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Abstract
Much of cognitive psychology is premised on the distinction between automatic and intentional processes, but the distinction
often remains vague in practice and alternative explanations are often not followed through. For example, Hendricks, Conway
and Kellogg (Journal of Experimental Psychology: Learning, Memory, and Cognition, 39, 491–1500, 2013) found that dual
tasks at training versus at test dissociated performance in two different artificial grammar learning tasks. This was taken as
evidence for underlying automatic and intentional processes. In this article, a different explanation is considered based on test
learning and similarity, where participants are assumed to update their knowledge at test. Contrasting formal memory models of
test learning are implemented, and it is concluded that the models account for the relevant dissociations without assuming a
distinction between automatic and intentional processes.
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Introduction

The distinction between automatic and intentional processes is
commonplace in psychology. Typically, in contrast to inten-
tional processes, automatic processes are described as being
applied effortlessly with relatively little need for cognitive
resources (Hasher & Zacks, 1979). Therefore, if a task is per-
formed well even when cognitive resources are strained, we
may want to declare the process behind performance as auto-
matic. An illustrative example of this reasoning can be found
in a study by Hendricks, Conway, and Kellogg (2013), who
concluded that the effects of a dual task on implicit learning
provided evidence for automatic and intentional processes. In
this article, I consider a different explanation of their results
partly based on on-line test learning. To this end, I extend a
formal memory model to incorporate dual-task influences.

The kind of implicit learning studied by Hendricks et al.
(2013) is called artificial grammar learning (AGL). Typically,
there are two phases, a training phase and a test phase. In the
training phase participants memorize letter sequences that fol-
low a set of rules (a grammar). These rules involve sequential
constraints, specifying which letters may follow other letters

in specific positions. The participants are not informed about
the existence of underlying rules. After the training phase,
participants are asked to classify new sequences, half of which
follow the rules (grammatical) and half of which violate the
rules (ungrammatical). Typically, participants perform above
chance even though they are unable to articulate the rules. In
so-called transfer experiments, the letter set is changed be-
tween training and test. Even in this case, participants have
been demonstrated to perform above chance.

Hendricks et al. (2013) used a dual task methodology so
that some participants performed a dual task - i.e. two simul-
taneous tasks - at training (memorization of sequences plus a
digit span task) or at test (classification of sequences plus a
digit span task). Hendricks et al. (2013) found that for stan-
dard AGL (with unchanged letters between training and test-
ing) a dual task at test disrupted performance so that partici-
pants could not distinguish between grammatical and
ungrammatical sequences, but a dual task at training did
not disrupt performance. In contrast, for transfer AGL a
dual task disrupted performance regardless of whether the
dual task occurred at training or at test. From this,
Hendricks et al. (2013) concluded that transfer AGL requires
intentional learning processes, while standard AGL does not,
because participants were able to learn standard AGL despite
performing dual tasks at training.

Translating the results of Hendricks et al. (2013) into a
difference between automatic and intentional processes may
be intuitively appealing. However, a well-known fact is that
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dissociations between tasks do not imply different underlying
processes (Dunn&Kirsner, 2003). The AGL literature itself is
rich with examples where dissociations have been accounted
for by models assuming a single underlying process. For ex-
ample, Kinder and Shanks (2001) used a single-system simple
recurrent network in order to simulate a dissociation between
classification and recognition due to amnesia, without
assuming separate processes behind classification and
recognition. Jamieson, Holmes, and Mewhort (2010) experi-
mentally demonstrated the same kind of dissociation in
healthy participants bymanipulating study time, and then sim-
ulated the results using a single-systemmemorymodel, name-
ly Minerva II (Hintzman, 1984). Tunney and Shanks (2003)
used a single-system simple recurrent network to simulate
automatic and controlled influences in AGL in a design where
participants are trained on two grammars and then asked to
endorse test items from either only one of the grammars or
from both (see Higham, Vokey, & Pritchard, 2000). The sim-
ulations showed that manipulating response parameters of a
single-system model operating only on the similarity con-
straints embodied in the stimulus materials was enough to
reproduce dissociations between automatic and controlled in-
fluences (see also Vokey & Higham, 2004). In addition, there
are many examples outside the AGL framework using the
same type of modeling approach (e.g., Curtis & Jamieson,
2019; Kinder & Shanks, 2003; Nosofsky & Zaki, 1998).
The current work fits in to this tradition of using computation-
al models to account for dissociations, rather than assuming
that dissociations directly reflect underlying processes.

An assumption implicit in both Hendricks et al. (2013) and
most formal models of AGL is that no learning occurs during
test. The test phase is merely assumed to involve expression of
acquired knowledge. Simply storing items at test may induce
performance benefits if the test items are classified on the
basis of similarity to not only training items, but also previ-
ously encountered test items. The possibility of test learning
has been recognized for a long time in AGL research, espe-
cially with respect to the question of how to establish that
learning has occurred (Reber & Perruchet, 2003). Different
forms of test learning have been demonstrated in AGL for
trained groups (Beesley, Wills, & le Pelley, 2010), untrained
control groups (Redington & Chater, 1996), and computation-
al models (Rohrmeier & Cross, 2014). In addition, test learn-
ing has been demonstrated in many other areas of cognitive
psychology, including prototype-learning of dot patterns
(Palmeri & Flanery, 1999; Zaki & Nosofsky, 2007) and learn-
ing curves with respect to the testing effect (Roediger &
Smith, 2012).

In this article I aim to show that the pattern of results ob-
served by Hendricks et al. (2013) may be a result of test learn-
ing rather than a dissociation between automatic and inten-
tional processes. The basic assumptions are that participants
learn at test and that a dual task reduces learning. The

similarity constraints of test items may enable participants to
distinguish between grammatical and ungrammatical items
using information from the test phase, without feedback
(Beesley, Wills, & le Pelley, 2010). The extent to which in-
formation in the test phase helps distinguish between gram-
matical and ungrammatical test items will depend on the exact
information contained in the test items. So, observing that a
dual task at training leaves performance unaffected does not
necessarily imply automatic learning. Participants may classi-
fy correctly despite a dual task at training, because they learn
useful information during test.

Holographic exemplar model and test
learning

In order to model test learning I consider the holographic exem-
plar memorymodel (HEM) proposed by Jamieson andMewhort
(2011), which in turn is an extension of a model (Minerva II)
proposed by Hintzman (1984). HEM uses holographic represen-
tation of sequences. This is done by applying non-commutative
circular convolution recursively in order to represent structure
beyond that of single-letter units. Suppose the sequence
MVXT is encoded as M, V, and XT. Each of these three com-
ponents is then represented by separate vectors and the vectors
are then summed. The bigramXT is formed by convolution of X
and T, so that the representation of the sequence becomesM+V
+ X*T, where * denotes non-commutative circular convolution.
Jamieson and Mewhort (2011) describe this and other model
operations in more detail.

Sequence encoding is governed by a learning rate parame-
ter L, indicating the probability with which features of a vector
are stored correctly. With probability 1-L, features are set to 0.
Once encoded the sequences are part of the memory store. A
sequence presented at test activates all sequences in memory
as a non-linear function of similarity. This produces an echo, a
constructed representation reflecting the memory activation
produced by the test sequence. The similarity between the
echo and the test sequence is denoted the intensity and is used
for classification. If the intensity exceeds a decision criterion k
the sequence is classified as grammatical.

A simple way to incorporate test learning is to extend HEM
to encode test sequences to the memory store as they are
presented throughout testing. In order to model dual tasks at
training and test, I use separate learning rate parameters for
training and test sequences and denote these Ltrain and Ltest,
respectively. Dual tasks are assumed to strain cognitive re-
sources and correspond to lower learning rates.

The model parameters are shown in Table 1. There are six
parameters in total: two learning-rate parameters (Ltrain and
Ltest) that take either high or low values depending on condi-
tion (single vs. dual task), the decision criterion (k), the dimen-
sionality of the component vectors (n), the highest level of
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encoded sequential structure (q), and the number of encoded
subcomponents of a sequence (g). The g parameter reflects the
fact that participants may not encode all possible subcompo-
nents of a sequence. For example, presented with
MVXTXVT, a participant may perhaps only encode a small
number of subcomponents, say MV and XTX. In the simula-
tions g random components are selected from each presented
sequence. The q parameter reflects the fact that participants
may only encode sequential structure up to a certain level. For
example, if q = 3, participants are assumed to encode up to
three-letter subcomponents (letters, bigrams, and trigrams).

Modeling dual tasks

A dual task at test could have the effect of reducing learning
rate at test, but it could also quite plausibly have other effects.
Here, I present a set of three different extended HEM models
aimed to tease apart these factors to some extent.

The first model includes test learning and degrades a test
item by the test learning rate before classification. Here, a dual
task at test affects both test learning and classification. The
second model includes test learning but degrades the test item
only after classification. Thus, the second model assumes that
a dual task at test only affects test learning, not classification.
The third model does not include test learning, but degrades
the test item before classification. This model enables an as-
sessment of performance when a dual task is assumed to affect
classification without test learning. I refer to these three
models as HEM-TC, HEM-T, and HEM-C, respectively,
where T indicates that the model involves Test learning and
C indicates that a test item presented for Classification is de-
graded by the test learning rate parameter.

In order to model the results of Hendricks et al. (2013), I
treated the mean difference between the hit- and false-alarm
rates as the outcome variable. A hit means saying “grammat-
ical” to a grammatical item and a false alarm means saying
“grammatical” to an ungrammatical item. In accordance with
Jamieson and Hauri (2012), each subcomponent vector
consisted of n = 100 random normal deviates with mean 0
and standard deviation 1/n. The g and q parameters should

plausibly be constrained to reflect quite limited sequential
structure when applied to AGL (Jamieson & Mewhort,
2011). In these simulations the g parameter was allowed to
vary from 2 to 5. I initially explored the q parameter from 1 to
3, but as single-letter knowledge is often not a diagnostic
predictor in AGL and only seemed to add random noise to
the model predictions, I implemented the models without
single-letter knowledge. Here I report results for q = 2
(bigrams only) as higher values produced far too erratic and
noisy results. Bigram knowledge is often a central component
of AGL (Perruchet & Pacteau, 1990), but ultimately the kind
of knowledge acquired depends on encoding (Jamieson,
Vokey, & Mewhort, 2017).

Each condition in the experiments of HCK involved a dual
task at training, dual task at test, dual task at both training and
test, or no dual tasks. In themodels, these conditions correspond
to high or low learning rates at training and/or test. A dual task is
assumed to correspond to a lower learning rate. Through simu-
lation I explored a coarsely specified parameter space to obtain
an equally coarse multidimensional likelihood function for each
of the models (cf. Rohrmeier & Cross, 2014). These likelihoods
were then averaged in order to obtain a composite likelihood for
eachmodel. This corresponds to a Bayesianmarginal likelihood
with a uniform prior over the model parameters. The ratio of the
likelihoods of two models further corresponds to the Bayes
factor, indicating the relative support for one model over the
other across the parameter space. In addition to Bayes factors,
I also report maximum likelihood ratios. In the latter case, only
the highest likelihood of a model is considered, providing a
basis for how well a model and its best parameter combination
can predict the data, instead of model performance on average
across the parameter space.

The parameter space consisted of all combinations of g =
{2, 3, 4, 5} and three parameter values for each of the learning
rates Ltrain and Ltest (where the values depend on condition so
that dual task = {.1, .2, .3 and single task = {.8, .9, 1}). This
results in 36 different combinations for each model and each
of the two simulated experiments. The standard and transfer
AGL experiments were simulated independently from each
other, but the conditions within each were not.

Table 1 Model parameters, values, and their meaning

Parameter Value Meaning

Ltrain Dual task: {.1, .2, .3}
Single task: {.8, .9, 1}

Probability of encoding feature correctly at training

Ltest Dual task: {.1, .2, .3}
Single task: {.8, .9, 1}

Probability of encoding feature correctly at test

g {2, 3, 4, 5} Number of sampled components of a sequence

q 2 (bigrams only) Encoded q-gram structure (1 = letters, 2 = bigrams, etc.)

k Set to match endorsement rates Decision criterion

n 100 Dimensionality of letter vectors
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For each combination I simulated 100 iterations of 20 par-
ticipants in each of the four conditions (high/low learning rate
at training/test). The number of participants in Hendricks et al.
(2013) varied from 16 to 26 depending on experimental con-
dition. The likelihood is the probability of the observed em-
pirical data given the parameter values of the model. I consider
a model to have reproduced the observed data on a given
iteration if the root mean square error E for the model with
respect to the observed mean differences between hits and
false alarms for the four conditions does not exceed E =
0.02. This criterion is further motivated in the Results and
discussion section.

I also conduct a form of posterior predictive checks for each
model, both by using the maximum likelihood parameter esti-
mates and by sampling from the posterior distribution of model
parameters, and checking the extent to which the implied model
results match the observed data from HCK. The posterior distri-
bution used here is based on uniform priors over the parameters
and is thus identical to the simulatedmultidimensional likelihood
function. Put simply, likelihood ratios such as Bayes factors in-
dicate whichmodel is least bad, while posterior predictive checks
indicate whether the models are any good at all.

The decision criterion k was set to produce the propor-
tions of “grammatical” responses observed by HCK (see
their Table 2). Thus, k took different constrained values
depending on simulated condition. Classification was sim-
ulated in retrospect, so that simulation of a participant re-
sulted in an intensity distribution with one intensity value
for each test item. The decision criterion k was then set to
the appropriate percentile of the intensity distribution in
order to produce a desired proportion of “grammatical”
responses. As noted, when simulating standard AGL (same
letter set for training and testing), I implemented the
models to take only bigrams into account (q = 2), including
starting and end positions of a sequence (cf. Servan-
Schreiber & Anderson, 1990). For example, the sequence
XXVT would first be represented as sXXVTe, where s and
e stand for “start” and “end,” respectively. The sequence
was then parsed into its constituent bigrams: sX, XX, XV,

VT, and Te. Then, a random sample of g of these bigrams
were convolved to represent the sequence, retaining an
expected proportion of L of its features and setting the rest
to 0 before encoding it to memory. Sometimes a sequence
could have fewer than g components. In that case, sam-
pling with replacement was allowed, and otherwise sam-
pling was done without replacement.

For transfer AGL, the representational scheme for standard
AGL does not work, because the letter set is changed between
training and testing so that the expected similarity between
training and testing sequences is zero. In transfer AGL, par-
ticipants have been shown to rely on repetition information
(Lotz & Kinder, 2006), especially local repetition information
(see Brooks & Vokey, 1991, for a related account).
Representations of local repetition capture the immediate rep-
etitions in a sequence. For example, the sequence XXVT can
be represented as sABBe, where A = repetition (XX) and B =
non-repetition (XV, and VT). When simulating transfer I im-
plemented the models with this representational scheme, both
for training and test sequences. The q parameter was set to 1 in
order to reflect bigram knowledge, because a single letter in
the repetition scheme (A or B) reflects a bigram (repetition or
non-repetition).

A possible assumption motivating this representational
scheme for transfer AGL is that participants directly encode
the repetition patterns of the sequences. If so, utilization of
repetition knowledge would not require additional inferential
processes. The current simulations explore the viability of
such a framework. The assumption of direct repetition
encoding is not necessarily correct of course. For example, it
could be that participants infer a mapping between training
and test sequences at test (Dienes, Altmann, & Gao, 1999).
If so, dual tasks could be expected to interfere with these
inferential processes in line with HCK. My aim here though,
was to explore the implications of not assuming these infer-
ential processes. Matlab model code is available for download
at https://osf.io/awpgm/.

Results and discussion

The root mean square error criterion E for counting something
as reproducing the observed data is somewhat arbitrary. It
needs to be relatively small in order to stay close to the data,
but it also needs to be large enough to respect the resolution of
the model outputs. I initially tried E = 0.01, which resulted in
zero likelihood for all models. I then tried E = 0.02, and these
are the results I report here. Under these conditions HEM-C
could not account for standard AGL and HEM-T could not
account for transfer AGL. For these two cases I also tried
higher values of E up to 0.05 and also investigated posterior
predictive checks without being able to reproduce the

Table 2 Bayes factors (BFs) and maximum likelihood ratios (MLRs)
for standard and transfer artificial grammar learning (AGL)

Standard AGL Transfer AGL

BF MLR BF MLR

HEM-TC/HEM-T 4.37 1.67 - -

HEM-TC/HEM-C - - 1.30 1.24

HEM-T/HEM-C - - - -

Note: Empty cells involve model comparisons including models with
zero or very close to zero likelihood across the parameter space. These
models are not considered further
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observed data patterns. These two cases are therefore not in-
cluded in the following comparisons.

For standard AGL the HEM-TC model has the highest
probability of generating the observed data across the param-
eter space, while for transfer AGL the HEM-TC and HEM-C
model are quite close to each other. The Bayes factors and
maximum likelihood ratios in Table 2 quantify these results.
For standard AGL, the HEM-TC is about four times more
likely to produce the data across the parameter space com-
pared to the HEM-T model, but the maximum likelihoods
are relatively close for the two models. For transfer AGL,
the HEM-TC and HEM-C models are more or less on equal
footing with respect to both Bayes factor and maximum like-
lihood ratio. The likelihood distributions are shown in Fig. 1.

Figure 2 shows the results of posterior predictive model
checking, both for the posterior distribution of parameters
(equivalent to the likelihood function for uniform priors) and
for the maximum likelihood parameters Themodel plots show
the mean model output with respect to posterior or maximum
likelihood parameters and the empirical plots show the ob-
served means from Hendricks et al. (2013).

First, consider the results for standard AGL (top part of Fig.
2). The HEM-TCmodel, which was supported over the HEM-
T model by the Bayes factor, provides a good account of the
data. The empirical data for standard AGL may invite the
interpretation that learning is automatic, because a dual task
at training has little effect on performance. However, the
HEM-TC model accounts for this result by learning at test.
The HEM-C model, which does not learn at test, could not
account for the results. According to the test learning models,
this pattern occurs because of the differential similarity

constraints embodied in the training and test items. Simply
learning at test is enough in this case. The empirical data also
show that a dual task at test for standard AGL disrupts perfor-
mance. According to the test learning models, this occurs
because test learning is disrupted. Simply learning at training
is not enough in this case.

The bottom part of Fig. 2 shows the results for transfer AGL.
Although the model outcomes and the empirical data are not
identical, the model outcomes capture the basic pattern of the
empirical data, namely a detrimental effect of a dual task on
classification regardless of when the dual task is realized (training
or testing). The pattern observed by Hendricks et al. (2013) dur-
ing transfer is that a dual task had the same detrimental effect on
classification regardless of when the dual task was realized (dur-
ing training or during testing). The current modeling framework
invites two interpretations of this outcome, both of which stand
as alternatives to that offered by Hendricks et al. (2013).

The first possibility is that both standard and transfer AGL
involves test learning. The HEM-TC model captures the empir-
ical basic data patterns in both cases. The second possibility is
that standard AGL, but not transfer AGL, involves test learning.
Of the tested models, only the ones involving test learning cap-
ture the results for standard AGL, but for transfer AGL HEM-C
also captures the basic pattern. Although this second possibility
may seem contrived at first sight, it can be theoretically motivat-
ed. Standard AGL experiments naturally invite test learning, be-
cause the training and test items are similar to each other and
instantiated by the same surface features. Transfer experiments
on the other hand, by their very nature, involve very salient cues
signaling abrupt change when the surface features suddenly are
different. This could have the effect of eliminating test learning
under the impression that it is no longer relevant. In this case, the
boundary between the training and test phases is more clearly
delineated. In contrast to this idea, it has been suggested that
transfer conditions in particular involve test learning, because
even participants in untrained control groups have been observed
to perform above chance (Redington &Chater, 1996). However,
untrained control groups have no choice but to engage in test
learning. Observing that untrained transfer controls perform
above chance does not mean that trained transfer participants
engage in test learning. The untrained group does not experience
the change cues signaling a strong boundary between training
and test, but the trained group does.

For current purposes it matters less which of the presented
memory models accounts best for performance. What matters
most is that they collectively provide a viable alternative that is
not ruled out by the data. It could be that standard AGL is based
on familiarity-based memory of the kind studied here, but that
transfer AGL is based on different processes involving different
kinds of mapping mechanisms (Dienes, Altmann, & Gao, 1999;
Redington & Chater, 1996) that would be more sensitive to dual
tasks. One challenge with finding support for multiple processes
is to show that these multiple-process models can account for
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Fig. 1 Simulated likelihood values for each model and experiment.
Likelihood is here the probability of generating the empirical means of
hits minus false alarms in the four experimental conditions within a root
mean square error window of no more than 0.02, given a specific
combination of model parameters. Squares show means ± 1 standard
deviation. Circles show simulated values with size proportional to
frequency. For the HEM-Tmodel in the transfer condition all values were
zero and for the HEM-C model in the standard condition all values but
one (.01) were zero
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performance. However, an additional and often overlooked
challenge is to rule out simpler models that do not involve
separate processes. The extended HEM models presented here
provide a demonstration of a set of alternative models not ruled
out by data purported in Hendricks et al. (2013) to provide evi-
dence for automatic versus intentional processes. Future work
may consider contrasting different types of test learning models
(cf. Rohrmeier & Cross, 2014), including models with multiple
learning processes.

The history of implicit learning research is rich with examples
of development and testing of computationalmodels, butmost of
these simply implement test processes as application of acquired
knowledge. The test learning mechanism implemented in the
current HEM models goes beyond simple application of
knowledge in the test phase. Nevertheless, the current test
learning mechanisms are only simplified approximations in
order to model these particular results. One important question
concerns how to model more complicated forms of test learning.
For example,Whittlesea, Brooks, andWestcott (1994) found that

Fig. 2 Posterior predictive checks for standard and transfer artificial
grammar learning (AGL). The empirical plots are the results from
Hendricks et al. (2013). The other plots are model results for different
models (HEM-T, HEMT-TC, or HEM-C). The empirical plots illustrate
combinations of single and dual training and test tasks. The model panels
illustrate combinations of low and high learning rates at training and test.
The vertical axis is H - Fa = Hits minus False alarms. E = root mean

square error. The model results are based either on the maximum likeli-
hood (ML) parameter estimates or on sampling from the posterior distri-
butions (posterior predictive, PP) of model parameters. Each mean
(circles) in the model plots is based on 100 iterations of 20 participants.
Note that for transfer AGL the empirical data only involve three condi-
tions, but the simulations include all four combinations. The scale is the
same in all plots
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test phase manipulations affected the specificity of applied
knowledge during the test phase. It seems plausible that such
manipulations will affect not only how knowledge is applied,
but also what is learnt during the test phase. As in the current
work, implementing such processes in computational models
may help shed light on the processes necessary to explain
performance.

Author notes Matlab model code is available for download at https://osf.
io/awpgm/.
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