in miBF requires only one
instance of the data structure, and is performed in constant time.
Packaged and implemented in BBT, we have shown it to be a
practical sequence classification tool.
To optimize the available memory for a target FPR, BFs can

use multiple hash functions to describe a given k-mer. We modi-
fied this concept in miBF: Instead of using multiple hash values
for the same k-mer, we hash multiple spaced seed templates across
it. Naively, one may simply insert each spaced seed as its own
element (using multiple hash functions for each insertion); yet,
since the seeds describing the same k-mer are dependent, we can
instead use a set of spaced seeds in the place of multiple hash
functions. Also, by allowing for some spaced seeds to miss, we can
tolerate mismatches when classifying sequences.

Fig. 1. Per-gene comparison of classification performance by BBT vs. BWA-MEM. F1 scores for both methods are calculated for each gene and plotted on the
same horizontal line. Only genes with F1 scores less than 99.9% are shown here (for full set, see SI Appendix, Fig. S1). The scale on the x axis for BWA-MEM on
the right is reversed for easy visual comparison, such that higher scores for both methods localize in the middle.

Chu et al. PNAS | July 21, 2020 | vol. 117 | no. 29 | 16963

BI
O
PH

YS
IC
S
A
N
D

CO
M
PU

TA
TI
O
N
A
L
BI
O
LO

G
Y

CO
M
PU

TE
R
SC

IE
N
CE

S

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1903436117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1903436117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1903436117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1903436117/-/DCSupplemental


Seed size has no impact on memory usage on this data structure,
allowing explorations for specialized, highly sensitive, and specific
spaced seed designs. Optimal seed design is an NP-hard problem
(38), and although faster approximations exist (39), the problem
remains difficult as our seeds can be of any length. In addition to
the seed length, the performance of designed seeds would be a

function of the sequencing error rate, homology detection toler-
ance, and mutation/error types. Computationally, there are meth-
ods to hash multiple spaced seeds more efficiently (40), and some
seed designs can be hashed more efficiently than others.
We investigated the impact of seed design on classification

performance by randomly sampling the universal set of spaced

Fig. 2. Comparison of CLARK, CLARK-S, and BBT. (A) Precision and sensitivity considering only the best hit of a classification. (B) Precision and sensitivity
considering all multimaps. CLARK is omitted as it produces a single hit. (C) Sensitivity vs. precision plot considering best hits on the unambiguous dataset. Lines
indicate BBT runs parameterized to yield a higher precision (SI Appendix, Note S2). (D) Sensitivity vs. precision plot considering best hits on the default
dataset. (E) Runtime comparison of CLARK, CLARK-S, and BBT at 8 to 62 threads. Both axes are in log scale, and under the situation of perfect scaling, the
trend should follow a linear slope. (F) Number of hits per record in all CLARK-S datasets for BBT and CLARK-S. Again, CLARK is not included because it does
not multimap sequences.
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seeds of a given length. In practice, using completely randomly
designed seeds, it was difficult to create poorly performing de-
signs. We used a generative Markov process (41) that purposely
created seeds with high and low Shannon entropy (42). We tried
combinations of these seeds in sets of five seeds. Our results
show that seed design does matter, but even poorly generated
spaced seeds tend to perform better compared to k-mers (Fig. 3),
suggesting one can expect gains on sensitivity relative to k-mers
without extensive work on multiple spaced seed design. Thus, the
seeds used throughout the paper were randomly generated with
a script provided as part of BBT after picking a weight and seed
length (Methods). As seed design improves, we expect the per-
formance of our tool to improve.
To facilitate key–value lookups, miBF stores an index for each

hashed key. These indexes represent a one-to-one mapping of
the IDs in a list of references onto integer numbers. We denote a
particular instance of the index by i. Due to shared sequences
among references or hash collisions, a loss of key–value associ-
ations can occur. If enough collisions occur such that key–value
association information for a query is lost, we denote this ele-
ment as saturated. To record saturation, we reserve and set one
bit (the saturation bit) in the integer used to store the ID. For
instance, for a miBF with five seeds, if a query sequence is
present in more than five references, the miBF can only record
up to five indexes; the saturation bit will be set in this case and
indicates that the actual number of references a hashed key may
be associated with may be more than five.
We have designed miBF for the use case of classifying a se-

quence by interrogating a collection of its subsequences, or
“frames,” of fixed length, typically using a sliding window. This
allows us to classify a query sequence even when some of its
frames are flagged to have saturated representations.
In practice, the rate of saturation can be mitigated to, say 1%

(depending on the number and relative repetitiveness of refer-
ences), by using only four spaced seeds and a 50% BF occupancy
(SI Appendix, Fig. S4). Also, although statistically unbiased, the
representative counts can vary between IDs, but this variance can
be minimized by using more spaced seeds (SI Appendix, Fig. S5).
When querying, we determine whether a sequence is a false

positive by using the frame counts of reported associations (SI
Appendix, Note S4). We have formulated a model for calculating
the FPR given a sequence (rather than a single element query),
where FPR is a function of the retrieved ID’s frequency in the
filter. Interestingly, and somewhat counterintuitively, this means
miBFs with more IDs will overall have lower FPRs, especially
when references have fewer shared sequences. Our FPR for-
mulation is also a function of the length of the input sequence
and is more robust than simpler measures based on the pro-
portion of hits across the frames of an input sequence. Finally,
our FPR has a subtractive formula, allowing for early classifi-
cation termination when a target threshold is reached.

Frame counts of reported associations are generally a reliable
measure for ranking multimatches but can be distorted if the
query sequence contains subsequences shared among multiple
references. When disambiguating multimatches, we found the
nonsaturated frame counts (SI Appendix, Note S4) to be a
better measure.
We showcased our classification tool BBT using miBF in two

use cases. The first use case was the recruitment of reads for
targeted assembly. In our tests, BBT had better sensitivity and
lower FPR in comparison to BWA-MEM while executing in less
time. We note that the use of spaced seeds affords a certain level
of specificity that allows BBT to index only the target of interest.
In contrast, BWA-MEM needs to index a more comprehensive
reference to prevent off-target classification. The overall speci-
ficity of BBT was higher than that of BWA-MEM, but we note
that for one target gene BWA-MEM outperformed BBT be-
cause BWA-MEM had access to the entire gene set. This sug-
gests that a spaced seed approach may be superior in terms of
overall specificity when using incomplete or missing reference
sequences. The practical speed and favorable sensitivity of
miBFs have prompted the use of BBT in the targeted tran-
scriptome assembly pipeline called TAP (43) and may be a good
fit for other pipelines performing read binning.
The second use case was the classification of metagenomic se-

quences to the species level. Under default parameterization, BBT
showed higher sensitivity than both CLARK-S and CLARK. To
illustrate that the gains to sensitivity were not necessarily at the
cost of precision, we also ran BBT with parameters to allow for
more precise classifications, essentially by filtering ambiguous
matches from the output. Parametric curves of sensitivity vs.
precision indicate that BBT shows generally higher sensitivity at
the same precision to CLARK and CLARK-S. BBT’s sensitivity
gains over CLARK-S were likely due to the use of slightly lower
weight seeds in BBT with more seeds (four in BBT vs. three in
CLARK-S), and because in miBF we do not filter out sequences
that are shared between references. Also, BBT compensates for
the decrease in seed weights by using longer seeds (42 bp by de-
fault, longer than what CLARK-S can currently use) to achieve
higher specificity.
Both CLARK-S and BBT can provide multimatches. Al-

though BBT may get the best hit incorrect in some cases, we
observe that one of the secondary hits is often the correct clas-
sification. When the multimatches were considered, BBT still
outperformed CLARK-S in sensitivity, and notably also had a
much higher relative precision. However, this comparison to
CLARK-S may be unfair since CLARK-S produces alternative
hits liberally (penalizing precision), whereas BBT only produces
multihits when there is high ambiguity. In most cases, CLARK-S
will often get the best hit correct, whereas BBT will have fewer
reads with multihits, although these classifications would be
much more likely to be true multimaps.

Fig. 3. Sensitivity vs. FDR plots for best hits (Left) and multimatches (Right) investigating sets of multiple spaced seeds (60 designs) against k-mers (20 to 60)
on classification on a miBF generated on 580 genes from the COSMIC database using reads 2 × 150-bp reads simulated with a 0.4% error rate on the same set
of genes. Each set of spaced seeds has five seeds with the same weight of 20 and the same length of 60. The k-mers used five hash functions to make the miBFs
comparable.
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The runtime of BBT remained around two times slower than
CLARK and it generally scaled better than CLARK when more
threads were used. When parameterized for higher specificity
BBT ran slower. Due to the implicit representation of spaced
seeds, BBT used half the memory compared to CLARK-S and a
similar amount of memory compared to CLARK. The runtime
of CLARK-S was more than an order magnitude slower than
CLARK and BBT, suggesting that the computation of multiple
spaced seeds can be quite expensive if not carefully optimized.
In conclusion, in addition to illustrating a tool with practical

value for sequence classification, we introduce a theoretical
framework in using multiple spaced seeds represented by a
miBF. The concepts described would be of interest to a wider
audience, including researchers in various fields of computer
science–data structures in particular. Ideas and concepts toward
minimizing FPRs in massive volumes of queries would be of
particular interest to those studying probabilistic data structures,
which power the internet.

Methods
Multiple Spaced Seeds. A spaced seed is a template of zeros and ones, where
ones indicate required match positions on a sequence, and zeros indicate
wild-card positions where a match or no-match is immaterial. The number of
ones in a spaced seed is defined to be its weight. Just like using a k-mer
spectrum of a sequence, where subsequences of length k are extracted from
a longer sequence, we consider “frames” of a fixed length across a sequence
and hash multiple spaced seeds for the sequence in each frame. We impose
no restriction on length or weight for spaced seeds. However, we require
each seed to either have a mirrored template with another seed or be pal-
indromic. This allows us to save memory by storing each seed only once and
not both forward and reverse complements, and it is analogous to storing
canonical k-mers (comparing the forward and reverse complement of a
k-mer and consistently using one).

The seeds used in our experimentswere randomly generated subject to the
following three conditions. We required that 1) they have 50% occupancy; 2)
in a set of four seeds, there are exactly two seeds with a wildcard in each
position; and 3) two of the seeds are mirrored templates of the other two
seeds. This design ensures that if we have a single mismatch in a query se-
quence at least two of the seeds report hits.

We calculated the Shannon entropy of spaced seed patterns by breaking
them down into subsequences (up to a word size) and used the relative
frequencies of these words as their respective event probabilities (42). The
seeds used in the read binning experiments were 80 bp in length, and have
Shannon entropies of 2.953 and 2.958 bits (using a word size of 3), with
mirrored templates having the same entropy. The seeds used in the meta-
genomic experiments were 42 bp in length and have Shannon entropies of
2.939 and 2.950 bits (using a word size of 3), again with mirrored templates
having the same entropy.

miBF Structure. The miBF can be thought of as three separate arrays. The first
is a BF bit array, storing the presence or absence of an element in the set
(Fig. 4A). The next one is an array that stores the rank information of the bit
array at specific intervals, counting the number of set bits prior to the cur-
rent position; this allows for constant time rank information access (44) to
positions on the bit array. The third is an array that stores integer identifiers
for each element in the bit array. The rank array in conjunction with the ID
array can be used to retrieve the integer identifiers for all set positions in the
BF. To improve cache performance, the BF and rank arrays are interleaved
into a single data vector (45) (Fig. 4B).

miBF Construction. To minimize miBF construction memory usage overhead,
all data are streamed, but multiple threads can be used in each pass to
improve runtime. Construction of the miBF consists of three passes through
the sequence set being indexed (SI Appendix, Note S5). The first pass pop-
ulates the BF, the second pass populates the ID array, and a final pass scans
over all colliding IDs recovering key–value associations when possible and
sets saturation bit in the ID array. The first pass is performed in parallel per
element using atomic bitwise OR operations on the BF. In the second and
third passes, elements can be updated concurrently in the data array by
using compare-and-swap. In practice, we parallelize construction per index
to more easily prevent duplicate elements per index from being inserted
(important for preventing bias when dealing with collisions between

indexes) and to enable more efficient hashing via ntHash (46). Duplicate
elements within the same index are prevented by using a temporary
hash table.

Due to shared sequences or hash collisions, inserted values into the ID array
may collide, causing a loss of key–value association information. Although
we allow for collisions to replace existing IDs in the data structure, we do so
using reservoir sampling (47). Reservoir sampling allows for an equal chance
of replacement of a reservoir of elements with the intention of obtaining a
random sampling of elements from streaming data of indeterminate size. It
works by adjusting the probability of replacement to be based on how many
collisions for that location have been seen previously by keeping a count of
how many elements have been seen in the stream. Thus, in our imple-
mentation, we use a temporary count vector of the same size as the data
vector to record the number of times a given location in the data vector is
considered for insertion (Fig. 5A and SI Appendix, Note S5).

In addition to allowing some replacement of collided IDs, we flag any loss
of key–value information by using left most bit of our IDs (that we call a
saturation bit) to indicate that for an element (an element is considered a set
of spaced seeds to one sequence position). This is done in the final pass
(Fig. 5B and SI Appendix, Note S5) and has the benefit of not destroying
key–value associations that are used in other elements. Finally, if no repre-
sentative seeds exist for that element, but a duplicate ID is found (Fig. 5C
and SI Appendix, Note S5), we can recover it by inserting the value into one
of the duplicate positions.

Generally, more spaced seeds would help decrease saturation (SI Ap-
pendix, Fig. S4) as well as the variance of each count (SI Appendix, Fig. S5).
However, this would be at the cost of increased memory usage. Our con-
struction method shows little sequence bias in practice.

BF size constructed is based on the number of base pairs in the reference,
and miBF would create a filter with an approximate specified occupancy.
Assuming uniformly distributed hash values, this should yield a filter at the
specified occupancy or less. Also, unless there is substantial sequence du-
plication in the reference, the occupancy of the BF should not be drastically
lower than the specified occupancy.

Sequence Classification. We perform classification in two stages. First, we
decide if the matches to an ID are enough to indicate the read is not likely to
be a false-positive match, determined by a preset minimum FPR (1 in 1010 by
default). Then we rank the significant candidate IDs and select candidates
that match strongly enough that they can be considered a multimatch. A
lookup of the data structure is performed by hashing a set of spaced seeds in
a frame, and confirming if the associated filter positions are occupied, and if
they are, their rank values are used to retrieve the matching ID from the ID
array. In this scheme, one can end up with multiple IDs for the query, with a
high likelihood of one of them being a false positive. To query sequences
reliably, we use frame matches within the same sequence to the same ID to
reduce the effective FPR, because these matches should be independent
events if they occur due to hash collisions. These frame matches can thus be
used collectively to compute a joint probability that the sequence match is
encountered by chance. This is similar to other methods shown to reduce the
effective FPR in BFs (22), with the difference here being multiple IDs with
different frequencies in the filter need to be considered.

The chance of a false positive depends on the length of the sequence being
queried, the length of the seed used, the FPR of the BF, and the frequency of

1 0 0 0 0 1 1 1 0 0 0 1 1 0 1 0

0 - - - 1 - - - 4 - - - 5 - - -

2 - - - - 3 3 1 - - - 1 1 - 2 -

Genome 1 Genome 2 Genome 3

1Bloom filter

0Rank array

2ID array

0 1 0 0 0 1 0 1 1 1 4 0 0 0 1 5 1 0 1 0

A

0 1

B

2 3 3 1 1 1 2

Single element (3 spaced seeds) of:

Fig. 4. (A) A visualization of the miBF data structure. Three tables are used
to represent the miBF and how they are related. (B) The form of the data
actually stored with an interleaved form of the bit vector. The interval for
the rank array is much larger than shown here (4 vs. 512 bits), reducing its
overhead to 64/512 = 0.125 bits per position.
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each ID in the ID array. When classifying a sequence, the FPR for each frame is
a series of n independent Bernoulli trials (number of frames) so we can
model the overall chance of a false positive using a binomial distribution.
Our miBF FPR formulation is based on the BF FPR (9) as follows:

f =bh =
Xh
x=h

�
h
x

�
bxð1−bÞh−x ,

where b is the occupancy of the BF and h is the number of spaced seeds
(traditionally number of hash functions) used for a single frame in
the sequence.

To tolerate for few sequence mismatches when classifying, we allow
some spaced seeds in a frame to have BFmisses. By default, we accept all but
one seed in a frame to miss, but this can be changed (−a) to help decrease
the FPR, at the cost of sensitivity. Thus, the formulation becomes the
following:

f =
Xh
x=h−a

�
h
x

�
bxð1−bÞh−x ,

where a is the number of allowed misses for the set of spaced seeds in a
frame. For a BF, the chance of falsely classifying a sequence is easily de-
termined by computing the cumulative density function of the number of
matches m − 1 and inverting it:

Pðn,mÞ= 1−
Xm−1

x=0

�
n
x

�
ðfÞxð1− fÞn−x ,

where n is the number of frames a query sequence has.
In miBFs, use of multiple indexes would help further reduce the per index

FPR, although each index i represents an additional test. Before we com-
pute the overall probability of an entire sequence for a given index i, we

must first formulate the probability of falsely matching a frame of
classification:

fi =
Xh
x=h−a

�
h
x

�
bxð1−bÞh−xð1− ð1− siÞxÞ,

where si is the frequency of index i in the miBF data array, relative to the
frequency of all indexes. Thus, the overall probability for false classification
for index i is as follows:

Pðn, iÞ= 1−
Xmi−1

x=0

�
n
x

�
ðfiÞxð1− fiÞn−x ,

where mi is the number of frames reporting a match to index i.
Out of all of the tests for each index i, we then take the best candidate

(lowest P value) and perform multiple test correction. In our implementa-
tion, we simply perform the Bonferroni correction (48):

P’ðn,miÞ=N × Pðn,miÞ.

We explored different corrections using simulated data (SI Appendix, Fig. S4)
and showed that these correction methods generally result in similar cor-
rected values for smaller critical values.

We filter in only matches that pass a minimum FPR threshold during
classification.When the sequence classified is of a fixed length, we compute a
fixed significant match threshold for each index by applying our Bonferroni-
corrected critical P value with a quantile function (49). The classification will
terminate early to improve execution time. We require a number of un-
ambiguous matches (-r, default is 3) to terminate early. This heuristic has no
effect on the FPR and only affects the accuracy of multimatches (SI Appen-
dix, Note S3). Frame matches that include saturation bits are penalized
depending on the extent of saturation in our implementation to improve
the correctness of the classification (SI Appendix, Note S4).
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Fig. 5. An illustration of a miBF data vector construction using 3-bit IDs representing four references (genomes) of single elements. Values after the colons
are the number of times an ID was considered to be inserted into that bucket, needed for reservoir sampling. The percentage in the parentheses represents
the chance of insertion of a different element into that position if different from the cell above. (A) Insertions into miBF of different keys randomized with
reservoir sampling. Before the final pass, each element has at least one representative spaced seed inserted so no changes are needed. (B) An example order
of insertions causing saturation of some of the key–value association in the miBF. No replacement locations for element from genome 4 can be found, so the
hashed values for the three seeds are saturated. (C) An example where an element from genome 4 is recovered in the final pass. Rather than saturation, an ID
(from genome 2) that is found more than once is replaced by genome 4.
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Data Availability. All experimental data discussed in the paper were obtained
from the CLARK-S publication (18). The tool source code is available at
GitHub (https://github.com/bcgsc/biobloom).
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