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Abstract

In this article a quantitative analysis was devised assessing driver’s cognition responses by exploring the
neurobiological information underlying electroencephalographic (EEG) brain signals in a left and right turning
experiment on simulator environment. Driving brain signals have been collected by a 19-channel electroencephalogram
recording system. The driving pathway has been selected with no obstacles, a set of indicators are used to inform the
subjects when they had to turn left or right by means of keyboard left and right arrows. Subsequently in order to
remove artifacts, preprocessing is performed on data to achieve high accuracy. Features of signals are extracted by using
Fast Fourier Transform (FFT). Absolute power of FFT is used as a basic feature. Scalar Feature selection method is
applied to reduce feature dimension. Thereafter dimension-reduced features are fed to Hopfield Neural Network
(HNN) recognizing different brain potentials stimulated by turning to left and right. The performances of HNN are
evaluated by considering five conditions; before feature extraction, after feature extraction, before reduction of
features, after analyzing reduced features and finally subject-wise Hopfield performances respectively. An increase
occurred in each level and continued until it has reached its highest 97.6% of accuracy on last condition.
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Introduction
In recent decades human driving behavior has become
one of the most interesting subjects and a large number
of researchers have investigated it in different driving
phases. In addition, physiological parameters such as EEG
have been considered as a new performance measurement
feature. Among the non-invasive techniques, brain activity
can be inferred from EEG by placing electrodes on the
surface of the scalp with millisecond resolution. The EEG
is a well-documented technique which has the ability to
characterize certain brain states in processing of different
semantic categories (Hoenig et al. 2008; Pulvermuller et al.
1999; Kiefer 2001; Paz-Caballero et al. 2006; Proverbio et al.
2007; Fuggetta et al. 2009; Adorni and Proverbio 2009).
The development of EEG-based interpreting approaches is
an interesting application which makes real-time decoding
systems possible (Muller et al. 2008). In order to decode

the EEG-based tasks, three main aspects namely feature ex-
traction (Sykacek et al. 2003; Ince et al. 2005; Wang et al.
2010), feature selection (Pregenzer and Pfurtscheller 1999;
Garrett et al. 2003; Lal et al. 2004; Daly et al. 2011; Long
et al. 2010) and classification approaches (Palaniappan et al.
2002; Peters et al. 2001) can be considered to analyze EEG
signals (Coyle et al. 2005; Wolpaw et al. 2002; Coyle et al.
2006a; 2006b). The EEG spectrum is normally composed of
five different frequency bands: delta (1–4 Hz), theta
(4–8 Hz), alpha (8–13 Hz), beta (13–30 Hz) and
gamma (from 30 HZ).
Several studies relevant to current article such as char-

acteristic of driving, drowsiness and fatigue detection
have been evaluated by researchers. For instance, Shang
et al. addressed to the driving characteristics analyzing
cognitive state inside the brain. They used a relatively
new method of multi-channel near-infrared spectroscopy
(NIRS) to investigate the brain activation in a driving
simulator by independently manipulating the cognitive
demand. Left brain plays an initiative role, while right
brain closely follows towards the activation degree of left
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brain, so they proved that there is a balanced tendency
of symmetrical activation between left and right brain
(Shang et al. 2007). Besides, Schier (2000) recorded EEG
from four sites of scalp during both two-lap and replay
driving tasks. Power spectra were computed to produce
values of relative alpha activity and an increase was
found in alpha activity as a result. Furthermore Chin-
Teng et al. (2005a) suggested a system that combines
EEG power spectra estimation, independent component
analysis (ICA) and fuzzy neural network models to esti-
mate drivers’ cognitive state in a dynamic virtual reality
based environment. Also a relationship between driver’s
style and driver’s ERP response was investigated (Chin-
Teng et al. 2006). Power spectrum of ICA components
and correlation between them was analyzed and Drivers
were classified to aggressive or gentle based on the ob-
served ERP difference. In addition EEG dynamics were
studied in response to distraction during driving by event
simulation, including unexpected car deviations and math-
ematics equations. Changes of EEG power spectra were
measured and used to evaluate the brain dynamics in time
and frequency domains (Chin-Teng et al. 2008).
Regarding investigation of drowsiness and fatigue in

traffic accident, numerous physiological indicators are
available to describe an individual’s level of alertness.
The EEG signal has been shown to be one of the most
predictive and reliable signals, since it is a direct measure
of brain activity. An EEG based drowsiness-estimation
system was developed using driver’s error, which is defined
as deviations between the center of the vehicle and the
center of the lane in the lane-keeping driving task (Chin-
Teng et al. 2005b). Besides, a method was proposed that
combine the EEG power spectrum, correlation analysis,
principal component analysis, and linear regression mo-
dels, to indirectly estimate the driver’s drowsiness level in
a virtual-reality-based simulator (Liang et al. 2005). Add-
itionally Papadelis et al. (2006) developed a method in
order to prevent driving accidents and errors. They col-
lected multichannel EEG data from 20 sleep-deprived
subjects in real environmental conditions of driving.
Observations of results show that an increase was ap-
peared in slowing activity and an acute increase of the
alpha waves, 5 to 10 seconds before driving events. In
another relevant study, Nikhil et al. (2008) proposed a
method to detect departure from alertness. They
showed that the EEG power in the alpha and theta
bands is highly correlated with changes in the subject’s
cognitive state with respect to drowsiness through driv-
ing performance.
Recently artificial intelligence has become a conveni-

ent method for classification and prediction of biological
investigations. For example, a quantitative analysis for
assessing driver’s cognitive responses was devised by in-
vestigating the neurobiological information underlying

EEG brain dynamics in traffic-light experiments. Event
related potential features were then feed to a self-
constructing neural fuzzy inference network (SONFIN)
to recognize different brain potentials stimulated by red/
green/yellow traffic events (Chin-Teng et al. 2007). Fur-
thermore Hopfield neural network have been widely
used in manifold fields such as regularized image restor-
ation (Paik and Katsaggelos 1992), analogue computations
of spiking neurons (Maassy and Natschlagerz 1997) and
decomposing mixed pixels on images (Mei et al. 2010),
However neither was applied on EEG pattern classifica-
tion nor any biological signal. Due to Hopfield
well-renowned in handwritings patterns recognition per-
formances it can be a suitable choice of current article;
which addresses Hopfield neural network recognition per-
formances of driving signals. In this study, EEG signals
were recorded in order to investigate human driving per-
formance during right and left turning.
The purpose of this paper is to assess driver’s cognition

responses in a left and right turning experiment on simu-
lator environment using EEG, and it has attempted to
classify left and right EEG brain signals. To perform EEG
pattern classification, the rest of the paper is organized as
follows: in section “Methods”, participants, experimental
task, EEG recording system and preprocessing of EEG sig-
nal were explained. A sequence of approaches has been
described namely: features extraction and feature selection
(reducing the feature set dimensionality through selecting
a subset of features) and Hopfield neural network in
“Methods” section. Finally, the selected features related to
EEG patterns were classified using Hopfield neural net-
work. The complete details were expressed and discussed
in “Results” and “Discussion and Conclusion” sections.

Methods
Participants
A total of ten adult volunteers (8 males and 2 females,
age range: 18–28, mean age: 23 ± 3.4 SD) participated in
current study. All participants were right-handed except
one. They did not suffer from any psychological or
neurological disorders and they had normal vision. All
subjects were informed about the task prior to experi-
ments. The study is conformed by the ethical guidelines
of PAARAND specialized center.

Experimental task
The simulator technique allows subjects to interact dir-
ectly with driving task without risk of operating on ac-
tual machine. For this reason participants performed a
driving task in a simulator environment. They were
asked to drive along a pathway with indicators of turning
to left and right. The path was like a butterfly wings
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(Figure 1) with no obstacles. Driving was comprised of
four laps with four turns to right and four to left in each
lap. Therefore each subject had experience of 32 turnings,
16 turnings to left and 16 to right. The task lasted 5 mi-
nutes and participants drove on cruise control mode with
constant speed of 30 (km/h). Visual driving environment
was implemented on the 17-inch LCD with 1280*800 res-
olutions (Figure 2). The specification for computer is de-
scribed as follows: Pentium 4, 2.8 GHZ CPU, 1GB RAM,
Windows XP professional and driving simulator program.
The driving simulator was 3D-Driving School Simulator
(copyright by BESIER 3D-EDUTAINMENT 2003) based
on virtual environment (Figure 3).

EEG recording system
Volunteers were fitted with a 19-channel electrode cap
and prepared for EEG recording according to standard
techniques. Recorded channels (FP1, FP2, F3, F4, C3,
C4, P3, P4, F7, F8, T3, T4, T5, T6, FZ, CZ, PZ, O1, and
O2) were selected from the international 10–20 set of
electrode positions, with linked-ears montage (Miller
et al. 1991). (The MCN system (Modified Combinatorial
Nomenclature) renames four points of the 10–20 system

T3, T4, T5 and T6 as T7, T8, P7 and P8, respectively).
Subjects performed the experiment in a sound-dampened,
electrically shielded booth. EEG signals were amplified
with MITSAR hardware, and then sent through an analog-
to- digital converter. Signals recorded at 500 Hz on a PC
running digitize.

Preprocessing
Due to the most dominant frequency bands of brain,
(Delta (1–3.5 Hz), Theta (4–7.5 Hz), Alpha (8-14 Hz) and
Beta (15-30Hz)), a band-pass filter of 1-30Hz transmitted
over signals throughout (Michail et al. 2008). A 1-30 Hz
phase-shift free Butterworth band-pass filter (12 dB/Oct-
ave) was used. Moreover two amplitude thresholds were
considered; slow waves up to maximum 50 microvolts
and ultimate 30 microvolts for fast waves. (Threshold
values were chosen based on Alpha and Beta brain waves
normal amplitudes (Sanei and Chambers 2007)). In order
to correct detailed artifacts, independent component ana-
lysis (ICA) method was implemented. The “Infomax”
algorithm was implemented in WinEEG software to ana-
lysis raw EEG signals (Delorme et al. 2007). Eye blink arti-
facts and some other artifacts were corrected using ICA

Figure 1 Driving path.
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method even if the EOG (Electrooculography) signal was
not recorded (Hori and Cao 2011). This method is based
on blind source separation procedure from multi-channel
EEG data and spatial filtering of some components of
EEG signal. After the decomposition of multi-channel sig-
nal, the components of signal related to artifacts were se-
lected manually analyzing topographies and waveforms of
components. In general the main components are hori-
zontal and vertical eye movements besides temporal mus-
cular activity, which all were predefined to the WinEEG

software. The noisy components were selected and ICA
algorithm was applied to the whole EEG data. In this
study we had nineteen ICA components. However, actu-
ally up to two or three components were used maximally
related to individuals.

Feature extraction
Quantitative EEG analysis (QEEG) refers to extract fea-
tures from EEG signal. Multi-channel EEG is digitized

Figure 3 3D-driving school simulator (copyright by BESIER 3D-EDUTAINMENT 2003).

Figure 2 Experimental task, one of participants during driving at 3D-driving school simulator.
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further adjusted to remove extra cerebral artifact, and
subjected to spectral analysis using the fast Fourier
transform (FFT). Extraction of features such as amount
of absolute power at each electrode for each frequency
band or as a function of frequency is carried out for
individuals. All features used in this article were ex-
tracted using NeuroGuide; a software of quantitative
EEG analyzer.

Feature selection
In order to reduce the number of features easily, all the
decompositions were normalized and reshaped to a row
vector. For selecting essential and proper features for
classification, scalar feature selection method was imple-
mented using T-test criteria which it ranked all features.
T-test criterion returns the significance level (p-value) of
the test. The p-value is the probability, under the null
hypothesis, of observing a value as extreme as or more
extreme than the test statistic.
Absolute value of the criterion was used to rank fea-

tures. Absolute value means that how much a feature is
significant to separate two classes. Features with high
absolute value were chosen and others were rejected.
The scalar feature selection method considers feature
ranking between the two classes.

Hopfield neural network
Hopfield is a network with fully connected N artificial
neurons which update their activation values. The up-
date of a neuron depends on the other neurons of the
network and on itself. A neuron i will be influenced by
another neuron j with a certain weight wij, and a
threshold value (Hopfield 1984). There is a weight wji

associated to input i. The connection weight from
neuron i to neuron j, is wij. In general always two con-
ditions are imposed on the weight matrix: symmetry
(wij = wji) and no self-connections (wii = 0). The net-
work also has an output. The state of the output is
maintained until the neuron is updated. The training
method consists of a single calculation for each weight.
In Hopfield network instead of ones and zeros, which it
is used in the other networks so far, the inputs are −1
and +1 (the neuron threshold is zero). This has to be
true for the network to work correctly. Each weight is
labeled by giving it a subscript showing which input it’s
coming from and which neuron it’s going too. wij

comes from input i and is going to neuron j. The train-
ing method is to multiply the value of each feature in
each pattern corresponding to the index of the weight,
so for wij the value of feature i and feature j were
multiplied together in each of the patterns. Then the
result is added up.

The new activation value (state) of a neuron is com-
puted, in discrete time, by the function (1):

xi t þ 1ð Þ ¼ sign
Xn
j¼1

xj tð Þwij−θi

 !
ð1Þ

X ¼ sign WX−Tð Þ ð2Þ
Where X is the activation value of the n neurons, W is

the weight matrix and T is the threshold of each neuron:

X ¼
x1
x2
⋮
xn

0
BB@

1
CCA ð3Þ

W ¼
w11 w12 … w1n

w21 w22 … w2n

⋮ ⋱ ⋮
wn1 wn2 … wnn

0
BB@

1
CCA ð4Þ

T ¼
θ1
θ2
⋮
θn

0
BB@

1
CCA ð5Þ

The sign function is defined as:

þ1
−1

if x≥0
otherwise

�
ð6Þ

Hopfield network converges to a local state. The en-
ergy function of a Hopfield network in a certain state
is (7):

E1 ¼ −
1
2
XtWX þ TXt ¼ −

1
2

Xn
i¼1

Xn
j¼1

wijxixj þ
Xn
i¼1

θixi

E2 ¼ −
1
2
XtWX ¼ −

1
2

Xn
i¼1

Xn
j¼1

wijxixj

ð7Þ
E1 is a general energy function. More often, E2 is used

which is equivalent to E1.
The way Hopfield networks act, as a pattern is entered

to the network, the Hopfield subject to a number of iter-
ations updating all or part of the nodes to a specific
value and stopped. The network neurons are then read
out to see which pattern is in the network. The idea be-
hind the Hopfield network is that patterns are stored in
the weight matrix. The input must contain part of these
patterns. The dynamics of the network then retrieve the
patterns stored in the weight matrix. This is called Con-
tent Addressable Memory (CAM). The network can also
be used for auto-association. The stored patterns in the
network are divided in two parts: cue and association.
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By entering the cue into the network, the entire pattern,
which is stored in the weight matrix, is retrieved.

Results
Recorded EEG signals of 10 volunteers during simulated
driving task were classified and various performances
were achieved using Hopfield network. To clarify the ef-
fect of methods, firstly the result of time domain classifi-
cation was explained; however the next section includes
Hopfield performances in frequency domain by means
of FFT feature extraction. Consequently feature selection
method was applied on features. Then evaluation on the
reduced features became more detailed; dividing partici-
pants’ features into three groups. Final assessment was
performed subject wise in order to remove inter-subject-
variability drawback.

Time domain classification
As a first try to classify driving brain signals, 50 seconds
of whole driving task is selected for turning left and the
same for turning right per subject (the whole task was
lasted 5 minutes, 90 seconds of which belongs to left
turning, 90 seconds for right turning and 120 seconds
for straight driving). The 50 seconds of the purest and
noiseless part of signals were selected. Due to the 500 Hz
sampling frequency of EEG recording system with 19
electrodes, selected signals were converted to a matrix
size of 19 × 25000. It would be difficult to evaluate the
matrix, pro oblong samples; therefore mean average of
each electrode was computed and 20 matrixes with size
of 19 × 1 were generated. Consequently the Matrix was
normalized and then scaled between −1 and +1. Positive
values were set to +1 and negative values were set to −1.
In order to train Hopfield neural network, stable points
and number of neurons were adjusted to 2 (two classes
right and left turning) and 9 (the number of effective
electrodes) respectively. Effective neurons were obtained
by removing redundant channels which contains same
value in both states. On the other word generally in
current paper 19 neurons are available however in this
case 9 of which has different value in two classes of right
and left turning, the rest 10 neurons did not take into
account because they had same value and no effect on
network performance. This rule was applied to all parts
of article and it will not be explained in following sec-
tions. Eventually Hopfield network was tested with 20
samples (10 samples for right and 10 for left). The Hop-
field performance of 14.7% was obtained; too weak
result!

Frequency domain classification using FFT
In second analysis, frequency domain features were con-
sidered to classify signal patterns. In this part feature ex-
traction was implemented on EEG data using Fast

Fourier Transform. FFT was executed by NeuroGuide
software. It transferred data to the absolute power of five
major frequency domains namely delta, theta, alpha,
beta and high beta ranged 1–3.5 Hz, 4–7.5 Hz, 8–12 Hz,
12.5–25 Hz and 25.5–30 Hz respectively. Consequently a
data with size of 19 × 5 was formed per subject (19 chan-
nels × 5 frequency bands). At this stage five Hopfield
networks were trained according to five frequency
bands. Each network has two stable points with 19 elec-
trodes in start, however only operative electrodes were
considered to reduce neural network processing time
and redundancy. Table 1 illustrates both the number of
effective neurons and Hopfield network results tested by
20 patterns.

Effect of feature selection
Earlier outcomes of Table 1 indicate low network per-
formance. The reason should be investigated; hence fea-
ture selection and feature reduction may modify the
results. Scalar Feature selection method with rule of
ranking features was executed on data using MATLAB.
Ranking features procedure is capable to rank features
between two groups. In this paper there are two groups
of left and right turnings. Types of features in this study
are channels (electrodes) and frequency bands. The fea-
tures with the most detached ability should be selected
between two classes. Statistical criteria of t-test were im-
plemented on extracted features for each subject indi-
vidually. For more clarity, features were ranked based on
absolute value related to t-test criterion which means
that how much a feature is significant to separate two
classes. Features with high absolute value were chosen
and others were rejected. Seven electrodes names T5,
Fp1, P3, O1, F7, T4 and Fp2 were picked among 19 elec-
trodes; on the other hand another ranking was put in to
practice in order to settle the most key frequencies of
brain which delta and alpha had high ranking rate
among five major bands. Finally 14 features (7 selected
channels × 2 frequency bands) were chosen among 95
(19 channels × 5 frequency bands). The 14 prevalent fea-
tures were classified by 14 neurons and 2 stable points
by Hopfield network. Network performance of 42.1%
was achieved by testing 20 patterns, which it is better

Table 1 Classification without feature reduction

Band
name

Frequency
range

Number of effective
neurons

Network
performance

Delta 1–3.5 Hz 7 25%

Theta 4–7.5 Hz 8 20.1%

Alpha 8–12 Hz 8 20%

Beta 12.5–25 Hz 11 10.4%

High
Beta

25.5–30 Hz 6 5.6%
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than earlier results however it is not still a remarkable
outcome. In the following section, 14 extracted features
are evaluated in details.

Subject’s group classification
Listed 14 features in the previous part are bar graphed
to investigate the behavior of individual characteristics
of each participant. Table 2 indicates relevant feature
numbers. Ten subjects’ bar graphs in Figure 4 illustrate
the behavior of features per subject. Vertical axis is FFT
absolute power (uVSq) and horizontal axis indicates fea-
tures. By carefully studying the characteristics, three par-
ticipant groups came into view and interestingly include:
right-handed men, women and people without driver’s
license; the subjects numbers 1,2,5,8 and 10 are in the
first group. Third and sixth participants are included in
second group, and the remained subjects 4, 7 and 9 form
the third group. Common behavior in first group is that
FFT absolute power of first and eighth features in right
turning are much more than left turning. Joint behavior
in second group is that eleventh feature in right turning
is more than left turning but fifth feature acts in reverse
manner. Finally in last group FFT absolute powers of

first, fifth and ninth features are more in left turning
than right turning (See Figure 4 for more detail). Conse-
quently features with significant differences were se-
lected to get better grouping. Finally Hopfield was
designed with six stable points (three group × two driv-
ing states) and six neurons due to six selected features.
The mentioned patterns are as following:

Pattern 1 Group3; RightTurningð Þ
¼ −1 −1 −1 −1 þ1 −1½ � ð8Þ

Pattern 2 Group2; RightTurningð Þ
¼ þ1 −1 þ1 −1 −1 þ1½ � ð9Þ

Pattern 3 Group1; RightTurningð Þ
¼ þ1 þ1 þ1 þ1 −1 þ1½ � ð10Þ

Pattern 4 Group3; LeftTurningð Þ
¼ þ1 þ1 −1 þ1 þ1 −1½ � ð11Þ

Pattern 5 Group2; LeftTurningð Þ
¼ þ1 þ1 þ1 −1 −1 −1½ � ð12Þ

Pattern 6 Group1; LeftTurningð Þ
¼ −1 þ1 −1 −1 −1 þ1½ � ð13Þ

Table 2 Features name is constructed of bands and channels both

No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Name 2d 15d 15a 11a 7d 1a 2a 9d 14d 7a 11d 1d 9a 14a

Band delta delta alpha alpha Delta alpha alpha delta delta alpha delta delta alpha alpha

Channel FP2 T5 T5 F7 P3 FP1 FP2 O1 T4 P3 F7 FP1 O1 T4

For example 15d means that fifteenth electrode (T5) in delta band which it is summarized to only d.

Figure 4 Vertical axis is FFT absolute power (uv2) and horizontal axis is 14 features; Left side bar charts (dark blue and green) are
behavior of first-group subjects (right-handed men), first and eighth FFT absolute powers of right-turning are much more than left
turning. Two up right bar charts (yellow and red) are behavior of second-group subjects (women), eleventh FFT absolute power of right-turning
is more than left-turning and fifth FFT absolute power of left-turning is more than right-turning. Three down right bar charts (light blue and
orange) are behavior of third-group subjects (people without driver’s license), first, fifth and ninth FFT absolute powers are more in left-turning
than right-turning.
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The weight matrix is calculated based on pattern:

Weights ¼

þ1:04 0:00 −0:12
0:00 þ1:16 0:00
−0:12 0:00 þ1:04

þ0:12 −0:12 −0:23
0:00 0:00 0:00

þ0:12 −0:12 −0:23
þ0:12 0:00 þ0:12
−0:12 0:00 −0:12
−0:23 0:00 −0:23

þ1:04 þ0:12 þ0:23
þ0:12 þ1:04 −0:23
þ0:23 −0:23 þ0:69

2
666664

3
777775

ð14Þ

To evaluate a Hopfield network which is well-known
to recurrent associated memory network, 15% distortion
was implemented on training data to test the Hopfield
performance. Hopfield network should be reconstructing
a pattern from a corrupted original. 15% distortion ran-
domly implemented on training data 20 times. The aver-
age performance of 81.8% was achieved (p < 0.003). It is
remarkable result (see Figure 5). This means that the
network has been able to store the correct (uncorrupted)
pattern in other words it has a memory. Finally notice
that increasing distortion was lead to decreasing network
performance.

Individual Hopfield classification performance
Previous results predict that inter-subject variability
could have negatively biased the classification perform-
ance. A fairer methodology was proposed in final part of
result to obtain individual classification performance and
from that to estimate the average performance of indi-
vidual subjects. According to ten participants, ten Hop-
field networks were designed separately relevant to each
subject. Considering 16 turnings to right and 16 turnings
to left for each subject, 10 turnings were selected to left
and the same for right (This selection is according to
artifact free signals that should be same for all subjects
to have similar probability). Consequently Fourier

transform was applied to each turning in order to ex-
tract features. This time we have separated train and test
data to evaluate performance. 70% of data is used as
training and the next 30% for testing. This means that
Hopfield neural network was designed only based on
training data without interference of test data. The ex-
tracted features of training data were reduced dimen-
sionality and after full evaluation, Hopfield network was
designed based on selected features. The process was re-
peated to 10 participants. Finally Hopfield networks
were tested using remained 30% test data, and average
of 97.6% performance was obtained (p < 0.001).
For statistically significant classification, random sub-

sampling (Monte Carlo cross validation) were used. This
method randomly splits the dataset into training and test
data. Each time training and testing raw data were se-
lected randomly to achieve different performance. The
mentioned process was repeated 10 times and final per-
formance was averaged and reported. The two-way

Figure 5 Hopfield network error after 40 iterations with 0.182 mean error.

Table 3 Performances of each subject’s Hopfield network
with significant factor (p < 0.001)

Subject Performance

1 99.5%

2 96.4%

3 97.3%

4 94.6%

5 98.4%

6 97.6%

7 98.8%

8 97.9%

9 98.5%

10 96.9%
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parametric ANOVA test was used for evaluation over
normality-checked performances and p-values are ob-
tained for all subjects. Table 3 shows all details of results
obtained by the last part study.

Discussion and conclusion
The Electroencephalographic (EEG) signals were re-
corded for 10 participants, during the performance of
driving task turning to right and left. Driving data were
collected by 19-channel QEEG Mitsar/WinEEG based
on 3D driving school simulator virtual environment.
This work was focused on preprocessing and processing
units. The statistical software-based ICA and filtering
methods were implemented in order to remove eye-
movement and eye blinks. Classification was done in
several parts; a huge increase was appeared in the last
evaluation. Features were extracted by FFT, ranked and
reduced by t-test criteria. Hopfield neural network was
reached to average performance of 97.6%. Figure 6
shows all network performances of study. Previous stud-
ies mainly focused on driver drowsiness or alertness pre-
diction (Chin-Teng et al. 2005a; 2005b; Liang et al. 2005;
Papadelis et al. 2006; Nikhil et al. 2008; Michail et al.
2008), and different issues such as ride comfort (Mitsukura
et al. 2009), driving style (Chin-Teng et al. 2006), and max-
imum band activity (Schier 2000; Chin-Teng et al. 2008).
The researchers used different types of preprocessing and
analyzing methods, such as ICA, PCA, FA (Factor Ana-
lysis), neural networks and support vector machine. How-
ever, they did not mention any analysis of driving basic
actions. Basic actions include turning left or right, break-
ing and accelerating. This paper has introduced a new
procedure analyzing turning left and right during driving
with constant speed in a pre-designed path. The main

contribution of current study is application of Hopfield
neural network to classify EEG signals, which have cap-
ability of classifying three groups of people only using six
features. The disadvantage of this study is its weakness for
classifying non-homogenous participants. It is better to se-
lect subjects all in same gender with same driving experi-
ence in future studies. Furthermore the most important
application of this study can be introduced as brain com-
puter interface for intelligent driver assistance. Especially
from last part results of study, it is derived that any BCI
systems in driving process can be train individually based
on its operator characteristics. Consequently individual
trained BCI devices can lead more secure and reliable ve-
hicles in the future.
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