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Abstract: The gut microbiome can produce metabolic products that exert diverse activities, including
effects on the host. Short chain fatty acids and amino acid derivatives have been the focus of many
studies, but given the high microbial density in the gastrointestinal tract, other bacterial products such
as those released as part of quorum sensing are likely to play an important role for health and disease.
In this review, we provide of an overview on quorum sensing (QS) in the gastrointestinal tract and
summarise what is known regarding the role of QS molecules such as auto-inducing peptides (AIP)
and acyl-homoserine lactones (AHL) from commensal, probiotic, and pathogenic bacteria in intestinal
health and disease. QS regulates the expression of numerous genes including biofilm formation,
bacteriocin and toxin secretion, and metabolism. QS has also been shown to play an important role
in the bacteria–host interaction. We conclude that the mechanisms of action of QS at the intestinal
neuro–immune interface need to be further investigated.
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1. Introduction

Quorum sensing (QS) is defined as the ability to detect and respond to changes in
population density. This process is particularly important for bacteria that undergo pro-
found phenotypical changes when switching between different stages of growth (lag phase,
exponential phase, and stationary phase), but equally occur in mammalian cells, espe-
cially in epithelial cells, cancer cells, immune cells, and stem cells [1–4]. Bacteria produce
diffusible molecules to signal population density and the density-dependent increase of
their concentration activates intracellular signalling pathways that lead to changes in gene
expression (Figure 1, Table 1). The chemical nature of QS molecules is diverse and includes
peptides (auto-inducing peptides, AIP; in Gram-positive bacteria), amphiphilic molecules
(acyl-homoserine lactones, AHL, consisting of the amino acid derivative homoserine lac-
tone (HSL) and fatty acids of different length in Gram-negative bacteria) and derivates
of 4,5-dihydroxy-2,3-pentansione (DPD, in Gram-positive and -negative bacteria. Many
species/strains produce relatively unique derivatives of AIP and AHL that allows the
distinct signalling and crosstalk between bacteria [5–7].

1.1. Bacterial QS Signals

In Gram-positive bacteria, the QS machinery often consists of two-component systems
(TCS). These are composed of the membrane-bound sensor histidine kinase that is activated
by extracellular QS cues and catalyses the phosphorylation of an intracellular response
regulator. The phosphorylated regulator affects target gene expression either directly
through binding to their promotor or indirectly through the expression of regulatory RNA
(RNAIII). This pathway is exemplified in Figure 1. Alternatively, Gram-positive bacteria,
such as Enterococcus, Streptococcus, and Clostridium, also possess intracellular receptors
for QS molecules (RRNPP family; Rap, Rgg, NprR, PlcR, and PrgX) [8–12]. These rely on
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peptide transport through the bacteria cell wall and regulate gene expression either directly
or through the modulation of the activity of transcription factors.
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Figure 1. Schematic representation of the different quorum sensing molecules and intra-cellular sig-
nalling pathways Gram-positive (red) and Gram-negative (blue) bacteria. The QS molecule auto-
inducer 2 (AI-2) has been described in both Gram-positive and Gram-negative bacteria (violet). El-
ements adapted by permission from [12], Springer Nature [13], and from BioRender.com (accessed 
on 2 November 2021). 

In contrast, most Gram-negative bacteria utilize non-peptide N-Acyl homoserine lac-
tones (AHL) for intra-species communication [13]. These are produced by AHL synthe-
tases (LuxI or LuxM) from S-adenosylmethionine and cross the bacterial cell membrane 
due to their chemical nature and bind to intracellular receptors (LuxR) where they regu-
late the expression of target genes once activated by their respective ligand. 

In addition to these exclusive systems, Gram-positive and Gram-negative bacteria 
both produce auto-inducer 2 (AI-2) through the AI synthesase LuxS. AI-2 and other AIs 
are thought to facilitate inter-species communication. It should be mentioned here that QS 
receptors of the LuxR family can also serve as inter-species sensors in some bacteria. In 
contrast to the classical LuxIR system, LuxR homologues exist in bacteria that do not pro-
duce species-specific AHL themselves. The expression of these homologues, LuxR solo, 
such as SdiA in E. coli and S. typhimurium, enables these bacteria to respond to QS signals 
from other bacteria. In addition to these three main groups, several bacterial species have 
been shown to produce rather unique QS molecules with distinct chemical structures. 
Since these are mostly described for non-enteric bacteria, the reader is referred to excellent 
reviews published elsewhere [13–15]. 

The expression of many bacterial genes is regulated by QS in order to ensure the 
survival of the population within changing environments [16–18]. To date, the modula-
tion of gene expression by QS has mostly been studied in pathogenic bacteria, but func-
tional QS systems are also present in gut residents (commensal) or probiotic bacteria [19]. 

Figure 1. Schematic representation of the different quorum sensing molecules and intra-cellular
signalling pathways Gram-positive (red) and Gram-negative (blue) bacteria. The QS molecule auto-
inducer 2 (AI-2) has been described in both Gram-positive and Gram-negative bacteria (violet).
Elements adapted by permission from [12], Springer Nature [13], and from BioRender.com (accessed
on 2 November 2021).

In contrast, most Gram-negative bacteria utilize non-peptide N-Acyl homoserine lac-
tones (AHL) for intra-species communication [13]. These are produced by AHL synthetases
(LuxI or LuxM) from S-adenosylmethionine and cross the bacterial cell membrane due to
their chemical nature and bind to intracellular receptors (LuxR) where they regulate the
expression of target genes once activated by their respective ligand.

In addition to these exclusive systems, Gram-positive and Gram-negative bacteria
both produce auto-inducer 2 (AI-2) through the AI synthesase LuxS. AI-2 and other AIs
are thought to facilitate inter-species communication. It should be mentioned here that
QS receptors of the LuxR family can also serve as inter-species sensors in some bacteria.
In contrast to the classical LuxIR system, LuxR homologues exist in bacteria that do not
produce species-specific AHL themselves. The expression of these homologues, LuxR
solo, such as SdiA in E. coli and S. typhimurium, enables these bacteria to respond to QS
signals from other bacteria. In addition to these three main groups, several bacterial species
have been shown to produce rather unique QS molecules with distinct chemical structures.
Since these are mostly described for non-enteric bacteria, the reader is referred to excellent
reviews published elsewhere [13–15].

The expression of many bacterial genes is regulated by QS in order to ensure the
survival of the population within changing environments [16–18]. To date, the modulation
of gene expression by QS has mostly been studied in pathogenic bacteria, but functional
QS systems are also present in gut residents (commensal) or probiotic bacteria [19]. QS-
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regulated factors may thus have context-dependent beneficial or detrimental effects for the
host (Table 1, Sections 3 and 4).

Table 1. QS activates target genes that benefit bacteria and have dichotomous effects on host physiology.

Bacteria Positive for Host Negative for Host

To
xi

ns
,

an
ti

bi
ot

ic
s

Kill superfluous bacteria with
limited viability.

Antimicrobials can inhibit the growth
of pathogenic bacteria (novel

antibiotics) [20,21].

Toxins cause severe disease through
damaging the intestinal epithelium,

activating immune cells and neurons
(pain) [22].

Pr
ot

ea
se

s

Increase nutrient availability.

Modulate nutrient pool in the gut
through protein degradation for
metabolisation/fermentation by

bacteria and absorption by the host.

Degrade host mucins and
immunoglobulins decreasing host

defences [23].

Bi
ofi

lm
fo

rm
at

io
n

Allows motility of otherwise
immotile bacteria, provides

protection, allows GI colonisation.

Enables the growth and presence of
beneficial bacteria (‘niche’) [24–26].

Protects from elimination/targeting by
immune cells [27].

M
et

ab
ol

ic
ad

ap
ta

ti
on Switch to metabolic pathways

using ready-to-use substrates,
metabolic slowing [28,29].

Depletion of nutrients for the growth of
pathogenic bacteria, production of

inhibitory metabolites [30].

Depletion of nutrients for the host and
adaptation to mucus degradation [31].

Bacteria defective in QS signalling cannot easily colonize the gastrointestinal (GI)
tract. This has been found in pathogenic, commensal, and probiotic strains. Streptococcus
gallolyticus subsp. gallolyticus for example can only colonize the murine intestine when
it is able to produce the bacteriocin-like peptides (blpA and blpB). Blp-deficient mutants
did not persist in the intestine. This may have important implications for the host given
that the presence of Streptococcus gallolyticus is associated with the occurrence of colorectal
cancer [32]. Blp from S. gallolyticus leads to a depletion of the commensal Enterococcus
faecalis that facilitates S. gallolyticus persistence and furthers the disease-promoting envi-
ronment. Equally, it was found that the luxS mutant of Lactobacillus rhamnosus GG and
Bifidobacterium breve UCC2003 displayed significantly less persistence in the murine GI tract
compared to the wild-type strains. This was associated with a higher sensitivity to gastric
juice and impaired the ability of the bacteria to acquire iron in the iron-limited intestinal
conditions, respectively, and suggests that luxS-induced signalling is crucial for intestinal
survival [33,34] and bacterial adhesion to intestinal cells [35]. AI-2 production by Escherichia
coli has also been shown to be a crucial determinant of microbial composition after strepto-
mycin treatment. The deletion of the AI-2 receptor, and thus accumulation of AI-2 in the GI
tract, increased colonisation with Firmicutes compared to animals that received strains in
which luxS was deleted [36]. The depletion of Firmicutes and the increased abundance of
Bacteroidetes is usually observed after streptomycin treatment. This finding, in line with
others, demonstrate that the inhibition of QS does not per se lead to reduced persistence.
Xu et al. (2006) reported that the deletion of the luxS gene, which produces the QS molecule
AI-2, increases biofilm formation and virulence of Staphylococcus epidermidis [37].

1.2. Host Molecular and Cellular Targets of Bacterial QS Signals

A strong link between host health and disease and the presence and/or absence
of bacteria in the gastrointestinal (GI) tract has been documented. However, the exact
mechanisms underlying the beneficial effects of certain microbial metabolites remain to
be established. Pathogen-associated molecular pattern (PAMP) recognition receptors such
as toll-like receptors (TLR) have been the focus of many studies. More recently, it has
become clear that receptor families that are not traditionally thought to be involved in
bacterial sensing, may have evolved to respond to bacterial signals including QS-associated
molecules. It is also tempting to speculate that among the many orphan receptors in the
human genome, at least some will also respond to bacterial products.
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G protein-coupled receptors (GPCRs) have been identified as potential targets in
facilitating bacteria–host interactions by microbial-derived molecules. They can be activated
by various bacterial compounds and metabolites [38–40]. GPCRs constitute a major part
of the human genome and are one of the major classes of proteins that can be targeted
pharmacologically. Of the known GPCR’s, taste receptors (T2Rs), Mas-related G protein-
coupled receptors (MRG), and formyl peptide receptors (FPR) have all been shown to be
involved in bacterial sensing [41]. For example, Tizzano et al. (2010) demonstrated that
AHL released by Pseudomonas aeruginosa and Escherichia coli activate nasal chemosensory
cells through the bitter taste receptor, Tas2r38 [42]. Moreover, Pudir et al. (2019) found that
mast cell responses to Gram-positive QS peptides (AIP) are dependent upon MRGPRX2
expression [43]. Additionally, it is likely that AHL and AIP also activate metabolite and
fatty acid receptors either in their naïve form or after processing in the GI tract given that
they constitute acyl derivatives of homoserine lactone (Figure 1) and short peptides.

Other non-GPCR targets have also been described in sensing bacterial QS signals.
Most recently, AHL have been added to the list of activators of the cytosolic aryl hy-
drocarbon receptors (AHRs), which also respond to plant products, xenobiotics, indole
metabolites, and short chain fatty acids. AHR activity is differently regulated by distinct QS
molecules [44–46], and this may constitute an important function of the AHR in the regula-
tion of the host metabolism by pathogenic and commensal bacteria [47,48]. The scaffolding
protein IQGAP1 (IQ motif-containing GTPase-activating protein 1) constitutes another
intracellular target of AHL [49,50]. IQGAP1 regulates the activity of binding proteins and
is involved in maintaining the cytoskeleton, which plays an important role for bacterial
pathogenesis, given that bacteria interface with the intestinal epithelium when transiting
through the GI tract. Further, the family of transient receptor potential (TRP) ligand and
temperature-gated ion channels are likely involved in host sensing of QS. So far, it has
been demonstrated that TRPA1 can be activated by the endotoxin lipopolysaccharide (LPS)
independent of TLR4 [51] and that TRPV1-expressing cells are responsive to Staphylococcus
aureus virulence factors [52].

In addition to traditional receptor-type sensors, the lipid composition of the cell
membrane and the expression of glycolipids and transmembrane proteins have also been
implicated in QS sensing. It has been found that small amphipathic peptides secreted by
pathogenic Staphylococcus aureus (Phenol-soluble modulins, Psm) preferentially disrupt
liquid disordered membrane domains [53], leading to cytotoxicity, whereas a host-expressed
a disintegrin and metalloproteinase (ADAM) 10 has been found to be required for the
binding and multimerization of S. aureus α-hemolysin [54–56]. The selectivity of toxins
secreted by Clostridium botulinum, tetani and Vibrio cholerae for neurons is related to the
presences of certain gangliosides (glycosphingolipids), synaptic vesicle glycoprotein 2, and
synaptotagmin at the cell membrane, and are required for binding and internalization of
botulinum, tetanus, and cholera toxin [57,58]. A similar specificity has been observed for
other toxins secreted by Corynebacterium diphtheriae, Bacillus anthracis, Clostridium perfringens,
Escherichia coli, and Salmonella enterica. On the contrary, few studies have investigated the
effects of toxins and antimicrobial peptides secreted by commensal bacteria on the host.
These so-called bacteriocins and bacteriocin-like peptides (BLP) are secreted by Lactobacillus
and Escherichia species [21,59] and may represent novel antimicrobials. Although these
substances do not seem to have equally strong toxic effects on host cells as those derived
from pathogenic bacteria, it remains to be investigated whether they can affect host cellular
signalling pathways. It has been shown that bacteriocins, can cross epithelial barriers
in-vitro and potentially in-vivo [60,61], which might suggest that they have a physiological
role to play beyond the GI tract.

The molecular targets described above are expressed by a multitude of cell types
within the mucosal neuro–immune interface. Albeit intestinal epithelial cells would appear
to be ideally located to sense bacterial metabolites in the GI tract, studies suggest that
neurons and immune cells within the mucosa also directly respond to those molecules. This
is possible through the crossing of such molecules across the epithelium [60–62] or bacterial
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cell translocation either into the epithelial cell or into the sub-epithelium [63–66]. Indeed,
it has been suggested that molecules with a molecular weight below 7 KDa can cross the
epithelial barrier [62]. This includes nearly all AHL and AIP as well as QS-associated
molecules and has been shown for bacteriocins in an epithelial in-vitro system. Specific
neurotoxins from Clostridia have evolved to translocate the intestinal wall through binding
to proteins that are actively transported across the epithelium [57]. Pathogenic bacteria,
such as Salmonella typhimurium, can survive and replicate intracellularly in epithelial and
immune cells before inducing cell death, and, thus, can release secreted metabolites into
deeper tissue layers. Further, Staphylococcus aureus can evade elimination by the immune
system leading to re-occurring and chronic infection [63–65]. More recently, it has been
shown that gut-resident bacteria are also capable of translocating the epithelial barrier
and disseminating systemically [66], potentially by re-shaping the epithelial cytoskeleton
through QS molecules [50].

2. Factors Influencing QS in the Gastrointestinal Tract

Traditionally, QS activation is associated with a high bacterial density but other signals
including environmental stress, starvation, pH, and bile acids can induce changes in
bacterial expression profiles.

2.1. Environmental Conditions (pH)

During their transfer through the human intestine, bacteria encounter different pH
conditions. Gastric acid reduces the pH in the stomach to about 2–5, which constitutes a
significant inhibitory barrier for most bacteria. Distal of the stomach, Lactobacillus and Bifi-
dobacterium species can produce lactic acid and short chain fatty acids, respectively, which
contribute to pH regulation of the intestine [67–69]. Acidic pH activates QS in Lactobacillus
rhamnosus for example, and this is associated with increased bacteriocin production [70–74].
It has also been noted that acidic supernatants of Lactobacillus strains prevent biofilm forma-
tion by the pathogen Pseudomonas aeruginosa more so than neutralized supernatants. This
suggests that it is the acidic pH itself that regulates the virulence of this pathogen. It cannot
be excluded that yet uncharacterised mechanisms also play a role. [75]. This pH-dependent
regulation is thought as an adaptation for pathogens to save energy in harsh conditions
and to survive transit through the intestine [76]. In Clostridium perfringens, organic and
inorganic acids induce the production of a self-quorum quenching molecule that inhibits
QS [77]. Similar observations have been made for Staphylococcus aureus [78]. In contrast, the
well-known stomach-residing pathogen Helicobacter pylori expresses an acid-detoxifying
enzyme, Urease, to degrade stomach acid [79] while in Streptococcus pyogenes, acidification
leads to conformational changes of the QS peptide receptor that allows binding of the
peptide leading to the activation of virulence factor production [80].

2.2. Short Chain Fatty Acids

Short chain fatty acids (SCFAs) are produced by bacteria residing within the gastroin-
testinal tract through the metabolization of dietary starches and also proteins [81]. The
predominant SCFAs in the GI tract are acetate, propionate, and butyrate, which make up
90–95% of the total short acid pool in the colon and faecal samples. The highest concentra-
tion (up to 100 mM) of SCFA can be found in the caecum [82] with an average contribution
of 60:20:20 per cent for acetate, propionate, and butyrate, respectively [83]. Beyond consti-
tuting important energy sources for epithelial cells and contributing to gut immunity and
gut–brain signalling for the host [84], SCFAs have also been found to modulate virulence
factors and biofilm production of bacteria [85]. Whilst SCFA can reduce biofilm formation
and QS activity [86,87] and, at high concentrations, inhibit bacterial growth [88], a number
of pathogens appear to have adapted to the presence of SCFA in the GI tract and increase
virulence factors production when exposed to acetate, propionate, or butyrate [85,89,90].
Interestingly, it has been found that SCFA also increase QS-regulated bacteriocin production
the probiotic Lactobacillus species [73].
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2.3. Dietary Compounds (Secondary Plant Products)

Numerous dietary molecules with diverse structures have been shown to interfere
with bacterial virulence, including inhibition of QS [91–94]. They can compete with bacterial
QS molecules for receptor binding as a result of structural similarities (pyrogallol) [95],
sequester bacterial QS molecules (polyphenols and lignans) [96,97], inhibit QS molecule
synthesis (naringenin) [98,99], accelerate QS molecule or receptor degradation (halogenated
furanones) [100], and modulate receptor activity (cinnamaldehyde and luteolin) [101,102].
Additionally, plant products interfere with bacterial membranes and their metabolism
leading to a decrease in QS molecule production. The precise mechanism of action for
these plant-derived molecules remains to be completely understood. Further, most studies
have focused on inhibiting pathogenic QS and QS-associated phenotypes such as biofilm
formation. For example, Cho et al. found that out of extracts from 522 plants, only
extracts from three Carex species (grass-like plants) exhibited a strong inhibitory effect on
biofilm formation of Pseudomonas aeruginosa [103]. However, it is likely that plant products
inhibiting QS in pathogenic bacteria may well simultaneously target commensal QS that
may have subsequent effects on the host.

2.4. Host–Gut Microbial Co-Metabolism (Bile Acids)

The host produces primary bile acids in the liver and secretes bile salts (glycine or
taurine of cholic acid and chenodeoxycholic acid) into the duodenum to enable the diges-
tion of dietary fats. Thus, the concentration of bile acids is high in the proximal intestine
and decreases along the ileum where the majority is resorbed (enterohepatic cycle) and
metabolized by bacteria (to secondary bile acids such as deoxycholic acid and lithocholic
acid). It has been shown that these different moieties have diverging effects on bacteria,
for example by affecting Clostridium difficile survival. While host (predominantly primary)
bile acids enhance bacterial growth and virulence, secondary bile acids have the opposite
effect [104,105]. In many other pathogenic bacteria, exposure to bile acids triggers the
production of QS signals and has been shown to increase biofilm formation, exopolysaccha-
ride production, and antibiotic resistance [32,106]. In Vibrio cholerae for example, bile salts
impair the DNA binding capacity of the QS receptor VqmA (repressor), which subsequently
increases the production of virulence related genes [76]. Porcine bile extract similarly affects
QS systems in non-pathogenic bacteria. In Bifidobacteria, exposure to bile acids increases
bacterial growth and biofilm formation in a LuxS-dependent manner [107], and in some
Lactobacillus species bile as well as individual bile acids increases AI-2 activity and adhesion
to epithelial cells in L. rhamnosus, respectively [74]. In L. plantarum, higher LuxS activity
is related to a higher resistance to bile acids and the production of anti-microbial sub-
stances [33]. For other Lactobacillus strains bile acids are toxic despite the high percentage
of bile salt hydrolase producers in the Lactobacillus family [108].

2.5. Interkingdom Signalling Molecules

It has become clear that Gram-negative bacteria including Escherichia coli, Shigella sp.,
and Salmonella sp. express QseC, a predicted membrane-bound histidine sensor kinase, that
enables them to respond to host-stress signals such as epinephrine and norepinephrine [109].
This inter-kingdom activation has been referred to as autoinducer-3 (AI-3) as it resembles
the previously discussed AI systems and leads to the activation of QS gene expression.
GI disease induced by a QseC-deficient mutant of an E. coli-like pathogen in rabbits, was
significantly less severe than the wild type [110], and exposure of Salmonella enterica serovar
typhi to epinephrine significantly increased hemolysin production [111]. Gram-positive
bacteria including Staphylococcus epidermidis and Enterococcus faecalis also express QseC
homologues, and activation by either epinephrine or norepinephrine induces biofilm
formation [112].

Data also support a role for host serotonin in modulating QS activity and bacterial
virulence [113,114]. Serotonin was found to increase virulence factor production by the
Gram-positive Pseudomonas aeruginosa, leading to increased intestinal damage scores, and
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Lactate Dehydrogenase (LDH) and Myeloperoxidase (MPO) activity, all of which are
markers of intestinal inflammation. The co-administration of serotonin with a QS-deficient
Pseudomonas aeruginosa mutant was able to restore the impaired virulence of this deficient
strain [114]. On the contrary, Kumar et al. reported that serotonin decreases the virulence of
Escherichia coli EHEC and Citrobacter rodentium in-vitro and in mouse oral infection models.
Strategies to increase serotonin concentration (serotonin transporter knock-out mice and
selective serotonin reuptake inhibitor) prevented GI disease, whereas inhibition of the
serotonin-producing enzyme tryptophan hydroxylase increased disease severity in this
infection model [113]. This was associated with respective changes of virulence factor
(espA, tir) expression.

2.6. Immunoglobulins

Secreted immunoglobulins (Ig) constitute important components of the host defence
system. In the gut, it is specifically the dimeric IgA that is produced in both a T cell-
dependent but also a T-cell-independent manner [115], and then secreted into the gut
lumen. While a coating of bacteria and other “foreign” structures with other types of
immunoglobulins labels them for recognition by phagocytes, IgA coating exerts more
specific functions. It is particularly well suited for the agglutination of structures carrying
target epitopes because of its dimeric structure and appears to control the metabolism of
coated bacteria and prevent epithelial transition of potentially harmful agents rather than
aiming at eliminating those through triggering an immune response [116]. Support for this
notion comes from the observation that many commensal bacteria in the healthy gut are
coated with IgA [117]. Bacteroides thetaiotaomicron induces the production of a specific IgA
(mAb 225.4), that, when present in the lumen, decreases the expression of the respective
antigen expressed by the bacterium. This is associated with a reduced pro-inflammatory
transcriptional profile [118]. Furthermore, it has been suggested that an IgA coating might
facilitate gut colonization through the crosslinking of bacteria with mucus or to each other
to induce biofilm formation (which in many bacteria is regulated by QS) [116]. To date,
however, it is unknown whether naturally induced IgA targets QS systems directly. On the
other hand, it is hypothesized that the capacity of Ig to bind foreign structures could serve
as a mechanism to quench QS signals as well as virulence factors. In this regard, attempts
at developing specific antibodies to target QS molecules and toxins from Staphylococcus
aureus and Pseudomonas aeruginosa have been made and are being developed as novel
anti-virulence strategies [119–121].

3. QS at the Mucosal Neuroimmune Interface

At the mucosal neuroimmune interface, it is epithelial cells, immune cells, and intesti-
nal neurons that directly or indirectly interact with QS molecules. Given that those can
originate from either pathogenic or commensal bacteria, the interaction with host cells may
lead to either detrimental or beneficial effects (Figure 2).

3.1. Epithelial Barrier

Animals that develop without a microbiome (germfree) display differences in intestinal
permeability and mucus structure that normalise upon colonisation [122,123]. Although
it is currently unclear which mediators are responsible for these changes, it is likely that
QS molecules play a role. Probiotics have been shown to enhance barrier function in-
vitro and in animal studies [124]. However, with few exceptions, the molecules involved
remain to be identified. In their study, Yan et al. (2007) identified the secreted proteins
p40 and p75 in Lactobacillus rhamnosus GG supernatants that enhance epithelial survival
in-vitro [125]. QS-regulated virulence factors from pathogenic Citrobacterium difficile, E. coli,
and S. typhimurium decrease transepithelial resistance through the modulation of tight
junctions via small Rho GTPase inhibition or activation [126,127]. It has further been shown
that QS-associated molecules can negatively impact gut integrity through the activation
of inflammatory pathways (NF-κB) that impair intestinal barrier function [128–130]. This
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predominantly negative association reported to date between QS-associated molecules and
barrier function may reflect a bias toward studying pathogen-like bacteria for which QS is
better understood rather than commensal organisms.
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They are composed of a protein moiety that is heavily glycosylated, and, thus, forms a 
gel-like protective layer covering the epithelium [133]. Lactobacillus species potently in-
duce mucin secretion in a colonic cell line via the production of a yet unidentified heat-

Figure 2. QS at the mucosal interface in health and disease. QS and associated molecules from
commensal and probiotic bacteria (top table) play an important role in the development and mainte-
nance of a healthy mucosa through modulating mucus secretion, epithelial barrier function (beige,
Section 3.1), immune function (pink, Section 3.2), and neuronal activity (green, Section 3.3) in the
gut. Pathogenic bacteria also produce QS molecules that can have harmful effects on mucosal neuro-
immune function (bottom table). For simplification, the two plexi of the ENS have been depicted as
one entity as have spinal and vagal intestinal afferents who provide input into the brain. For more
details on the anatomy of the ENS and gut–brain signalling, the reader is referred to the references in
Section 3.3. Figure elements from BioRender.com (accessed on 4 April 2022).

Pathogenic, commensal, and probiotic bacteria have all been shown to modulate
the expression of mucins and other defence proteins in a manner that favours host re-
silience [131,132]. Mucins are produced by goblet cells located in the crypts of the epithe-
lium. They are composed of a protein moiety that is heavily glycosylated, and, thus, forms a
gel-like protective layer covering the epithelium [133]. Lactobacillus species potently induce
mucin secretion in a colonic cell line via the production of a yet unidentified heat-resistant
non-proteinaceous soluble mediator [134] and Bifidobacterium longum has been shown to
increase the thickness of the mucin layer in vivo [135]. Equally, many pathogenic bacteria
increase mucin secretion to shape their environmental ‘niche’ as it provides a sugar-rich
source of nutrients and an intestinal adhesion scaffold [23,136,137]. Whilst it is clear that
pathogenic QS-associated molecules are important for their effect on mucus, this remains
to be investigated for commensal and probiotic bacteria.

The secretion of antimicrobial substances (human defence proteins, defensins, and
lysozymes) from Paneth cells is another important mucosal defence mechanism that is
modulated by bacteria. However, whether commensal bacteria and their QS systems play
a role in Paneth cell section is still a matter of debate. On the one hand, regenerating
islet-derived 3 γ (RegIIIγ) and IgA production are markedly reduced in germfree animals
and α-defensin secretion can be induced in-vitro by exposing small intestinal crypts or
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cell lines to bacteria or bacterial products [138–141]. On the other hand, germfree mice
also express defensin genes and are not devoid of Paneth cells, indicating that commensal
bacteria are not required for defensin expression or differentiation of stem cells into Paneth
cells [142]. Virulence factors produced by Salmonella enterica have been shown to reduce
lysozyme granules and secretion in Paneth cells, which is counteracted by an increase in
Paneth cell proliferation at later stages of the infection [143,144]. One possible explanation
for these divergent findings could be that Paneth cell mediators are potentially deleterious
for commensals and therefore, they regulate the turnover but not production of these
mediators [145].

3.2. Immune Modulation

The GI tract harbours cells of both the innate and adaptive immune system, and both
have been shown to be responsive to bacterial QS signals. AHL from pathogenic bacteria
have been the prime focus of research in this area.

It has been found that AHL, especially 3-oxo-C12 HSL from Pseudomonas aeruginosa,
can regulate the inflammatory response by acting as a chemoattractant for neutrophils [146]
whilst then inhibiting their activity as well as that of macrophages and dendritic cells,
subsequently inducing apoptosis in those cells. This serves to repress immune-mediated
elimination of the pathogen [147,148]. A similar immune dampening effect has been
described for infection with pathogenic Yersinia pseudotuberculosis and non-pathogenic
Salmonella typhimurium. Infection with the pathogenic strain prior to the non-pathogenic
strain led to the differentiation of macrophages into a tissue-protective phenotype [149].

Studies investigating the impact of the microbiota on the adaptive immune response
have identified the transcription factor retinoic acid receptor (RAR)-related orphan-like
(ROR)-γ in the sensing of commensal bacteria. ROR-γ is initially expressed by most lym-
phocytes in intestinal lymph follicles. During differentiation, only some subpopulations
maintain a high expression of ROR-γ and those have been shown to be particularly re-
sponsive to signals from the intestinal microbiota. A major cell type that expresses high
levels of ROR-γ are IL-17 secreting TH17 (CD4+) cells [150]. They are induced by specific
nonculturable members of the microbiome, namely segmented filamentous bacteria (SFB)
from the cytophaga-flavobacter-bacteroides group but not by Enterococcus faecalis or the altered
Schaedler’s flora [150,151]. In animals colonised with SFB, the amount of AI-2 in mouse
faeces is significantly higher than in germfree or SFB-naïve animals, and treatment with
AI-2 increases the TH17 pool [152]. This AI-2-induced TH17 differentiation in-vivo appears
to require serum amyloid A (SAA) proteins, a family of apoliproteins that are known to
regulate several aspects of the immune system [152]. TH17 cells via IL-17 regulate recruit-
ment and the phagocytic activity of neutrophils and play important roles for pathogen
elimination and are associated with the ROR-γ+ innate lymphoid cells, ILC3. These have
an inhibitory function on TH17 activity since their ablation induces low grade inflamma-
tion [153]. The second major ROR-γ+ T cell type constitutes a subpopulation of regulatory
T cells (Treg). These cells acquire expression of the Treg marker FOXP3 and are particularly
prominent in the small and large intestine [154]. It has been found that several strains
of the class Clostridia as well as Bacillus fragilis, Bacteroides thetaiotaomicron, Staphylococcus
saprophyticus, and Clostridium rhamnosus are the most prominent ROR-γ+ Treg cell-inducing
bacteria. These strains are also capable of metabolising carbohydrates to SCFA [155–157].
FOXP3+ ROR-γ+ Treg cells produce either IL-10 or TGF-β, which inhibits TH17 and TH1
differentiation. Another Treg subpopulation (T1r) that does not express FOXP3, can be
induced by Bifidobacterium breve and secretes the anti-inflammatory IL-10 [158]. Lastly,
ROR-γ is expressed by populations of T cells that function in a similar manner to natural
killer cells. Their abundance increases upon colonisation of germfree animals and subse-
quent IL-22 release contributes to the induction of antimicrobial peptides (AMP) in the
intestinal epithelium [159]. To date, it has not been investigated whether ROR-γ directly
responds to QS-regulated signals. It is interesting to note, however, that known ROR-γ
ligands such as quinoline sulphonamide derivates and intermediates of the cholesterol
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biosynthetic pathway [160,161], which contain aromatic or sterol structures along with
hydrophilic headgroups, are present in some AHL and other QS-regulated molecules.

Bacteria also induce a TH1 polarisation via T-bet activation whereas extracellular
antigens and helminths induce the Gata3 transcription factor leading to a TH2 response.
The main cytokines, IFN-γ and IL-5, activate macrophages and eosinophils, mast cells, and
B cell differentiation, respectively [162].

3.3. Gut Intrinsic and Extrinsic Neural Function

Neurons are abundantly present in the GI tract. They comprise more than 100 million
cells belonging to the intrinsic enteric nervous system (ENS) and receive dense innervation
from extrinsic neurons [163]. Intrinsic enteric neurons are organised in a network under-
neath the mucosa (submucous plexus) and in between the muscle layers (myenteric plexus).
The ENS constitutes chemically diverse neurons and glia cells, and regulate important
GI functions such as fluid and ion homeostasis and motility [164]. Extrinsic neurons are
located in ganglia outside the intestinal wall, either along the spinal cord (spinal afferents)
or in the brain (vagal afferents), but extend their processes into all layers of the GI tract to
relay information on the GI environment to the brain [165,166].

Studies using germfree mice and probiotic/antibiotic interventions have established
an important function of the microbiota for GI function (ion transport and motility) as well
as visceral pain and behaviour [167–171]. Germfree mice display an altered behavioural
phenotype and stress response [172–176]. Some of these changes can be reversed by
colonisation with a complete microbiota or non-pathogenic commensal strains, which
suggests that these bacteria influence CNS function. Peripherally, Lactobacillus species were
found to alter neuronal activity within the ENS [177,178] resulting in changes of GI motility,
afferent nerve activity, and behaviour. However, the exact nature of this interaction and
which metabolites regulate neuronal function remain in most cases unknown.

Early studies on bacteria–(enteric)neuron interactions have focussed on effects medi-
ated by cell-wall components such as lipopolysaccharide and polysaccharide A [179–181].
However, it is becoming clear that secreted mediators from bacteria affect the ENS and
sensory neurons as well. These include Staphylococcus aureus virulence factors [182,183], a
polyketide molecule produced by Mycobacterium ulcerans [184], bacterial proteases [185],
and a lipopeptide produced by Escherichia coli [186]. It is interesting to note that most of
these mediators are regulated by QS signalling and reduce neuronal activity. In addition to
these potential direct effects of QS mediators on neuronal function, it is likely that hormones
and transmitters secreted by enteroendocrine cells in response to bacterial products also
modulate intestinal neuron function [187].

4. QS and Association with Gastrointestinal Disease and Dysfunction

The importance of the bacterial QS system for the host’s well-being has overwhelm-
ingly been studied in healthy animals and animal models of disease. These studies
clearly show that AHL themselves as well as QS-regulated substances from (opportunistic)
pathogens are important, if not essential, to cause disease. Indeed, the treatment of specific
pathogen-free (SPF) mice with 3-o-C12-HSL significantly reduced body weight, induced
GI inflammation, and increased GI permeability. This effect was recapitulated in germfree
animals that received faecal microbiota transplants from 3-o-C12-HSL-treated animals,
suggesting that 3-o-C12-HSL’s effects are mediated through the modulation of the micro-
biome [129]. In piglets, the concentration of specific AHL (3-o-C12-HSL, 3-o-C14-HSL) is
associated with a low birth weight, intestinal damage, and a decreased abundance of most
microbial communities that were investigated in this study [130]. Strategies blocking QS
signalling (QS antagonists, quorum quenching, QS antibodies, and QS degradation) reduce
disease severity in many animal models of infection [121,188]. In a Pseudomonas aeruginosa
burn–infection model, treatment with the anti-virulence agent MvfR, an antagonist of
QS receptor (PqsR), reduces intestinal inflammation and systemic inflammation, bacterial
translocation, GI morphological changes, and the increased GI permeability that are associ-
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ated with this model of disease [128]. Monoclonal antibodies against a designed hapten
resembling a Staphylococcus aureus AIP, reduced lethality in an acute infection model [119]
and many secondary plant products exert anti-virulence properties by inhibiting bacterial
QS systems [91,93]. Carvacrol for example has been shown to reduce AI-2 activity of
Campylobacter jejuni and C. jejuni’s persistence in the chicken gut [189]. It is suggested that
Carvacrol binds and inhibits AHL synthase and thus, reduces the amount of available
AHL [190].

Albeit less well understood, it is becoming evident that QS molecules are also im-
portant mediators in a human context. Landmann et al. (2018) found that up to 14 AHL
can be detected in human stool and that one specific AHL (3-oxo-C12:2) was depleted
in individuals with Inflammatory Bowel Disease (IBD) [191]. This particular AHL, in
contrast to the related 3-oxo-C12, which is secreted by Pseudomonas aeruginosa, preserves the
integrity of intestinal tight junctions and barrier function under inflammatory conditions
in-vitro [147]. AI-2 has also been detected in stool as well as saliva from patients with IBD
and healthy controls [192], and Enterococcus isolates from patients with IBD expressed more
virulence and QS genes compared with the controls [193], suggesting that the quantification
of QS molecules might constitute a novel biomarker of disease. Piewngam et al. (2018)
found that intestinal colonisation with the pathogen Staphylococcus aureus was restricted to
25 participants of the Bacillus ssp negative subpopulation (99/200) of their study, suggest-
ing that colonisation with Bacillus ssp regulates persistence and virulence of the S. aureus.
Indeed, the researchers found in a mouse model of S. aureus infection that B. subtilis inhibits
QS-regulated gene expression through the production of fengycins, a class of lipopetides
with a similar structure to AIP derived from S. aureus [194]. This work further supports a
potential link between QS molecules in healthy and diseased states. It should be noted here
that many GI diseases establish after infection with pathogenic bacteria (post-infectious
IBS) and that disease conditions are also frequently associated with changes in the gut
environment including increased gut pH, altered bile acid pools, increased immunoglob-
ulin concentrations, and the presence of opportunistic pathogens [195,196]. This, in turn,
is likely to affect the amount and composition of QS signals derived from the microbiota
(Section 2), but it remains to be established whether these pathophysiological changes in
the GI environment originate from the host or require the microbiota.

QS itself might also change the composition of the microbiota and/or the expression
of microbial metabolites. Thus, in an in-vivo situation, it is hard to disentangle this
relationship between QS-molecule-induced changes in the microbiome or their potential
direct effects on the host. From ex-vivo studies, however, it is becoming evident that
cells aside from immune cells and epithelial cells, such as neurons, can respond to QS-
related stimuli and this may constitute an important mechanism by which pathogens can
modulate the host response and induce symptoms in the GI tract [52,183,185]. Symptoms
of neuronal dysfunction (visceral pain, nausea, and GI dysmotility) alongside increased
permeability and inflammation, are hallmark symptoms of GI disease including Irritable
Bowel Syndrome (IBS) and Inflammatory Bowel Disease (IBD).

5. Perspective

Whilst QS may represent a promising target for the treatment of infectious diseases [29],
the inhibition of quorum sensing might simultaneously negatively impact indigenous
bacteria. Further, it has been shown that whilst targeting QS systems in pathogens may
reduce toxin production and acute lethality, it can, at the same time, reduce immune
stimulatory effects that may lead to persistent chronic infection. This highlights the need
for a better understanding regarding the regulation of QS and the interaction of different
QS systems in an intestinal environment. Unfortunately, current-omics approaches do not
allow the study of the growth stage of bacteria in the gut with certainty, and whether specific
QS-regulated genes are activated or inhibited. QS in resident bacteria is understudied,
and there are several questions yet to be answered. For example, is the cell density in
the intestine high enough to trigger QS activation? It would appear so, since AHL, AI-2,
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and AIP concentrations can be measured [29,197] and are hypothesized to contribute to
the cross-inhibition between species as well as niche generation. Questions also remain
regarding host-derived quorum quenching molecules or mimetics that could potentially
modulate bacterial quorum sensing, which, in turn, could either reduce toxin production
in pathogens or stimulate bacteriocin production in commensals.
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