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There is a limited understanding of age differences in functional connectivity during memory encoding. In the present study, a sample
of cognitively healthy adult participants (n = 488, 18–81 years), a subsample of whom had longitudinal cognitive and brain structural
data spanning on average 8 years back, underwent functional magnetic resonance imaging while performing an associative memory
encoding task. We investigated (1) age-related differences in whole-brain connectivity during memory encoding; (2) whether encoding
connectivity patterns overlapped with the activity signatures of specific cognitive processes, and (3) whether connectivity associated
with memory encoding related to longitudinal brain structural and cognitive changes. Age was associated with lower intranetwork
connectivity among cortical networks and higher internetwork connectivity between networks supporting higher level cognitive
functions and unimodal and attentional areas during encoding. Task-connectivity between mediotemporal and posterior parietal
regions—which overlapped with areas involved in mental imagery—was related to better memory performance only in older age.
The connectivity patterns supporting memory performance in older age reflected preservation of thickness of the medial temporal
cortex. The results are more in accordance with a maintenance rather than a compensation account.
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Introduction
Episodic memory declines with age (Rönnlund et al.
2005), although there is substantial interindividual
variability in the trajectories (Nyberg et al. 2012).
Variability in memory function is affected by changes
in the structural and functional architecture of the
brain. Hence, how brain regions communicate during
memory tasks may be a key factor in explaining age-
related changes in memory performance as well as
interindividual variation of performance in older age.
Assessing brain functional connectivity changes in task
contexts provides a window for studying age-related
brain changes in response to specific cognitive demands
(Campbell and Schacter 2017). In the present study,
we used task-related functional magnetic resonance
imaging (fMRI) in a large adult lifespan sample to address
3 questions: (1) is higher age associated with differences
in task-connectivity during encoding? Specifically, from
previous literature we expected decreased intranet-
work connectivity within the default-mode network
(DMN) and increased internetwork connectivity between

regions involved in higher cognitive functions such as
between the control and dorsal attention networks.
Such patterns have been seen both in whole-brain
resting-state (Geerligs et al. 2015) and region-of-interest
(ROI)-based task-connectivity studies (Grady et al. 2016;
Spreng et al. 2016). (2) Do encoding connectivity patterns
associated with memory encoding overlap with the
activity signatures of specific cognitive processes? If so,
this will inform about additional cognitive processes
associated with encoding. (3) Is connectivity associated
with memory encoding performance related to longitudi-
nal brain structural and cognitive changes as measured
over eight years? This addresses the question of the
importance of brain maintenance for cognitive function
(Nyberg et al. 2012).

Cognitive processes arise from large-scale synchro-
nization of neural interactions among areas across the
brain. These areas are not necessarily restricted to a
priori selected regions that can be detected in activity-
based contrasts (Stanley et al. 2019). So far, few studies
have addressed whole-brain fMRI connectivity during
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memory encoding (Wang et al. 2010; Matthäus et al.
2012; Grady et al. 2016). Rather, most previous studies on
functional connectivity changes in aging have employed
seed-based task-functional connectivity (Grady et al.
2003; Oh and Jagust 2013), or resting-state fMRI (rs-fMRI)
(Fjell et al. 2015). Seed-based task-connectivity studies
have repeatedly found higher age to be related to stronger
positive connectivity between medial temporal lobe
(MTL), most notably the hippocampus, and prefrontal
areas (PFC), during encoding of scenes and words (Grady
et al. 2003; Oh and Jagust 2013). Research using rs-fMRI
has found decreased positive intranetwork connectivity
with higher age—especially within the default-mode
regions—and increased connectivity between networks
such as the dorsal attention and the DMN (Vidal-Piñeiro
et al. 2014; Sala-Llonch et al. 2015). However, encoding
connectivity exhibits a substantially different pattern
from that observed during rest (Keerativittayayut et al.
2018). Therefore, it is crucial to understand how whole-
brain task-connectivity during memory encoding con-
tributes to successful recollection.

Encoding-based connectivity during an incidental
encoding-task has been characterized by increased
communication between distant areas, such as higher
integration of default mode, salience, and subcortical
networks with the other subnetworks (Keerativittayayut
et al. 2018). Furthermore, flexible nodes—nodes that
change network membership during different episodic
memory task phases—appear to be relevant for memory
performance as degree of observed reorganization
between states partially predicts retrieval success
(Schedlbauer and Ekstrom 2019). The small number of
studies that have tested age-related differences in whole-
brain connectivity, during memory encoding (Wang
et al. 2010; Matthäus et al. 2012; Grady et al. 2016)
used a graph-theory framework to a combined set of
different fMRI tasks (encoding of pictures and words
presented). Wang et al. (2010) combined encoding and
retrieval runs and found higher age to be associated with
lower long- and short-range functional connections of
frontal regions and higher regional centrality of posterior
parietal areas. Matthäus et al. 2012 followed a similar
approach and observed age-related increases in the
density and size of the networks together with reduced
efficiency of information processing during encoding.
Finally, King et al. (2018) used a similar approach to
the present one in a study of recollection memory.
They ran a whole-brain psychophysiological interaction
(PPI) analysis to examine age-differences, and found
lower positive connectivity changes in older than young
participants in visual, parietal, cingulate and dorsolateral
regions during the recollection phase of a memory task.

Age-related functional changes may accompany brain
structure decline. Maintenance, compensation, and
reserve are complementary concepts, which may explain
age-related differences in brain structural and functional
characteristics. For instance, in one face-name paired

fMRI task, in accordance with the brain maintenance
framework (Nyberg et al. 2012), older adults showing lon-
gitudinally positive increases in prefrontal activity—and
in further areas beyond task-specific regions—exhibited
greater memory and hippocampal volume decline (Pers-
son et al. 2006; Pudas et al. 2018). Maintenance posits
that, in older participants, relative structural integrity
over time or patterns of connectivity similar to those
observed in younger adults are associated with positive
cognitive performance. Alternatively, age-differences in
connectivity may reflect an attempt to compensate for
neural breakdown (Cabeza et al. 2018). For instance,
one scene pictures task-fMRI study found that positive
connectivity between PFC with brain regions such as
the visual, parietal, operculum cortices, and subcortical
structures was related to better memory performance
uniquely in older adults (Deng et al. 2021). This was
interpreted in accordance with a compensatory account
for the age-related connectivity changes, accompanied
by MTL connectivity reconfiguration deficit. Evidence
for compensation requires for successful memory
performance in older adults, deployment of additional
neural resources, or engagement of different brain
areas compared to young participants. The concept
of reserve refers to the phenomenon that there is no
simple relationship between brain lesions and cognitive
decline, and this discrepancy is assumed to reflect people
various degrees of resilience or “reserve” (Stern et al.
2020). In addition, coupling age-related differences in
function with cross-sectional performance is however
not without problems, as compensatory responses can
lay anywhere along a continuum from (partial) failure to
success (Grady 2012). Hence, for a better and complete
understanding, functional differences need to be asso-
ciated with brain and cognitive changes assessed over
time. This allow us to disentangle whether differences
in brain function relate to age-related brain changes or
rather reflect lifelong variations (brain reserve) (Cabeza
et al. 2018; Stern et al. 2020).

Here we investigated age-related differences in func-
tional connectivity during an associative encoding task
using a whole-brain correlational PPI (cPPI) approach
(Fornito et al. 2012) in a sample encompassing the
entire adult age range (n = 488). We assessed connectivity
changes during encoding associated with age, memory
performance, and the interaction between age and
memory.

Moreover, by comparing connectivity maps with meta-
analytic activity maps, we investigated whether encoding
connectivity patterns overlapped with the activity signa-
tures of specific cognitive processes. Finally, among older
adults, we tested whether the connectivity changes asso-
ciated with successful memory encoding were related
to longitudinal structural and cognitive changes. This
allowed us to test whether these functional patterns of
connectivity should be interpreted in accordance with
the maintenance or the compensation accounts.
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Material and methods
Participants
A total of 488 participants (336 females, mean age =
41.65 years, SD = 17.20, age range = 18–81) were included
in the final sample. All participants completed the
fMRI tasks and were screened through health and
neuropsychological assessments. Participants were
required to have no history of neurological or psychiatric
disorders, chronic illness, be right-handed, and not
to use medicines known to affect nervous system
functioning. Participants were further excluded based
on the following neuropsychological criteria: score < 26
on the Mini-Mental State Examination (MMSE) (Folstein
et al. 1975), score < 85 on the WASI II (Wechsler 1999),
and a T-score of ≤ 30 on the California Verbal Learning
Test II—Alternative Version (CVLT II) (Delis et al. 2000)
immediate delay and long delay. All participants gave
written informed consent, and the study was approved
by the Regional Ethical Committee of South Norway
and conducted in accordance with the Helsinki dec-
laration. The concept of reserve a subsample of older
participants (age > 50 years), spanning up to a maximum
of 10 years back as follows: neuropsychological testing
for 151 participants (n = 51, 6, and 94 with 1, 2, and ≥ 3
observations, respectively, 7.42 [1.94] years on average for
those with at least 3 observations), and brain structural
scans for 88 participants (n = 2, 5, and 81 with 1, 2,
and ≥ 3 observations, respectively, 8.10 [0.93] years on
average for those with at least 3 observations). Note that
a small subsample of participants had retrospective data
acquired with a different scanner. See Supplementary
Table S1 for more information.

Experimental design and behavioral analysis
The experiment included an incidental encoding task
and a memory test after approximately 90 min, both in
the scanner. In this study, we only analyzed encoding
fMRI data. The experimental design has been thoroughly
described elsewhere (Sneve et al. 2015; Vidal-Piñeiro et al.
2019). See Figur 1 for a visual description of the exper-
iment. In brief, the encoding and retrieval tasks con-
sisted of 2 and 4 runs, respectively, that included 50
trials each. The stimulus material comprised 300 black
and white line drawings of everyday items. A central
fixation cross was shown during the baseline record-
ing at the beginning, the middle, and the end of each
run for 11 s. In the encoding phase, the trial started
with a voice asking the participants either “Can you eat
it?” or “Can you lift it?”. Each question was asked 25
times in each run in a pseudorandomized order. One sec-
ond after the question, an item appeared on the screen
for 2 s, asking the participant to answer “Yes” or “No,”
before being replaced by a fixation cross that remained
throughout the intertrial interval (between 1 and 7 s,
exponential distribution; duration = 2.98 [2.49] s). In the
retrieval phase, the trial started with Question 1: “Have
you seen this item before?.” The item appeared on the

screen for 2 s, and the participant had to press “Yes”
(old item), or “No” (new item). In each run, 25 old items
and 25 new items were presented in a pseudorandomized
order. If the participant responded “No,” the trial ended.
If the participant responded “Yes,” the trial proceeded
to Question 2: “Can you remember what you were sup-
posed to do with the item?.” Again, if the participant
responded “No,” the trial ended, if “Yes” the trial contin-
ued with Question 3: “Were you supposed to eat it or
lift it?.” The participant was forced to choose between
the 2 actions associated with the item at encoding. For
behavioral analysis, the classification of responses to old
items was: (1) source memory (“Yes” response to Question
1 and Question 2, and correct answer to Question 3), (2)
item memory (“Yes” response to Question 1 and either
“No” to Question 2 or incorrect answer to Question 3),
(3) miss (incorrect answer to Question 1). New items
were classified either as (4) correct rejections or (5) false
alarms. Memory performance in the task was calculated
as the proportion of source memory minus incorrect
judgments to Question 3 (wrong recollection), tentatively
controlling for false memories and guessing behavior
(Vidal-Piñeiro et al. 2019). This measure is useful for cap-
turing the associative features of memory encoding per-
formance which are strongly affected by age (compared
to recognition-based indices) (Old and Naveh-Benjamin
2008). The relationship between age and relevant behav-
ioral and neuropsychological metrics was tested with
generalized additive models (GAMs), controlling for sex.

MRI acquisition
Imaging data were collected using a 20-channel Siemens
head–neck coil on a 3 T MRI (Siemens Skyra Scanner,
Siemens Medical Solutions, Germany) at Rikshospi-
talet, Oslo University Hospital. The functional imaging
parameters were equivalent across all fMRI runs: 43
transversally oriented slices (no gap) were measured
using a BOLD-sensitive T2∗-weighted EPI sequence
(TR = 2390 ms, TE = 30 ms, flip angle = 90◦, voxel size = 3
× 3 × 3 mm3, FOV = 224 × 224 mm2, interleaved
acquisition; generalized autocalibrating partially parallel
acquisitions acceleration factor [GRAPPA] = 2). Each
encoding run produced 134 volumes. At the start of each
fMRI run, 3 dummy volumes were collected to avoid
T1 saturation effects. Anatomical T1-weighted (T1w)
magnetization-prepared rapid gradient echo (MPRAGE)
images consisting of 176 sagittally oriented slices were
obtained using a turbo field echo pulse sequence
(TR = 2300 ms, TE = 2.98 ms, TI = 850 ms, flip angle = 8◦,
voxel size = 1 × 1 × 1 mm3, FOV = 256 × 256 mm2) were
also acquired. Furthermore, a standard double-echo
gradient-echo field map sequence was acquired for
distortion correction of the echo planar images. Visual
stimuli were presented in the scanner environment
with an NNL 32-inch LCD monitor while participants
responded using the ResponseGrip device (both Nordic-
NeuroLab, Norway). Auditory stimuli were presented to
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Fig. 1. Experimental paradigm. (A) 1 trial of the encoding task. The green
checkmark and the red X were present on the screen to indicate which
button indicate yes and no. (B) 1 trial of the retrieval task. Test questions
1 and 2 required a yes/no response, whereas question 3 required a choice
between the two actions. The trial ended if the participant responded
no to either 1 of the 2 first questions. Response cues (checkmark, X,
eating, lifting) were also present on the screen. ITI intertrial interval, ISI
interstimulus interval. Adapted from Vidal-Piñeiro et al. (2017).

the participants’ headphones through the scanner inter-
com. The structural T1w data used in the longitudinal
analysis were collected using a 12-channel head coil
on a 1.5 T Siemens Avanto scanner (Siemens Medical
Solutions, Germany) at Rikshospitalet, Oslo University
Hospital. The pulse sequence acquired consisted of

two repeated 160-slice sagittal T1-weighted MPRAGE
sequences (TR = 2400 ms, TE = 3.61 ms, TI = 1000 ms, flip
angle = 8◦, voxel size = 1.25 × 1.25 × 1.20 mm, FOV = 240 mm).
The raw images were automatically corrected for spatial
distortion due to gradient nonlinearity (Jovicich et al.
2006) and field inhomogeneity (Sled et al. 1998), averaged,
and resampled to isotropic 1 mm voxels.

MRI preprocessing
fMRI preprocessing

Data were organized and named according to the Brain
Imaging Dataset Specification standard (BIDS) and pre-
processed using a fMRIPep preprocessing pipeline (Este-
ban et al. 2019) (v. 1.2.5) a “Nipype” based tool (Gor-
golewski et al. 2018) (v. 1.1.6).

The T1w image was corrected for intensity nonuni-
formity (INU) using N4BiasFieldCorrection (Tustison et al.
2010) (ANTs v. 2.2.0), and used as T1w-reference through-
out the workflow. The T1w-reference was then skull-
stripped using antsBrainExtraction.sh (ANTs v. 2.2.0),
using OASIS as target template. Brain surfaces were
reconstructed using recon-all (FreeSurfer v. 6.0.1) (Dale
et al. 1999), and the brain mask estimated previously
was refined with a custom variation of the method to
reconcile ANTs-derived and FreeSurfer-derived segmen-
tation of the cortical gray matter (GM) of Mindboggle
(Klein et al. 2017). Spatial normalization to the ICBM152
Nonlinear Asymmetrical template version 2009c (Fonov
et al. 2009) was performed through nonlinear registration
with antsRegistration (Avants et al. 2008), using brain-
extracted versions of both T1w volume and template.
Brain tissue segmentation of cerebrospinal fluid, white-
matter and gray matter was performed on the brain-
extracted T1w using FAST (FSL v. 5.0.9) (Zhang et al. 2001).

For each BOLD run, the following preprocessing
was performed: first, a reference volume and its
skull-stripped version were generated using a custom
methodology of fMRIPrep. A deformation field to correct
for susceptibility distortions was estimated based on a
field map that was coregistered to the BOLD reference,
using a custom workflow of fMRIPrep derived from D.
Greve’s epidewarp.fsl script and further improvements
of HCP Pipelines (Glasser et al. 2013). Dummy scans,
acquired at the beginning of each BOLD run, were
averaged and used as reference due to their superior
tissue contrast. Based on the estimated susceptibility
distortion, an unwarped BOLD reference was calculated
for a more accurate coregistration with the anatomical
reference. The BOLD reference was then co-registered
to the T1w reference using bbregister (FreeSurfer).
Coregistration was configured with 6 degrees of freedom.
Head-motion parameters with respect to the BOLD
reference (transformation matrices, and 6 corresponding
rotation and translation parameters) were estimated
before any spatiotemporal filtering using mcflirt (FSL
v. 5.0.9) (Jenkinson et al. 2002). BOLD runs were slice-
time corrected using 3dTshift from AFNI v. 20,160,207
(Cox and Hyde 1997). The BOLD time-series (including
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slice-timing correction when applied) were resampled
onto their original, native space by applying a single,
composite transform to correct for head-motion and
susceptibility distortions. These resampled BOLD time-
series will be referred to as preprocessed BOLD in original
space, or just preprocessed BOLD. Several confounding
time-series were calculated based on the preprocessed
BOLD: framewise displacement (FD) was calculated
for each functional run, using Nipype’s implementa-
tion (following the definitions by Power et al. (2014)).
Additionally, a set of physiological regressors were
extracted to allow for component-based noise correction
(CompCor) (Behzadi et al. 2007). Principal components
were estimated after high-pass filtering the preprocessed
BOLD time-series (using a discrete cosine filter with 128 s
cut-off). A subcortical mask was obtained by heavily
eroding the brain mask to ensure it would not include
cortical gray matter regions. Six anatomical CompCor
(aCompCor) components were then calculated within the
intersection of the aforementioned mask and the union
of cerebrospinal fluid and white matter masks calculated
in T1w space, after their projection to the native space
of each functional run (using the inverse BOLD-to-T1w
transformation). Preprocessed BOLD data were denoised
prior to statistical analyses via the FSL-function fsl_regfilt
(FSL v. 5.0.10). This involved regressing out the 6
aCompCor (Behzadi et al. 2007) components together
with head-motion estimates (3 translation + 3 rotation
parameters). All resamplings were performed with a
single interpolation step by composing all the pertinent
transformations (i.e. head-motion transform matrices,
susceptibility distortion correction when available, and
coregistrations to anatomical and template spaces).
Gridded (volumetric) resamplings were performed using
antsApplyTransforms (ANTs), configured with Lanczos
interpolation to minimize the smoothing effects of other
kernels (Lanczos 1964). Nongridded (surface) resam-
plings were performed using mri_vol2surf (FreeSurfer).

Correlational PPI estimation

We estimated the first-level whole-brain PPI (cPPI)
(Fornito et al. 2012) matrix in each subject’s native space.
Note that, in contrast with the traditional PPI technique,
cPPI results in symmetrical, undirected connectivity
matrices. We used a ROI-based approach, obtaining
connectivity terms for |N| = 416 ROIs corresponding to
the cortical Schaeffer parcellation (|N| = 400) (Schaefer
et al. 2018) and 8 bilateral ROIs from the aseg atlas
(accumbens, amygdala, caudate, pallidum, putamen,
thalamus, hippocampus anterior, and posterior) (Fischl
et al. 2002). Four “psychological” timeseries were set
up as boxcar functions, reflecting 2 s encoding events
that comprised the entire period of picture presentation.
Events were assigned to a given condition based on the
participant’s response during the subsequent memory
test namely: Source (subsequent item-source association
[Yes response to Q1 and Q2 and correct response to Q3]),
Item (subsequent item memory without memory for the

association [correct Yes response to Q1 and either a No
response to Q2, or incorrect response to Q3]), Miss mem-
ory trials, and trials with no response. Next, denoised
BOLD timeseries from the 416 ROIs were deconvolved
into neuronal estimates (Gitelman et al. 2003) and point-
by-point multiplied with the psychological event time-
series. The resulting “psychophysiological” timeseries,
one per event type, were returned to the BOLD level
through convolution with a canonical 2-gamma HRF,
becoming our PPI-terms. cPPI matrices were established
for each participant and task event type separately via
partial Pearson’s correlations, correlating BOLD-level PPI
terms extracted from pairs of ROIs while controlling for
(i) PPI-terms representing other task events, (ii) both ROIs’
denoised BOLD timeseries, (iii) HRF-convolved versions
of the psychological timeseries. The resulting partial
correlation coefficients were Fisher-transformed to z
values, and the full cPPI matrix for a given task event
mean-centered within-individual before entering higher-
level analysis. Note that cPPI values—when contrasted
against the implicit baseline—capture both intrinsic
connectivity and task-specific connectivity. This measure
is thus more analogous to beta-series correlation and
steady-state connectivity measures than to traditional
PPI connectivity. Thus, our cPPI measures are affected—
to some extent—by non-neural effects affecting intrinsic
connectivity values; some of them associated with
age. Demeaning effectively reduces the contribution
of global undefined noise to participants’ cPPI values,
but also changes the values from absolute to relative
measures of functional connectivity. As such, observed
variability over participants reflect differences in nodes
and edges’ relative strengths in the graph, alternatively
conceptualized as reflecting differences in prioritization
within the functional connectome. For illustrative and
communication purposes, the ROIs were grouped based
on 18 networks (subcortical network plus 17 cortical
networks as defined by Yeo et al. (2011)).

Longitudinal structural preprocessing

For the structural longitudinal analysis, we performed
cortical reconstruction and volumetric segmentation of
the T1w scans using the longitudinal FreeSurfer stream
v.6.0 (Reuter et al. 2012) (http://surfer.nmr.mgh.harvard.
edu/fswiki). The images were initially processed using
the cross-sectional stream thoroughly described else-
where (Dale et al. 1999; Fischl et al. 1999; Fischl and
Dale 2000). The automatized processing pipeline includes
removal of nonbrain tissues, Talairach transformation,
intensity correction, tissue and volumetric segmentation,
cortical surface reconstruction, and cortical parcella-
tion. Next, an unbiased within-subject template volume
based on all cross-sectional images was created for each
participant, using robust, inverse consistent registration
(Reuter et al. 2010). The processing of each time point was
then reinitialized with common information from the
within-subject template, significantly increasing reliabil-
ity and statistical power. Before group analysis, cortical
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hemispheres were brought to fsaverage space and surface
smoothing was applied at 12 mm FWHM. For subcortical
structures (i.e. hippocampi) mean bilateral volume for
specific structures was used in the analyses.

Higher-level analysis
Main effects of whole-brain correlational PPI

We ran four GLM models on the whole-brain connectiv-
ity cPPI matrices to assess the mean connectivity and
the effects of age, performance, and age × performance
interaction. Sex was used as a covariate of no-interest in
all models. The models were built in a step-wise manner,
adding complexity in each model. First, we assessed
the mean patterns of task-dependent connectivity dur-
ing source memory encoding. Next, we added an age
regressor to test for changes in encoding-connectivity
with age. The third model tested the relation of per-
formance (as defined by the corrected source memory
scores) on encoding connectivity, age controlled. In the
fourth model, we tested the age × performance interac-
tion by adding the interaction regressor. This later model
was restricted to edges showing a main effect of perfor-
mance. The covariates were mean-centered. All analyses
were corrected for multiple comparisons via cluster cor-
rection routines from the Network Based Statistics (NBS)
toolbox (Zalesky et al. 2010), with P < 0.01 cluster-forming
threshold and P < 0.025 (2 comparisons) cluster signifi-
cance as determined by permutation testing (n = 5000).

Spatial relationship between connectivity maps and
term-based meta-analyses

To further test the resulting connectivity patterns in
relation to the specific cognitive processes involved,
we investigated whether these encoding patterns over-
lapped with existing patterns of fMRI activity previously
described in the literature. Hence, we compared the
topology of the main effects of age, performance, and
age × performance interaction with the meta-analytic
patterns of activity that were associated with specific
cognitive processes.

For connectivity, we estimated the “significance
degree” of each ROI in the cPPI graphs; that is the number
of connections (“edges”) that were significant for a given
ROI in a given contrast (age, performance, and age ×
performance interaction). The connectivity output for
each contrast was a |N| = 416 ROIs map representing
the degree to which each region was related to age,
performance, and age × performance interaction effects.

The meta-analytic cognitive maps were computed
with the NiMARE package (Salo et al. 2018), which uses
core functions from Neurosynth (Yarkoni et al. 2011).
The software computes meta-analytical maps based
on (mostly) activity contrasts in fMRI studies using
automated text mining and coordinate extraction tools.
We restricted the meta-analytical terms to those that
overlapped between the Neurosynth database and the
cognitive atlas (Poldrack et al. 2011) (|N| = 123 terms)
thus restricting terms to specific “mental processes”

(cognitive and emotional). Coordinate-based multilevel
kernel density analysis (MKDA) models were used to
model the specificity of the cognitive processes on
neuroimaging data (Wager et al. 2009). Specificity refers
to the probability of a cognitive term occurring given
activation in a specific brain area. We set a term
frequency threshold = 0.001 and a kernel radius = 10 mm.
The remaining parameters were left to default. For
comparison with “significance degree” from connectivity,
the resulting meta-analytical maps were parcellated into
|N| = 416 ROIs using a volumetric parcellation.

The relationship between the “significant degree” and
the meta-analytical cognitive maps was assessed using
Pearson’s correlations. Permutation-based significance
testing (P ≤ 0.01) was performed with the BrainSMASH
package (Brain Surrogate Maps with Autocorrelated Spa-
tial Heterogeneity) (Burt et al. 2020). BrainSMASH enables
statistical testing of spatially correlated brain maps by
simulating surrogate brain maps with a spatial autocor-
relation that matches the target map; here the meta-
analytical cognitive maps (Viladomat et al. 2014). Surro-
gate maps (n = 5000) were generated based on a Euclidean
distance matrix of the center-of-gravity ROI coordinates.
A null distribution was then defined by correlating the
surrogate and the “significant degree” maps.

Relationship between connectivity patterns in older age
and brain structural decline

We studied the relationship between encoding connec-
tivity and brain atrophy and cortical thinning in a sub-
sample of older individuals with retrospective longitu-
dinal data (n = 81, age > 50 years). The longitudinal data
spanned back on average 8.1 (SD = 0.93) years; the timing
of the last observation overlapped with the timing of
the encoding task. We focused on the clusters that were
associated with memory performance with increasing
age. We used a summarized metric that consisted of
mean encoding connectivity from the clusters identified
in the age × performance interaction models (see above
for more details). Hereafter, we refer to those metrics
as memory-positive and memory-negative in older age, as
the resulting clusters were associated either with higher
and lower memory performance with higher age, respec-
tively. We tested whether these patterns of connectivity
were associated with whole-brain cortical thinning using
spatiotemporal linear mixed effect (LME) modeling as
implemented in Freesurfer (Bernal-Rusiel et al. 2013).
LME models were run as a function of time (years from
the experimental task), connectivity, and the connectiv-
ity × time interaction. Sex, estimated intracranial volume
(eICV), and baseline age (last measurement) were intro-
duced as covariates of no-interest and subject identifiers
as random intercepts (Bernal-Rusiel et al. 2013). Statis-
tical significance was tested at each cortical vertex and
the resulting maps were corrected for multiple compar-
isons using false discovery rate (pFDR < 0.01). Finally, we
investigated whether these patterns of connectivity were
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Fig. 2. Trajectories of cognition throughout the adult lifespan. Cognitive performance was fitted by age using GAMs, controlled for sex. Memory
performance = corrected source memory score from the experimental task; CVLT learning = words learned and recalled across the five CVLT learning
trials; vocabulary and matrix = WAIS-IV vocabulary and matrices reasoning raw scores. Ribbons represent 95% confidence intervals.

associated with decreased hippocampus volume, using
the same model described above.

Relationship between connectivity patterns in older age
and cognitive decline

We studied the relationship between encoding connec-
tivity and decline in memory function and general cog-
nition in a subsample of older individuals with retro-
spective longitudinal cognitive data. The longitudinal
data spanned back on average 7.42 years (SD = 1.94);
the last observation corresponded in time with the cur-
rent experimental task. We selected total learning score
from the California Verbal Learning Test (CVLT), and the
Vocabulary and Matrix Reasoning test from the WASI-
II battery as proxies for memory function, crystalized
and fluid intelligence. To explore whether connectivity
in the memory-positive and memory-negative in older age
clusters were associated with cognitive decline over time
we ran LME analyses as detailed above with the cognitive
measures fitted as a function of time (years from the
experimental task), connectivity, and the connectivity
× time interaction (pFDR < 0.01). Sex and baseline age
were introduced as covariates of no-interest and subject
identifiers as random intercepts.

Results
Behavioral results
Memory performance in the fMRI task showed a nonlin-
ear negative relationship to age, accelerating in the sixth
decade of life (F = 52.26, edf = 2.60, [P < 0.001]) (edf informs
about the degree of complexity of the gam response).
The different cognitive measures were related to age (all
P’s < 0.001), controlling for sex; higher age was related
to lower memory and visuospatial reasoning and higher
vocabulary performance. See Figure 2 and Supplemen-
tary Table S2 for additional information.

Whole-brain encoding connectivity
In the main analyses, we assessed the effect of the mean
task connectivity patterns during memory source mem-
ory encoding and their association with age, performance
(corrected source memory score from the experimental
task), and the age × performance interaction. See
Supplementary materials in [Zenodo], at https://doi.
org/10.5281/zenodo.5526077, for the significant edges for
each main effect, and Supplementary Table S4 for the
proportion of significant intranetwork and internetwork
connections.

Mean encoding connectivity

Mean across-participants connectivity during encoding
(Fig. 3A) was characterized by high intranetwork connec-
tivity values and high internetwork connectivity between
default-mode subnetworks and somatomotor networks.
Low internetwork connectivity of salience, control, and
limbic networks with subcortical, visual, somatomotor,
and dorsal attention networks was seen.

Age effects

Pairwise connectivity between regions involved in higher
cognitive functions and unimodal and attentional
regions increased with higher age. Specifically, with
age connectivity was higher between control, limbic,
and default-mode subnetworks with somatomotor,
visual, subcortical regions, and the dorsal attentional
stream. Conversely, intranetwork connectivity within
control, dorsal, a subnetwork of DMN and somatomotor
networks was lower in older adults. See Figure 3B
(positive relationship with age number of significant
edges = 37,838; negative relationship with age number
of significant edges = 38,022). Note negative age effects
mean that the patterns were associated with younger
age. As resulted from the Mantel test, we found an
inverse relationship (r = −0.19, P < 0.001 from Mantel

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhac053#supplementary-data
https://doi.org/10.5281/zenodo.5526077
https://doi.org/10.5281/zenodo.5526077
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhac053#supplementary-data
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Fig. 3. P-values matrices for mean encoding connectivity and age effects.
ROIs were grouped based on the Yeo-17 atlas (Yeo et al. 2011) and a
subcortical network. Default D = TemporoParietal network. +/− values
refer to the directionality of the findings, as contrasts employed are 2-
tailed. Red represents higher connectivity values and positive age effects,
while blue represents lower connectivity values and negative age effects.
For the mean effect, only connections ≥1 SD of the mean are displayed.
For the age effects, only connections in FWE-corrected significant clusters
are displayed (P < 0.01). All the P-values have been transformed to –
log10(P).

test [n = 10,000 permutations]) between the matrices of
mean encoding connectivity and matrices of age effects,
suggesting a likely “dedifferentiation” of the connectivity

patterns with higher age. The inclusion of performance
in the model did not qualitatively affect the results.

Performance effects

Better memory performance (positive performance)
in the task was associated with higher connectivity
independently of age within posterior parietal and
frontal regions, namely the superior parietal lobule,
auditory and somatomotor areas, the frontal operculum
and medial PFC regions (age, sex controlled; number
of significant edges = 2,246; Fig. 4B). Conversely, poorer
memory performance (negative performance) was
associated with higher connectivity within posterior
lateral DMN regions, medial DMN regions, dorsal PFC
areas, lateral PFC areas, and the temporal pole (number
of significant edges = 2838; Fig. 4C).

Age × performance interaction effects

Next, we tested whether there were age × performance
interaction effects within the regions showing a main
effect of performance. We found two significant (FWE
controlled) clusters showing positive and negative age ×
performance interactions, respectively. See Figure 5 for
a visual illustration. The first cluster (memory-positive in
older age) included connectivity between medial temporal
and posterior parietal regions, including the retrosplenial
cortex, the inferior and superior parietal lobules, and
regions in the MTL. Higher connectivity between these
regions was associated with better performance with
higher age (number of significant edges = 56 masked
by 5,284 egdes; Fig. 5B). The second cluster (memory-
negative in older age) corresponded to connections
between frontal, parietal, and visual regions. Increased
connectivity between these regions was associated with
lower performance in older participants (number of
significant edges = 42 masked by 5,284 egdes; Fig. 5C).

Spatial relationship between connectivity maps
and term-based meta-analyses
Next, we tested the spatial relationship between the
encoding connectivity patterns and the meta-analytic
activity maps associated with specific cognitive pro-
cesses (P ≤ 0.01 using a permutation-based approach).
We used a “significance degree” (number of significant
connections for a given ROI in a given contrast) and specificity
metrics for connectivity patterns and cognitive maps,
respectively. This was done for all connectivity effects
of interest (age, performance, and age × performance
interaction). See Figure 6 and Supplementary Table S3 for
the full results. The connectivity patterns where greater
connectivity was related to higher age (i.e. older age)
overlapped significantly with the meta-analytic activity
patterns of retrieval, recall, and encoding processes.
Conversely, the connectivity patterns where greater
connectivity was associated with lower age (i.e. younger
age) overlapped with maps related to imagery, spatial
attention, and movement activity. The connectivity
patterns where greater connectivity was associated

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhac053#supplementary-data
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Fig. 4. Performance effects. (A) P-values matrix for performance effects. Performance was defined as (corrected) source memory performance in the
experimental task. ROIs were grouped based on the Yeo-17 atlas (Yeo et al. 2011) and a subcortical network. Default D = TemporoParietal network. +/−
values refer to the directionality of the findings, as contrasts employed are 2-tailed. Red represents higher connectivity values and positive performance
effects and vice versa for the blue scale. For the performance effects, only connections within FWE-corrected significant clusters are displayed (P < 0.01).
All the P-values have been transformed to –log10(P). (B and C) Top 5% of significant nodes shown overlaid to 3D-brain BrainNet viewer (Xia et al. 2013
http://www.nitrc.org/projects/bnv/). Nodes are filled with red to yellow scales from lower to higher connections (and blue to turquoise from lower to
higher connections) that indicate the number of connections (“significance degree”). Only edges between drawn nodes are displayed.

with better memory performance overlapped with
multisensory, integration, and speech production areas.
Connectivity patterns where greater connectivity was
related to worse performance overlapped with maps
associated with salience, emotion, and belief. The spatial
patterns of connectivity associated with positive age
× performance interaction (memory-positive in older-age)
overlapped with the activity patterns associated with
mental imagery. No terms were associated with negative
age × performance interaction (memory-negative in older

age). These results inform us on cognitive processes that
may be related to successful memory performance in
successful aging, that is, integrative and multisensory
strategies and mental imagery.

Relationship between connectivity patterns in
older age and brain structural decline
We assessed the relationship between brain atrophy and
cortical thinning and connectivity patterns in older age
to investigate whether age-related connectivity changes

http://www.nitrc.org/projects/bnv/
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Fig. 5. Age × performance interaction effects. (A) Relationship between performance and task-dependent connectivity across age. For illustrative purpose,
the effects of performance were predicted at two levels (± 1 SD age; mean age = 41.65 [SD = 17.18] years). Note though that age was introduced as
a continuous regressor in the model. Ribbons represent 95% confidence intervals. (B and C) Top 5% of significant nodes shown overlaid to 3D-brain
BrainNet viewer (Xia et al. 2013 http://www.nitrc.org/projects/bnv/). Nodes are filled with red to yellow scales from lower to higher connections (and
blue to turquoise from lower to higher connections) that indicate the number of connections (“significance degree”). Only edges between drawn nodes
are displayed.

Fig. 6. Spatial relationship between connectivity maps and meta-analytic patterns associated with specific cognitive processes. We displayed the top
cognitive terms associated with each contrast. Opaque colors reflects terms that survived the significance threshold (P ≤ 0.01) as determined by a
permutation approach using BrainSMASH (Burt et al. 2020). X-axis represents the empirical Pearson’s correlation (r), note that different ranges are
depicted for each contrast.

reflected maintenance or compensatory responses. This
analysis was performed in a subsample of older partic-
ipants (n = 81, age > 50) with retrospective longitudinal

neuroimaging data (see Supplementary Table S1). A
linear mixed effects analysis (controlled for sex, eICV,
and baseline age) revealed that the cluster related to

http://www.nitrc.org/projects/bnv/
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhac053#supplementary-data
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Fig. 7. Relationship between memory pattern of connectivity in older age and decline of brain structures over time. (A and B) Relationship between
memory patterns of connectivity in older and longitudinal structural hippocampal volume. (A) The yellow line represents higher memory performance
in memory-positive cluster. (B) The pink line represents lower memory performance in memory-negative cluster. Results are significant at pFDR < 0.01.
Values were predicted at eICV, and baseline age. (C) Whole-brain cortical thickness decline is associated with the memory-negative connectivity cluster
in older age. Only regions showing significant thinning over time are shown. Left hemisphere. Maps are corrected for multiple comparisons at pFDR
< 0.01. In the colorbar –log10(P) values are displayed, red/yellow represents higher values, blue/cyan lower values.

higher memory performance in older age (memory-
positive in older age) was associated with less hippocampal
volume decrease over time (F = 44.2, df = 165, P < 0.001;
Fig. 7A). In contrast, the cluster associated with lower
memory performance in older age (memory-negative in
older age) was related to a steeper volumetric decline
of hippocampi (F = −65.71, df = 165, P < 0.001; Fig. 7B)
and cortical thickness decline over time. Indeed, the
cortical analysis showed a positive association between
connectivity in this memory-negative in older age cluster
and cortical thinning in two small clusters encompassing
(1) the left precentral and (2) the anterior fusiform
and the entorhinal cortices (pFDR < 0.01, Fig. 7C). The
relationship between the connectivity cluster associated
with the memory-positive connectivity cluster in older
age and whole-brain cortical thinning did not survive
multiple comparison corrections. Cortical thickness data
are available longitudinally and retrospectively, but the
association between cortical thinning and functional
connectivity is better understood as an association
rather than a causal prediction. Overall, the results
supported the hypothesis that the patterns of connec-
tivity associated with higher and lower performance in
older age were related to structural maintenance versus
decline of brain regions involved in memory processes.

Relationship between connectivity patterns in
older age and cognitive decline
We assessed the relationship between memory patterns
of connectivity in older age and cognitive decline using
retrospective cognitive data (age > 50). See Supplemen-
tary Table S1 for details. LME models (controlled for
sex and baseline age) revealed a relationship between

connectivity patterns associated with higher memory
performance in older age (memory-positive in older age) and
less decline in CVLT learning scores. However, the asso-
ciation did not survive multiple comparison corrections
(pFDR = 0.07).

Discussion
We estimated whole-brain functional connectivity
during episodic memory encoding, specifically focusing
on age-related differences in connectivity and how they
were associated with memory performance across the
lifespan. In higher age, we found lower intranetwork
and higher internetwork connectivity between regions
involved in higher cognitive functions and the dorsal
attention stream, sensorimotor and subcortical regions
during encoding. Successful memory performance in
higher age overlapped with networks involved in mental
imagery. Among older adults, greater hippocampal
and cortical atrophy was related to less favorable
connectivity changes, reflecting maintenance processes
over time.

The age effects on encoding connectivity are partially
in agreement with previous rs-fMRI and task-fMRI
studies, suggesting that some of the functional age-
differences are task-independent. For example, several
resting-state fMRI studies have found lower positive
intranetwork connectivity and higher positive inter-
network connectivity, suggesting that brain networks
become less specialized during aging and the flow of
information transmitted becomes less efficient (Betzel
et al. 2014; Geerligs et al. 2015; Sala-Llonch et al.
2015). In our case, lower intranetwork connectivity

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhac053#supplementary-data
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was found among networks supporting higher level
cognitive functions, such as control, dorsal, and a
subnetwork of DMN (comprising inferior parietal lobule,
dorsal PFC and medial PFC). A similar pattern was
found within somatomotor areas. In line with a rs-fMRI
study of Geerligs et al. (2015), we found both increased
internetwork connectivity between visual and control
networks and reduced connectivity between visual
and somatomotor networks during the task. Given the
integration of the different types of stimuli required by
the encoding task and the loss of intranetwork commu-
nication within high processing networks typically seen
in aging, the increased connectivity of these networks
with unimodal regions may reflect the need for older
adults to cope with the higher demands of the encoding
task. Moreover, we found higher age-related connectivity
between control and dorsal attention networks, which
has been reported previously in a fMRI study using
a different task (Grady et al. 2016). This might be
interpreted as an over-recruitment of cognitive control
processes due to the cognitive demands of the task.
Likewise, higher connectivity between inversely engaged
networks, such as the control and the dorsal attention
respectively with the default-mode, has been described
in several tasks in aging (Spreng et al. 2016; Spreng and
Turner 2019). These patterns may reflect age-related
features during memory tasks such as lower flexibility
in shifting from external and internal attention and
semantization of cognition as older individuals might
rely more on acquired knowledge. Although speculative,
this interpretation receives further support from our
results as the connectivity patterns associated with older
age mapped unto cognitive processes such as retrieval
and recall, suggesting that older participants might rely
more on already acquired knowledge and schematic
information during the encoding task. However, our
results also reveal task-specific changes in connectivity.
Compared to fMRI acquired during resting-state and
other cognitive domains, we also identified the spatial
correspondence between the connectivity patterns and
cognitive maps, informing us on the specific cognitive
processes possibly involved in the task. Younger people
exhibited higher connectivity between areas overlapping
with regions known to support cognitive processes
relevant for our encoding task such as visual attention,
action, and imagery. Some of these strategies may also
have been adopted by older participants that performed
better, which may be interpreted to be in accordance with
the maintenance process framework. Taken together,
the whole-brain approach and the analysis assessing
the spatial overlap with established cognitive functions
provides contributes to our understanding of task-
related connectivity differences in aging above and
beyond specific fMRI studies.

We found that the relationship between connectivity
and memory performance differed as a function of age.
Older people who performed better showed higher con-
nectivity between medial temporal and posterior parietal

regions, including the retrosplenial cortex. As shown in a
previous rs-fMRI study of older participants (Kaboodvand
et al. 2018), episodic memory performance was posi-
tively associated with functional connectivity between
the retrosplenial cortex and the MTL. The retrosplenial
cortex is a key mediator in facilitating the communica-
tion between medial temporal and other DMNs regions,
leading to memory performance success (Kaboodvand
et al. 2018). In our study, the connectivity changes that
were related to better performance in older participants
overlapped spatially with the maps associated with men-
tal imagery, in which the engagement of the retrosple-
nial cortex is widely described (Chrastil 2018). These
strategies and functional connectivity changes mimicked
those associated with younger age.

We found that the patterns of connectivity associ-
ated with successful performance in older participants
were related to longitudinal volumetric maintenance of
the hippocampus, critically involved in memory encod-
ing. This is in agreement with the maintenance theory
of cognitive aging (Nyberg et al. 2012), as hippocampal
decline is a main factor behind memory decline in older
age (Gorbach et al. 2017). Note that longitudinal stud-
ies allow us to distinguish between aging effects and
lifelong constant differences, and thus are highly rele-
vant to interpret cross-sectional changes in fMRI activ-
ity. Conversely, we found no evidence that the pattern
of connectivity associated with higher performance in
older age reflected a compensatory attempt to overcome
structural decline. The widespread over-recruitment of
different regions in frontal, parietal, and visual areas
was not related to memory performance. Indeed, these
connectivity changes were associated with lower perfor-
mance and structural loss in the MTL over time, regions
that typically show steep annual thickness decline in
normal aging (Fjell and Walhovd 2010). Cognitive decline
was associated with structural decline and a maladap-
tive organization in the functional architecture, whereas
successful memory performance in older participants
reflected relative structural integrity over time and func-
tional connectivity changes that supported the use of
“younger” cognitive strategies such as mental imagery.
The results fit the maintenance framework more than
the compensation framework. The study could have been
contextualized using the reserve framework (Stern et al.
2020). Yet, since (cognitive) reserve traditionally focuses
on proxies (IQ, education, bilingualism, mental leisure
activities), we think compensation is a more relevant
concept in this study. Indeed, our main goal was to
understand, given the challenges of this specific task,
whether individual differences in successful memory
performance reflected the use of preserved or additional
patterns of connectivity, rather than being explained in
terms of different levels of a specific reserve proxy. Older
participants who exhibited maintenance of connectiv-
ity patterns supporting memory function and strategies
similar to those observed in younger adults, showed bet-
ter memory performance. Between-person differences in
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the rates of brain decline may be partially explained
by cumulative environmental and biological effects over
time (reserve) and before age-related changes. Indeed,
these factors may have been translated into improved
neural resources accumulated over time and able to
counteract brain decline until some threshold, along
with ongoing repair mechanisms able to preserve neural
resources. However, we did not assess the single con-
tribution of these factors, e.g. education, physical exer-
cise, genetic variables, on building up maintenance and
reserve mechanisms.

Limitations and methodological remarks
fMRI during task performance is suited for investigating
brain dynamics underlying specific cognitive processes.
Participants performing a task during scanning yield
a degree of experimental control compared to resting-
state (Campbell and Schacter 2017). cPPI captures both
intrinsic and task-specific patterns of connectivity (akin
to a steady-state sequence; see below). Despite common-
alities across states, the functional brain architecture
differs across the different task contexts (Davis et al.
2017). Brain regions reconfigure their connectivity pat-
terns in a flexible way based on the current demands of
the task (Cole et al. 2013). In the present study, the con-
nectivity patterns associated with successful memory
performance mapped on networks involved in cognitive
processes relevant for the task. This provides informa-
tion about brain organization changes associated with
specific cognitive process of interest. However, for this
reason, a main disadvantage of task-fMRI is that differences
in the experimental design may hamper generalization
(Damoiseaux and Huijbers 2017) across studies. In this
study, some of our findings agree with previous rs-fMRI
and task-fMRI research and thus likely represent task-
invariant features of the aging brain (e.g. less specialized
brain networks and lower flexibility in shifting from
external to internal attention). However, other findings,
such as the spatial correlation between functional con-
nectivity and mental imagery processes, seem more con-
strained to the specific demands of the task and may
only be replicable in paradigms where certain cognitive
processes are beneficial for task performance.

The cPPI framework allowed for a whole-brain undi-
rected (symmetric) assessment of task connectivity. cPPI
does not imply inferences of directionality. The cPPI con-
nectivity values reflect correlations between regions dur-
ing selected task-periods of an fMRI run, controlling for
stimulus-driven cofluctuations and intrinsic functional
connectivity between the ROIs. When cPPI connectivity
values estimated from different task-periods are sub-
tracted, the resulting metric is largely comparable to tra-
ditional regression-based PPI approaches. However, when
conditions are not subtracted—as in the current paper—
cPPI is akin to “residualized” task-connectivity and beta
series correlation, i.e. the similarity between two regions’
trial-to-trial fluctuations in BOLD amplitude during task
(Di et al. 2020). The different implications of the metrics

are largely omitted in the literature but have consequen-
tial implications for the interpretation, that is in this case,
a task-state of integrated connectivity, instead of a shift
in connectivity driven by the specific task.

The effects of demeaning data within participants are
also consequential for the interpretation of our results.
This approach minimizes the possibility of non-neural
confounds that affect the implicit baseline being the
main drivers of connectivity differences across individu-
als. Some of these confounds are known to be greatly cor-
related with age (Campbell and Schacter 2017). However,
data demeaning only allowed us to interpret the results
in relative terms, and in terms of reorganization. Note
that many graph-theoretical studies use thresholded,
binarized data and thus face a similar problem. It is
however possible that some findings are a side-effect of
this step. For example, the patterns of connectivity asso-
ciated with lower performance in older participants are
spatially unstructured and thus might represent unspe-
cific changes in the functional connectome rather than
reduced functional connectivity among specific regions.

Despite the structural and cognitive retrospective lon-
gitudinal data available, the main limitation of this study
is the lack of longitudinal task-fMRI, which would have
allowed us to assess how the functional architecture of
the brain during memory tasks changes over time.

Conclusion
This study provides novel insights in whole-brain con-
nectivity during encoding and its relation with age, cog-
nitive processes, and structural decline in older age using
a large sample encompassing the entire adulthood. Con-
nectivity patterns underlying successful memory func-
tion in older age spatially mapped onto mental imagery
processes and were related to structural brain mainte-
nance over time. These results provide a bridge between
the cognitive processes and the biological mechanisms
that support memory function maintenance and decline
in older age.

Supplementary material
Supplementary material is available at Cerebral Cortex
online.
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