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Abstract: Nonactivated aziridine with an electron-donating group at the ring nitrogen should be
activated to an aziridinium ion prior to being converted to cyclic and acyclic nitrogen-containing
molecules. This review describes ways to generate aziridinium ions and their utilization for synthetic
purposes. Specifically, the intra- and intermolecular formation of aziridinium ions with proper
electrophiles are classified, and their regio- and stereoselective transformations with nucleophiles are
described on the basis of recent developments.
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1. Introduction

Aziridines are three-membered cyclic organic heterocyclic compounds with one nitro-
gen atom in the ring. They are valuable and versatile due to the reactive three-membered
ring [1–9]. Highly ring-strained aziridines, e.g., other three-membered ring compounds
such as cyclopropane and oxirane, render various nitrogen-containing compounds through
ring-opening reactions with nucleophiles [10–13]. However, their stability and reactivity
depend on substituents at the ring nitrogen (whether they are electron-withdrawing or
-donating). Aziridines are bifurcated into “activated” ones bearing electron-withdrawing
substituents at the ring nitrogen and “nonactivated” ones with electron-donating sub-
stituents [14] (Figure 1).
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1. Introduction 
Aziridines are three-membered cyclic organic heterocyclic compounds with one ni-

trogen atom in the ring. They are valuable and versatile due to the reactive three-mem-
bered ring [1–9]. Highly ring-strained aziridines, e.g., other three-membered ring com-
pounds such as cyclopropane and oxirane, render various nitrogen-containing com-
pounds through ring-opening reactions with nucleophiles [10–13]. However, their stabil-
ity and reactivity depend on substituents at the ring nitrogen (whether they are electron-
withdrawing or -donating). Aziridines are bifurcated into “activated” ones bearing elec-
tron-withdrawing substituents at the ring nitrogen and “nonactivated” ones with elec-
tron-donating substituents [14] (Figure 1). 

N
EWG

N
EDG

ActivatedNon-activated 1 2  
Figure 1. Chemical structures of “activated” and “nonactivated” aziridines and electrostatic poten-
tial maps of their representative examples N-methylaziridine and N-acetylaziridine. EDG = elec-
tron-donating group; EWG = electron-withdrawing group. 

Activated aziridines are quite reactive toward most nucleophiles, while nonactivated 
aziridines are inert unless they are activated as aziridinium ions or their equivalents by 
proper electrophiles including alkyl, acyl, trimethylsilyl, and Lewis acids [15,16]. When 
the simple aziridine without any substituent on the ring is protonated as an aziridinium 
ion, the ring strain is increased by 47 kJ/mol [17]. Most ring-opening reactions of nonacti-
vated aziridines proceed with breakage of the bond between C and N, such as A or B, 
with the assistance of electrophiles after the formation of aziridinium ions. Experimental 
and theoretical studies have shown that nonactivated aziridine is possibly not serving as 
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Figure 1. Chemical structures of “activated” and “nonactivated” aziridines and electrostatic potential
maps of their representative examples N-methylaziridine and N-acetylaziridine. EDG = electron-
donating group; EWG = electron-withdrawing group.

Activated aziridines are quite reactive toward most nucleophiles, while nonactivated
aziridines are inert unless they are activated as aziridinium ions or their equivalents by
proper electrophiles including alkyl, acyl, trimethylsilyl, and Lewis acids [15,16]. When the
simple aziridine without any substituent on the ring is protonated as an aziridinium ion,
the ring strain is increased by 47 kJ/mol [17]. Most ring-opening reactions of nonactivated
aziridines proceed with breakage of the bond between C and N, such as A or B, with
the assistance of electrophiles after the formation of aziridinium ions. Experimental and
theoretical studies have shown that nonactivated aziridine is possibly not serving as a
1,3-dipole, as shown in C and D, while activated aziridines can be utilized for a cyclization
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reaction with cleavage of the C–C bond for dipolarophile [17–19]. This difference is due to
bond energy differences between C–N and C–C of nonactivated aziridines (Scheme 1).
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Scheme 1. Comparison of two different ring openings via C–N and C–C bond cleavages of nonacti-
vated aziridines.

Thus, most reactions with nonactivated aziridines are carried out with the formation
of aziridinium ion as a quaternary ammonium at first, which is created via the chemical
bond between nucleophilic and basic ring nitrogen and an applied electrophile [15,16].
The aziridinium ion as an ionic intermediate is a well-known chemical species called
“nitrogen mustard”, including the notorious chemical warfare agent VX [O-ethyl S-[2-
(diisopropylamino) ethyl] methylphosphonothioate [20]. In most cases, this aziridinium
ion intermediate has a classical ammonium ion character, albeit strained [21]. However,
there are many ways to generate aziridinium ions with various electrophiles. Extensive
calculation showed that reactivity differences were ordered as shown in Figure 2. Acyl
aziridinium is the most active one, followed by alkoxycarbonyl, trimethylsilyl, alkyl, and
protonyl aziridinium ions. The lewis acid-coordinated complex is the least active one [14].
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Figure 2. Order of reactivities of aziridinium ions by different electrophiles.

There are several protocols to generate aziridinium ions from nonactivated aziridines,
as shown in Figure 2. Direct addition of external electrophiles is the most convenient
and easiest way for the preparation of an aziridinium ion as a quaternary ammonium
salt. Electrophiles needed for correspondents shown in Figure 2 include acid halides,
haloformates, trimethylsilyl halide, halomethane, proton, and Lewis acid (Equation (1), in
Scheme 2). Aziridinium ions can also be generated upon expulsion of the leaving group at
the β-position of amine of the acyclic starting substrate (Equation (2i), in Scheme 2) [18,19].
The same strategy to expulse the leaving group from the pendant of aziridine or 2-leaving
group substituted methyl aza-cycle yielded a bicyclic aziridinium ion (Equation (2ii), in
Scheme 2) [22,23]. The same bicyclic aziridinium ion can also be derived from removal
of the leaving group at the β-site of cyclic starting substrates through aza-ring contrac-
tion (Equation (2iii), in Scheme 2) [24,25]. Lastly, aziridinium ylides schematized below
(Equations (3i) and (3ii), in Scheme 2) can be created by addition of a ring-nitrogen to
alkyne (Equation (3i), in Scheme 2) or diazo compound (Equation (3ii), in Scheme 2).
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key to lead to the reaction of a nonactivated aziridine. The formation of aziridinium ions 
is sometimes observed spectroscopically. However, experimental and theoretical evi-
dence has taught us that the following ring-opening reaction from an aziridinium ion is 
known to have a single transition state without forming any intervening ground state [26]. 
Different starting substrates and applied electrophiles can diversify the reaction products 
depending on whether the reaction proceeds via pathway “a” or “b”. The regiochemical 

Scheme 2. General scheme for the formation of aziridinium ions as synthetic intermediates from
several different types of starting substrates.

Chemical properties including stability and reactivity are dependent on characteristics
of aziridinium ions. The way to make an aziridinium ion using an electrophile is the key
to lead to the reaction of a nonactivated aziridine. The formation of aziridinium ions is
sometimes observed spectroscopically. However, experimental and theoretical evidence
has taught us that the following ring-opening reaction from an aziridinium ion is known to
have a single transition state without forming any intervening ground state [26]. Different
starting substrates and applied electrophiles can diversify the reaction products depending
on whether the reaction proceeds via pathway “a” or “b”. The regiochemical pathway of
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ring opening via “a” is kinetic while the ring opening via “b” is thermodynamic, yielding
reaction products 3 and 4 as regioisomers, respectively (Scheme 3).
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“b” (thermodynamic) with the formation of an aziridinium ion with electrophile.

The two different regiochemical pathways are bifurcated into kinetic and thermody-
namic pathways with substituents attached to the aziridine ring [27,28]. When 2-substitued
nonactivated aziridine is activated and then treated with various nucleophiles in the same
medium, some nucleophiles such as bromine and iodine can lead the reaction into the
thermodynamic pathway, while hydride and fluorine yield the kinetic product. In particu-
lar, when the hydride nucleophile is applied, only a kinetic product is afforded without
formation of the regioisomer. The nucleophile “chlorine” behaves in between, showing
that the kinetic product is formed first. It is then diminished with elapsed time to give
the thermodynamic product from the equilibrated aziridinium ion intermediate [29]. This
big regiochemical difference can also be observed between acetate and water, although
both are oxygen nucleophiles that can attack aziridinium ions [22,23]. The reactivity is also
influenced by the solvent as in the case of most nucleophilic substitution reactions. The
medium effects are also quite big for ring-opening reactions of nonactivated aziridines due
to different activation energies [15,16].

2. Synthetic Application of Aziridinium Ions

Many studies have reported synthetic applications of aziridines to provide a versatile
entry to various nitrogen-containing molecules. In addition, recent advances in preparative
enantiopure nonactivated aziridines warrant a streamlined synthesis of biologically impor-
tant molecules, including natural products such as aza-sugars, alkaloids, and others [30–32].
However, a few problems need to be solved. Firstly, an efficient and general method is
needed to prepare starting aziridines bearing diverse substitutes at three different sites,
including N1 nitogen and two carbons, C2 and/or C3 [33–36]. For a more efficient and di-
verse use of nonactivated aziridines, a better understanding of the regiochemical pathway
is needed. It is known that the regiochemical pathway of nonactivated aziridine is more
diverse than that of activated aziridine [1–9]. In this short review, we describe synthetic de-
velopments to build important nitrogen-containing cyclic and acyclic molecules according
to a few reports published recently.

2.1. Aziridinium Ions by Addition of External Electrophiles

The most popular and general synthetic method to generate an aziridinium ion is by
adding electrophiles to nonactivated aziridines, as shown in Eq 1 of Scheme 2. Representa-
tive examples are described below. When chiral (2R,1′R)-2-acyl-(1′-phenylethyl)aziridines
(5) and chiral nonactivated aziridines were treated with various acid chlorides such
as acetyl chloride, methoxymethyl formate, and oxalyl chloride, the corresponding N-
acylaziridinium ion (6) intermediates were generated by acylation of the nucleophilic
aziridine ring nitrogen. These N-acylaziridinium ion intermediates then reacted with
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chloride released from the acid chloride, an electrophile, to give rise to ring-opened β-
amino-β-chlorocarbonyl compounds (7). When we carried out the reaction in CHCl3,
chlorinated compounds were observed [37]. However, under most reaction media includ-
ing CH3CN, subsequent displacement of chloride with an internal oxygen nucleophile from
methylchloroformate, acetyl chloride, and methyl chlorooxoacetate proceeded, yielding
oxazolidin-2-ones (8), β-amino-α-acetyloxypropionates (9), and morpholin-2,3-diones (10),
respectively (Scheme 4) [38].

Molecules 2021, 26, x FOR PEER REVIEW 5 of 17 
 

 

ring nitrogen. These N-acylaziridinium ion intermediates then reacted with chloride re-
leased from the acid chloride, an electrophile, to give rise to ring-opened β-amino-β-
chlorocarbonyl compounds (7). When we carried out the reaction in CHCl3, chlorinated 
compounds were observed [37]. However, under most reaction media including CH3CN, 
subsequent displacement of chloride with an internal oxygen nucleophile from 
methylchloroformate, acetyl chloride, and methyl chlorooxoacetate proceeded, yielding 
oxazolidin-2-ones (8), β-amino-α-acetyloxypropionates (9), and morpholin-2,3-diones 
(10), respectively (Scheme 4) [38]. 

 
Scheme 4. Reactions of 2-acylaziridines with acid chlorides, specifically including methyl chloroformate, acetyl chloride, 
and methyl chlorosuccinate. 

Another useful external electrophile applicable to nonactivated aziridines is trime-
thylsilyl iodide with the formation of an aziridinium ion attached to the ring nitrogen as 
shown in Scheme 5. When enantiopure (1′-phenylethyl)aziridines (11) were treated with 
TMSI, the aziridinium ion (12) was formed. Subsequent ring opening by the released io-
dide gave rise to an iodinated product (13), whose iodine was replaced by amine to afford 
enantiopure diamines (14) (Scheme 5) [39,40]. 

 
Scheme 5. Formation of the trimethylsilyl (TMS) aziridinium ion with nonactivated aziridine and its subsequent ring 
opening by iodine and amine for the synthesis of 1,2-diamines. 

This method is quite good to introduce a mild nucleophile that is not reactive enough 
to break the aziridine ring. In addition, TMS used for the activation of aziridine through 
an aziridinium ion is removed after addition of a nucleophile to replace iodine when the 
reaction proceeds. This method has been used for the synthesis of many biologically im-
portant molecules in our lab [40].  

As shown in Scheme 1, an aziridinium ion for the activation of nonactivated aziridine 
is generated by adding an alkyl group to aziridine nitrogen with the formation of quater-
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and methyl chlorosuccinate.

Another useful external electrophile applicable to nonactivated aziridines is trimethylsi-
lyl iodide with the formation of an aziridinium ion attached to the ring nitrogen as shown
in Scheme 5. When enantiopure (1′-phenylethyl)aziridines (11) were treated with TMSI, the
aziridinium ion (12) was formed. Subsequent ring opening by the released iodide gave rise
to an iodinated product (13), whose iodine was replaced by amine to afford enantiopure
diamines (14) (Scheme 5) [39,40].
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opening by iodine and amine for the synthesis of 1,2-diamines.

This method is quite good to introduce a mild nucleophile that is not reactive enough
to break the aziridine ring. In addition, TMS used for the activation of aziridine through
an aziridinium ion is removed after addition of a nucleophile to replace iodine when
the reaction proceeds. This method has been used for the synthesis of many biologically
important molecules in our lab [40].

As shown in Scheme 1, an aziridinium ion for the activation of nonactivated aziridine is
generated by adding an alkyl group to aziridine nitrogen with the formation of quaternary
amines. However, there is not an efficient method to introduce an alkyl group without
breakage of the highly ring-strained aziridine ring. In addition, this aziridinium ion as
a quaternary amine formed by an external alkyl group should be inert so that it does
not react with the counter anion of electrophiles after alkylation of the amine, i.e., the
counter anion of the ammonium ion should not have the nucleophilicity to break down
three-membered ammonium ions. We successfully achieved formation of a methylated
aziridinium ion (16) by treating starting aziridine (15) with methyl triflate, taking advantage



Molecules 2021, 26, 1774 6 of 17

of the extremely high nucleofugality of the triflate anion in a highly efficient manner. The
formation of methylated aziridinium ion was observed using 1H- and 13C-NMR spectra.
This methylated aziridine easily reacted with proper nucleophiles, whose regiochemical
pathways were dependent on starting substrates. With simple alkyl substituents R, the ring
opening proceeded via pathway “a” for 17, while the starting material with vinyl or acyl at
R gave product (18) from ring opening via pathway “b” (Scheme 6) [41]. This was the first
study to generate aziridinium ions by methylation. We call this reaction “N-Methylative
aziridinium ring opening”. This methylated aziridinium ion using MeOTf is stable. Such
ring openings are possible with many external nucleophiles such as acetoxy, azide, hydride,
hydroxy, and nitrile to realize the N-methylamino alkyl products. They provide easy excess
to target molecules. A big advantage of this method is that N-methylamino compounds
can be generated without an extra reaction to introduce a methyl group at the nitrogen of
target molecules, if necessary.
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This “N-methylative aziridinium ring opening” gives us an opportunity to obtain
biologically important molecules including MeBMT [42], tyroscherin [43], hygrolines, and
their analogous alkaloids [44], as well as a structurally important part of drug candidate
PF-00951966 [45], as shown in Figure 3.
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Figure 3. Molecules synthesized from “N-methylative aziridinium ring opening” of nonactivated
aziridines.

This method of “N-methylative aziridinium ring opening” can be expanded to other
alkyl groups to be “alkylative aziridinium ring opening”, including ethyl, allyl, and so
on. Such studies are in progress in our lab. Benzylation of aziridine to yield a benzylated
aziridinium ion was successfully achieved by treatment with benzyl bromide, whose
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bromine was released and reacted to give a brominated product. Its regiochemical outcome
was derived from the thermodynamic pathway. When the same substrate was treated with
HBr, a protonated aziridinium ion was generated, and subsequent ring opening occurred
at C3 without any substituent, assuming that the regiochemical pathway was dominated
by the kinetic coordinate. These two contrasting regiochemical pathways stemmed from
different aziridinium ions by the addition of a benzyl group and a proton as electrophiles
to the same aziridine (Scheme 7) [46]. This distinctive regiochemistry taught us that it
would be possible to control reaction pathways according to the formation mechanism of
the aziridinium ion [47,48].
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aziridinium ions (20 and 22) and their products (21 and 23).

Many studies have reported the regioselectivity of ring-opening reactions of nonacti-
vated aziridinium ions via pathway “a” (nonsubstituted carbon C3, kinetically favored)
or “b” (substituted carbon C2, thermodynamically favored) depending on chemical as-
pects. When the aziridine ring has an allylic or benzylic C2–N1 bond as in 2-vinyl or
2-phenylaziridines, ring-opening reactions proceed at the C2 position (pathway “b”) re-
gardless of electrophiles or nucleophiles. Ring opening with 2-acylaziridines takes path-
way “b” with a few exceptions of electrophiles and nucleophiles applied [47,48]. With
2-alkylaziridines, their reaction pathways are diversified depending on the nature of elec-
trophiles and nucleophiles. However, the reaction would warrant a kinetically controlled
ring-opened product at C3 (pathway “a”). According to experimental and theoretical
data, including ours, a general overview is provided in Table 1 as a practical guide to
predict the regiochemical pathway of nucleophilic nonactivated aziridines using different
substrates, electrophiles, and nucleophiles. Bearing this in mind, it might also be possible to
predict a regioselective preference for unexamined ring-opening reactions of nonactivated
2-substituted aziridines [49].

In the literature, there are ample examples for the activation for ring-opening reactions
using a Lewis acid, one of which is shown in Scheme 8. This scheme showed that an
azide nucleophile could drive the aziridine ring (24) with assistance of Lewis acid AlCl3 in
aqueous medium to yield α-azido-β-aminopropionate (25) [50], which was utilized for the
synthesis of natural product biemamide (B) (26) [51].
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Table 1. Regioselectivity in ring opening of nonactivated 2-substituted aziridines either at C2 (pathway “b”) with a
substituent or at C3 (pathway “a”) without any substituent depending on the substrate, the electrophile, and the nucleophile.

R1
E+

Lewis Acid RCO+ H+ R+ TMS+

–CH=CH2,
–CH=CH–COOEt

C2 c C2 C2 c C2 C2

Aryl C2 C2 C2 C2 c C2 c

COR, COOR,
CONH2

C3 C2 C2 C2 C2

Alkyl C3 C3 and/or C2 a C3 C3 b C3
a Depending on the nucleophile (e.g., azide attacks at C2; alcohol attacks at C3). b Among halides, only the fluoride ion attacks the C3
position to a major extent. c Proposed regioselectivity (no experimental data available).
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2.2. Aziridinium Ions upon Expulsion of the Leaving Group

For the last few years, Cossy’s group has extensively studied the synthesis of various
compounds from the formation of aziridinium ions, some of which were reported in
a review article [52,53]. A typical method for aziridinium ions comes from expulsion
of the leaving group of hydroxides at β-hydroxy amines [54]. One big advantage of β-
hydroxyamine is that its enantiopure form is readily available from a rich chiral pool of
amino acids. Its stereoselective transformation can realize diverse enantiopure products
starting from diverse chiral amino acids [55]. Transforming the alcohol moiety into a good
leaving group has allowed the rearrangement of these β-amino alcohols (27) to yield the
aziridinium ion (28), which can then readily react with a large number of nucleophiles
to afford ring-opened products (29). An overview of recent progress realized for the
rearrangement of these β-amino alcohols in the presence of catalytic amount (CF3CO)2O
and H2SO4 or N,N-diethylaminosulfur trifluoride (DAST) has been reported [56]. This
method has been applied for the synthesis of drug candidate LY-503430 (30) for Parkinson’s
disease (Scheme 9) [57].

A similar reaction with the fluoride nucleophile yielded a fluorinated product after
the formation of an aziridinium ion driven by DAST [58]. The synthesis of various optically
active α-trifluoromethyl amines (33) was realized from β-amino-α-trifluoromethylalcohols
(31) via an aziridinium ion intermediate (32) under a kinetic condition (Scheme 10) [59].

Recently, a report revealed that the same strategy is applicable to realize stereoselective
and regioselective synthesis of α-amino-β-fluorophosphonates [60].
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Scheme 10. Preparation of α-trifluoromethyl amines or α-amino-β-fluorophosphonates bearing
extra fluorine at the α-position from the kinetically favored fluoride attack of an aziridinium ion
intermediate formed from β-amino-α-trifluoromethyl alcohols.

Most aforementioned cases for the formation of an aziridinium ion took ionic path-
ways. Recently, photo-induced single-electron transfer for olefin-diamination with alky-
lamines was successful (Scheme 11) [61]. A useful protocol to introduce two different
amines at each site of olefin with an aziridinium ion as an intermediate was introduced [61].
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The synthetic protocol consists of the formation of an aziridinium ion (36) from an
amine (34) and olefin (35) via in situ activation with N-chlorosuccinimide (NCS), proto-
nation, and photo-induced SET (single-electron transfer) reduction in the presence of a
Brønsted acid and Ru(bpy)3(PF6)2 (1 mol%) as the photocatalyst in CH2Cl2 solvent under
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blue light irradiation at 0 ◦C. The following ring opening by another amine gives rise to
vicinal diamine compounds (37, 38).

2.3. Bicyclic Aziridinium Ions from Substituted Aziridines

Instead of applying an external electrophile, aziridinium ions can be generated as
bicyclic forms (40) through displacement of a suitable leaving group at the side chain, as
shown in (39) by nucleophilic aziridine amine (Scheme 12) [62]. Ring openings of these
bicyclic aziridinium ions may occur due to nucleophilic attacks either at the bridgehead or
at bridge positions of aziridine to afford substituted aza-rings with substituents without
loss of the substrate’s stereochemistry. The regiochemistry was determined on the basis
of the characteristics of the nucleophile [63,64]. More specifically, bromide and iodide
attached to the bridgehead, while nitrile and acetate favored the bridge position [22,23,64].
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Scheme 12. Generation of bicyclic aziridinium ions (40) from displacement of a suitable leaving
group at the aziridine side chain in 39 and subsequent ring-opening reactions to yield regioisomers
(41 and 42).

This convenient approach renders the construction of various types of aza-rings with
substituents from nucleophilic attacks either at the bridgehead or at bridge positions
of bicyclic aziridinium ions without loss of the substrate’s stereochemistry [65]. This
synthetic strategy can be used to obtain many biologically active alkaloids and their
analogues including fagomine, febrifugine, balanol, conine, and epiquinamide, as shown
in Figure 4 [22,23,31,66].
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Figure 4. Representative examples synthesized from Scheme 12 as a key step.

2.4. Bicyclic Aziridinium from Ring Contraction of Azaheterocycles

An aza-ring (43) with an appendage of hydroxymethyl at the α-position of amine en-
genders the bicyclic aziridinium ion (44) with removal of the leaving group including a hy-
droxy group. This was further reacted with an applicable nucleophile to yield new aza-ring
products (45 and/or 46) via ring opening at the bridgehead (a) or the bridged (b) position
of the bicyclic aziridinium ion (44) (Scheme 13). Regarding the regiochemical pathway,
whether the reaction proceeds via pathway “a” or “b” depends on nucleophiles [67–69].

Application of various nucleophiles through pathway “a” or “b” gives an efficient syn-
thetic strategy to prepare various aza-cyclic valuables (Figure 5). Following pathway “a”,
nonpeptidic NK-1 receptor antagonist L-733060 (48) was realized starting from 3-hydroxy-2-
phenyl piperidine (47) [56,70]. Most cases with diethylaminosulfur trifluoride (DAST) have
yielded enlarged fluorinated piperidine ring compounds (50) from hydroxymethylpyrroli-
dine (49) via fluorine-driven ring opening in a stereoselective manner [71,72].



Molecules 2021, 26, 1774 11 of 17

Molecules 2021, 26, x FOR PEER REVIEW 11 of 17 
 

 

 
Figure 4. Representative examples synthesized from Scheme 12 as a key step. 

2.4. Bicyclic Aziridinium from Ring Contraction of Azaheterocycles 
An aza-ring (43) with an appendage of hydroxymethyl at the α-position of amine 

engenders the bicyclic aziridinium ion (44) with removal of the leaving group including a 
hydroxy group. This was further reacted with an applicable nucleophile to yield new aza-
ring products (45 and/or 46) via ring opening at the bridgehead (a) or the bridged (b) po-
sition of the bicyclic aziridinium ion (44) (Scheme 13). Regarding the regiochemical path-
way, whether the reaction proceeds via pathway “a” or “b” depends on nucleophiles [67–
69]. 

 
Scheme 13. Formation of bicyclic aziridinium ion from aza-ring by removing the hydroxy group of 
hydroxymethyl at the α-position and the subsequent ring opening by a nucleophile either at the 
suitably disposed bridgehead (a) or at the bridge position (b) to lead products. 

Application of various nucleophiles through pathway “a” or “b” gives an efficient 
synthetic strategy to prepare various aza-cyclic valuables (Figure 5). Following pathway 
“a”, nonpeptidic NK-1 receptor antagonist L-733060 (48) was realized starting from 3-hy-
droxy-2-phenyl piperidine (47) [56,70]. Most cases with diethylaminosulfur trifluoride 
(DAST) have yielded enlarged fluorinated piperidine ring compounds (50) from hy-
droxymethylpyrrolidine (49) via fluorine-driven ring opening in a stereoselective manner 
[71,72]. 

 
Figure 5. Representative examples of Scheme 13 following pathway “a” or “b” to prepare various 
aza-cyclic valuables. 

Scheme 13. Formation of bicyclic aziridinium ion from aza-ring by removing the hydroxy group of hydroxymethyl at the
α-position and the subsequent ring opening by a nucleophile either at the suitably disposed bridgehead (a) or at the bridge
position (b) to lead products.

Molecules 2021, 26, x FOR PEER REVIEW 11 of 17 
 

 

 
Figure 4. Representative examples synthesized from Scheme 12 as a key step. 

2.4. Bicyclic Aziridinium from Ring Contraction of Azaheterocycles 
An aza-ring (43) with an appendage of hydroxymethyl at the α-position of amine 

engenders the bicyclic aziridinium ion (44) with removal of the leaving group including a 
hydroxy group. This was further reacted with an applicable nucleophile to yield new aza-
ring products (45 and/or 46) via ring opening at the bridgehead (a) or the bridged (b) po-
sition of the bicyclic aziridinium ion (44) (Scheme 13). Regarding the regiochemical path-
way, whether the reaction proceeds via pathway “a” or “b” depends on nucleophiles [67–
69]. 

 
Scheme 13. Formation of bicyclic aziridinium ion from aza-ring by removing the hydroxy group of 
hydroxymethyl at the α-position and the subsequent ring opening by a nucleophile either at the 
suitably disposed bridgehead (a) or at the bridge position (b) to lead products. 

Application of various nucleophiles through pathway “a” or “b” gives an efficient 
synthetic strategy to prepare various aza-cyclic valuables (Figure 5). Following pathway 
“a”, nonpeptidic NK-1 receptor antagonist L-733060 (48) was realized starting from 3-hy-
droxy-2-phenyl piperidine (47) [56,70]. Most cases with diethylaminosulfur trifluoride 
(DAST) have yielded enlarged fluorinated piperidine ring compounds (50) from hy-
droxymethylpyrrolidine (49) via fluorine-driven ring opening in a stereoselective manner 
[71,72]. 

 
Figure 5. Representative examples of Scheme 13 following pathway “a” or “b” to prepare various 
aza-cyclic valuables. 

Figure 5. Representative examples of Scheme 13 following pathway “a” or “b” to prepare various aza-cyclic valuables.

This reaction, generation, and ring opening of a bisaziridinium ion (52) from 3-
hydroxy-3-trifluoromethyl piperidine (51) with removal of the hydroxy group could also
be applicable for the synthesis of biologically important α-trifluoromethyl pyrrolidines (53)
(Scheme 14) [73,74].
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2.5. Aziridinium Ylides

Recently, aziridinium ylides were developed by the addition of electrons at the aziri-
dine nitrogen in the starting substrates to carbene or alkyne, followed by subsequent
addition of an anion located at the α-position of the carboxylate to the olefin to afford new
rings via intramolecular ring-opening pathways. The schemes below (Schemes 15 and 16)
show the formation of aziridinium ylides (55 and 59) via intramolecular or intermolecular
addition of diazoacetate (54 or 58) to aziridine (54 or 57) with metal catalysts. Subsequent
ring openings initiated by the anion at the α-position of carboxylate give ring-expanded
products (56) and (60) [75–77].
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dinium ylides.

The addition of carbene generated by Rh in an intermolecular manner was reported
by Rowland with limited examples [78]. This has been developed to a great extent by
Schomaker’s group, whose representative example is shown in Scheme 17 [79]. The
formation of aziridinium ylide (63) was created by adding carbene from diazoacetate (62)
to aziridine (61), whose aziridine ring was opened to give an expanded aza-ring (64).
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Another interesting formation of aziridinium ylide (67) was reported by Yudin’s lab
using the reaction of aryne from 1-iodo-2-sulfonyloxybenzene (66) with 2-alkenylaziridine
(65). This was followed by anionic rearrangement to produce benzazepine (68) with a good
yield (Scheme 18) [80].

It has been disclosed that the addition of electron-rich nitrogen at the nonactivated
aziridine (69) to alkyne (70) can make an aziridinium ylide (71) whose anionic olefin
can attack the vinyl group, thus giving rise to various substituted benzazepines (72)
(Scheme 19) [81].
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give azopanes.

Recently, an interesting reaction was developed to generate a reactive zwitterionic
aziridinium intermediate (74) from the reaction of N-propargyltetramethylpiperidine (73)
with trans-alkenyl-B(C6F5)2 compounds via trans-1,2-amine/borane addition to a carbon–
carbon triple bond. Subsequent alkenylborate attack with ring opening to the activated
three-membered aziridinium ion afforded a stable boronated alkenyl piperidine resonance
between (75) and (76), as shown in Scheme 20 [82].
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3. Conclusions

Nonactivated aziridines are valuable starting materials for the synthesis of densely
functionalized nitrogen-containing compounds in a highly regio- and stereocontrolled
manner. Their chemical diversity stems from the intrinsic properties of nonactivated
aziridines to be activated with electrophiles including acyl halide, TMS halide, alkylhalide,
sulfonyloxyalkanes, protic acid, and a Lewis acid. In addition to the backbone of starting
substrates and applicable nucleophiles, the chemical reactivity and regiochemical pathways
depend highly on the electronic characteristics of aziridinium ions. In this review, we
summarized the ways of generating and classifying various types of aziridinium ions for
synthetic purposes. The hope is that readers find the value of nonactivated aziridines and
their synthetic utilities.
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