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The foundation for investigating the mechanisms of human diseases is the establishment of
animal models, which are also widely used in agricultural industry, pharmaceutical applications,
and clinical research. However, small animals such as rodents, which have been extensively
used to create disease models, do not often fully mimic the key pathological changes and/or
important symptoms of human disease. As a result, there is an emerging need to establish
suitable large animal models that can recapitulate important phenotypes of human diseases for
investigating pathogenesis and developing effective therapeutics. However, traditional genetic
modification technologies used in establishing small animal models are difficultly applied for
generating large animalmodels of human diseases. This difficulty has been overcome to a great
extent by the recent development of gene editing technology, especially the clustered regularly
interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9). In this
review, we focus on the applications of CRISPR/Cas9 system to establishment of large animal
models, including nonhuman primates, pigs, sheep, goats and dogs, for investigating disease
pathogenesis and treatment. We also discuss the limitations of large animal models and
possible solutions according to our current knowledge. Finally, we sum up the applications of
the novel genome editing tool Base Editors (BEs) and its great potential for gene editing in large
animals.
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INTRODUCTION

Animal models play an important role in scientific research, including the study of disease
mechanisms, medicinal development and the production of agricultural products (McGonigle
and Ruggeri, 2014). To create ideal animal models, researchers often genetically modify animals
to achieve desirable traits. Gene-modified small rodent models, especially mice and rats, provide a
large amount of experimental data and play an important role in the study of disease mechanisms as
well as important biology function (Ribitsch et al., 2020). However, these small animal models also
have some shortcomings. First, because of considerable differences between small animals and
humans in physiological, anatomical, and genomic structures, small animal models are often unable
to mimic the disease characteristics of humans, leading to the inability of researchers to fully
understand the pathogenesis of diseases. This has also led to the failure of many drugs screened from
small animal models in clinical trials (Prabhakar, 2012; Zhao et al., 2019). In addition, small animal
models play less roles in agricultural activities, such as the production of animal by-products.

To overcome these limitations, scientists are increasingly focusing on large animal models (including
non-human primates (NHPs), pigs, dogs, goats, and sheep). Large animals represented by NHPs are more
ideal animal models for human diseases due to their similarities in genetics, physiology, developmental
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biology, social behavior and cognition (Shen, 2013). For example, the
brain mass of different species, which are depicted in Figure 1, are
apparently very different. However, many factors, including the
difficulties in genome editing, have limited the establishment of
gene modified large animal models.

With the development of gene editing technology in recent
twodecades, like zinc finger nucleases (ZFNs), transcription
activator-like effector nucleases (TALENs) and CRISPR/Cas9,
this difficulty has been overcome greatly. The ZFNs system
consists of two components, including DNA-binding zinc-
finger protein (ZFP) domain at the amino terminus and the
Fok I nuclease cleavage domain at the carboxyl terminus. Each
Fok I monomer link with a ZFP to form a ZFN that recognizes
a specific site. Under certain conditions, two ZFNs can
perform enzyme function of cleavage, leading to double-
strand breaks (DSBs), thus mediating DNA site-specific
cleavage (Durai et al., 2005; Carroll, 2011). ZFNs have been
used in a variety of species, including plants, animal and
mammalian cells (Carroll, 2011). However, due to the
differences between large animals and small animals, it is
still difficult to establish a large animal model using
ZFNs(Chen et al., 2016). TALENs are gene-editing tools
similar to ZFNs(Christian et al., 2010; Mussolino and
Cathomen, 2012; Joung and Sander, 2013). They are also
made by two structures: a transcription activator-like
(TAL) effector DNA-binding domain and a DNA cleavage
domain (a nuclease which cuts DNA strands). Thus, TALENs
can also be designed to induce site-specific DSBs to target

specific gene sequences (Yoshimi and Mashimo, 2018).
Compared with ZFNs, the synthesis and design of TALENs
components are simpler, so some large animal models are
successfully established by TALENs strategy. For example, in
2014, researchers created methyl CpG binding protein 2
(MECP2) Mutant Rhesus and Cynomolgus monkeys using
TALENs(Liu et al., 2014).

Although ZFNs and TALENs have greatly improved the
efficiency of establishing gene editing animal models, CRISPR/
Cas9 is the most popular and effective gene editing method at
present. The CRISPR/Cas9 system also consists of a recognition
component, small RNAs called single-guide RNAs (sgRNAs), and
a cleavage component, Cas9 nuclease. CRISPR/Cas9 can
target almost any loosened (non-condensed) part of the
genomes through base pairing between sgRNAs and DNA as
well as the recognition of protospacer adjacent motif (PAM)
sequences (Jinek et al., 2012). Cas9 then cleaves the double-strand
DNA at the target site to form DSBs. Subsequently, cells repair
DSBs sites by non-homologous end joining (NHEJ) or homology-
directed repair (HDR). The repair process can go wrong, resulting
in mutations at specific genetic loci. Since the discovery of
CRISPR/Cas9, researchers have rapidly implemented a series
of optimizations to the system, and applied it in the
establishment of gene-editing models of small animal,
including mice (Wang et al., 2013), rats (Ma et al., 2014) and
zebrafishes (Kim and Kim, 2014). As a result, the CRISPR/Cas9
system has greatly accelerated the research of gene editing large
animal models, which is what we mainly discuss in this article.

FIGURE 1 |Brain mass for different animals. This figuremainly depicts the brain mass of different large animals and small animals. Notice that large animals, such as
pigs and nonhuman primates, are much closer to human beings compared with small animals to some extent.
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THE APPLICATION OF CRISPR/CAS9 IN
NONHUMAN PRIMATE MODELS

Undoubtedly, the nonhuman primate is the most representative
animal that is capable of mimicking the human disease for the
similarities in terms of genetics, physiology, developmental
biology, social behaviors and cognition. However, it is really
difficult to create a nonhuman primate transgenic model
compared with small animals, such as the mouse because of
various factors including the long breeding cycle and ethical
factors. The first transgenic mouse model was built as early as
1974 (Jaenisch andMintz, 1974), but the first genetically modified
monkey model did not appear until 2001 (Chan et al., 2001).
Afterwards, in 2008, Yang et al. developed a transgenic model of
Huntington’s disease (HD) in a rhesus macaque that expressed
polyglutamine (polyQ)-expanded huntingtin protein (HTT) by
injecting lentiviral vector into mature rhesus oocytes followed by
fertilization through intracytoplasmic sperm injection and
embryo transplantation (Yang et al., 2008). This is the first
transgenic nonhuman primate disease model, which could
already show some features similar to those found in HD
patients, including chorea, dystonia as well as nuclear
inclusion and neuropil aggregates in the brains. In the later
experiment, they used the same transgenic strategy to
introduce mutant huntingtin (HTT) genes into monkey
oocytes, which also expressed exon1 of HTT with a 147Q tract
(previous models containing a 65–88Q tract and dying soon) in
transgenic monkeys (Wang et al., 2008). These HD monkeys
display degeneration of axons and neuronal processes, suggesting
that the disruption in axons or dendrites can lead to the neuronal
degeneration in HD.

The success of transgenic monkey models of human disease
and the advances in gene editing technology inspired scientists to
establish genome editing monkey models. The generation of a
gene-modified monkey via CRISPR/Cas9 was first reported in
2014 (Niu et al., 2014). By coinjection of Cas9 mRNA and
sgRNAs into one-cell-stage embryos, researchers successfully
achieved precise gene targeting in cynomolgus monkeys. They
also showed that this system enabled simultaneous disruption of
two target genes (peroxisome proliferator-activated receptor
gamma (PPARG) and recombination activating gene 1 (RAG1)
in one step without detectable off-target effects. They also
demonstrated that germline transmission could happen in the
Cas9-manipulated monkeys by examining gene targeting in
gonads and germ cells (Chen et al., 2015a). However, the
resulting transgenic monkey exhibited mosaic mutations
accompanied by the presence of wild type allele in different
tissues, which left an issue of whether the mosaic mutations
could influence the function study. Then, Chen et al. used Cas9 to
disrupt the dystrophin gene (DMD) in rhesus monkeys, which
exhibited markedly depleted dystrophin andmuscle degeneration
seen in early Duchenne muscular dystrophy (DMD) (Chen et al.,
2015b), indicating that CRISPR/Cas9 can efficiently generate
monkey models of human diseases regardless of inheritance
patterns.

Next, some experiments were conducted aimed at eliminating
the mosaic mutations. Researchers showed that biallelic gene

mutation can be efficiently generated in monkeys by zygote
injection with an optimized Cas9/sgRNA combination in one-
step (Wan et al., 2015). After optimization and innovation of the
approach, Zuo et al. also showed that a single gene or multiple
genes can be completely knocked out in monkey embryos by
zygotic injection of Cas9 mRNA and multiple adjacent sgRNAs
without mosaicism (Zuo et al., 2017). Apart from that, another
research indicated that shortening the half-life of Cas9 in
fertilized zygotes reduced mosaic mutations and increased its
ability to modify genomes in monkey embryos (Tu et al., 2017).
Following this approach, they used the Cas9/sgRNA method to
disrupt SH3 and ankyrin repeat domains 3 gene (SHANK3) in
cynomolgus monkeys, which showed altered neurogenesis and
disrupted expression of synaptic proteins in the prefrontal cortex,
which was not found in the mouse model (Zhao et al., 2017).

Apart from knockout animals, researchers have also attempted
to obtain knock-in nonhuman primates in recent years. Yao et al.
first established knock-in monkeys by homology-mediated end
joining (HMEJ)-based method. However, monkeys generated by
this approach showed mosaicism. Therefore, further serial
crossbreeding is required to generate complete gene knock-in
monkeys (Yao et al., 2018). A similar work to achieve precise
OCT4-hrGFP (octamer-binding transcription factor 4-
humanized recombinant green fluorescent protein) knock-in
in cynomolgus monkey model was also tried via CRISPR/
Cas9-assisted HR (Cui et al., 2018).

However, a genetically modified nonhuman primate is
expensive to maintain and requires the facility that is only
available to a small number of laboratories. Thus, researchers
have tried to establish the modified embryonic stem cells (ESCs)
of rhesus monkey using the CRISPR/Cas9 system, which can
undergo unlimited self-renewal while maintaining the potential
to give rise to all cell types (Zhu et al., 2015; Kobayashi et al.,
2019). Using a dual-guide gene targeting approach, another
group achieved biallelic deletions in the CCR5 gene (C-C
motif chemokine receptor 5) of cynomolgus macaque embryos
(23–37%) (Schmidt et al., 2020).

Although CRISPR/Cas9 system is the most widely used
strategy in the creation of large animal models nowadays,
there were also nonhuman primate models using different
approaches like TALENs(Liu et al., 2014; Liu et al., 2016;
Chen et al., 2017). An obvious issue is the safety of the gene-
editing in nonhuman primates due to potential off-target
mutations. Using whole-genome sequencing to
comprehensively assess on- and off-target mutations in
previously produced CRISPR/Cas9 editing monkeys (Chen
et al., 2015b), researchers found that CRISPR/Cas9-based gene
editing is active on the expected genomic sites without producing
off-target modifications in other functional regions of the
genome, suggesting that the CRISPR/Cas9 technique could be
relatively safe and effective in modeling genetic disease in
nonhuman primates (Wang S. et al., 2018; Luo et al., 2019).

CRISPR/Cas9 editing monkeys have already shown better
phenotypes in human diseases than mouse models despite a
limited number of successfully established models (Seita
et al., 2020; Yang et al., 2021; Yin et al., 2022). Yang et al.
generated PTEN-induced kinase 1 (PINK1, whose mutations
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cause early-onset Parkinson’s disease (PD) mutant monkeys
by targeting two exons in the PINK1 gene (Yang et al., 2019a;
Yang et al., 2019b), which showed remarkable neuronal loss
in the cortex, substantia nigra and striatum. However,
neuronal loss was not reported in Pink1 KO mice (Kitada
et al., 2007; Dawson et al., 2010) or pigs (Zhou et al., 2015;
Wang et al., 2016b). Similar results were confirmed in acute
monkey models created by CRISPR/Cas9 system (Li et al.,
2021; Sun et al., 2022; Yang et al., 2022). In another example,
Kang et al. achieved dosage-sensitive sex reversal, adrenal
hypoplasia critical region, on chromosome X, gene 1 (DAX1)
knockout in the monkey, which could recapitulate the
phenotypes of human adrenal hypoplasia congenita (AHC)
and hypogonadotropic hypogonadism (HH).

Nonhuman primatemodels of human diseases were also used for
developing therapies. Tu et al. found that abnormal behaviors and
brain activities of autism spectrum disorder (ASD) in the previously
established monkeymodels (Zhao et al., 2017) were alleviated by the
antidepressant fluoxetine treatment (Tu et al., 2019). This finding
demonstrated that the genetically modified non-human primate can
be used for translational research of therapeutics for ASD, pointing
out that the nonhuman primate models of human disease have a
great potential for clinical research like drug tests.

THE APPLICATION OF CRISPR/CAS9 IN
PIG MODELS

The pig is also an important animal with several unique features
that make it a promising alternative animal model (Prather et al.,
2003). Pigs are model animals that are also close to humans
(Meurens et al., 2012). Pigs and humans are extremely similar in
terms of anatomy, physiology and biochemical metabolism
(Roura et al., 2016). Pigs have the advantages of early sexual
maturity, short reproductive cycle, high number of offspring per
litter (Zou et al., 2019). Moreover, the recent development of
somatic cell nuclear transfer (SCNT) technology and genome
editing technology has made it possible to generate genetically
modified large animals efficiently (Yang et al., 2014). The first
genome editing pigs were generated in 1985 using pronuclear
DNA microinjection in zygotes (Hammer et al., 1985). With the
development of CRISPR/Cas9 technology, the speed of building
genome-edited pig models has been greatly accelerated.

Hai et al. first showed that zygotes microinjection of the
CRISPR/Cas9 system can efficiently generate genome-modified
pigs in one step (Hai et al., 2014), and the mutations can be
transmitted into the germline efficiently. Different researchers
then reported that single- or double-gene targeted pigs can be
effectively achieved by using the CRISPR/Cas9 system combined
with SCNT, which avoids mosaic mutation and detectable off-
target effects (Whitworth et al., 2014; Zhou et al., 2015). Also, the
modification of multiple genes like triple gene-targeted pigs was
feasible to be generated (Wang et al., 2016b).

Apart from knockout pigs, CRISPR/Cas system is also used to
establish knock-in models that mimic human diseases. Yan et al.
used CRISPR/Cas9 to insert a large CAG repeat (150 CAGs) into
the endogenous pigHTT gene in fibroblast cells and employed the

SCNT to generate a HD KI pig model expressing full-length
mutant HTT at the endogenous level (Yan et al., 2018), whose
brains presented severe and preferential neurodegeneration in the
medium spiny neurons like HD patients. Other examples include
genes or large fragment knock-in pig models (Ruan et al., 2015; Li
G. et al., 2020).

Based on these successful trials in establishing knockout or knock-
in animals using CRISPR/Cas9 system, a number of pig models that
could recapture the features of human diseases have been created,
such as 5-hydroxytryptamine (5-HT) deficiency (Li et al., 2017b),
complement protein deficiency (ZhangW. et al., 2017), cardiovascular
disease (Huang et al., 2017), cancer (Kang et al., 2016), type II
collagenopathy (Zhang et al., 2020), and HD (Yan et al., 2018).

On the other hand, the pig is one of the most important
livestock in the agriculture industry. Genetically modified pigs
may offer distinct features, such as increased mass of muscle and
resistance to the pathogen. As a result, researchers have made
great efforts to improve the mass of muscle by using CRISPR/
Cas9 system to disrupt genes that hinder the hypertrophy of
muscle (Wang K. et al., 2015; Wang et al., 2017; Zou et al., 2018;
Liu et al., 2019; Li R. et al., 2020) and improve the resistance to
virus (Xie et al., 2020).

Apart from this, the pig is considered to be an important
resource of donor organs for transplantation because of the
growing demand in the xenotransplantation. A key problem
after xenotransplantation is the pig-to-human immunological
compatibility. Therefore, a great deal of genome editing pigs
has been established to eliminate antigens leading to
immunological rejection in human (Petersen et al., 2016;
Chuang et al., 2017; Gao et al., 2017; Wu et al., 2017; Joanna
et al., 2018). Another problem is the risk of cross-species
transmission of porcine endogenous retroviruses (PERVs).
Therefore, researchers inactivated all of the PERVs in a
porcine primary cell line and generated PERV-inactivated pigs
via SCNT and CRISPR/Cas9 system (Yang et al., 2015; Niu D.
et al., 2017; Yue et al., 2021). These efforts were aimed to make the
clinical usage of pig organs safer. Recently, a series of stunning
reports have provided the first results showing the feasibility of
transplanting organs from transgenic pigs into humans, including
the kidney and the heart (2022; Porrett et al., 2022), which
marked a great breakthrough in the clinical application.

THE APPLICATION OF CRISPR/CAS9 IN
SHEEP AND GOAT MODELS

Sheep and goats have also become important model animals in
biomedical research due to their suitable size and short gestation
period. Like pigs, sheep and goats also play an important role in
agricultural and pharmaceutical field for their meat, milk, fiber, and
other by-products. Han et al. reported the successful one-step
generation of gene knockout sheep using a one-step zygote
injection of the CRISPR/Cas9 system by targeting the myostatin
(MSTN) gene (Zhengxing et al., 2014), which demonstrated the
feasibility of gene targeting in sheep using the CRISPR/Cas9 system
at the first time. At the same year, Ni et al. showed for the first time
that the CRISPR/Cas9 mediated genome editing can be efficiently
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accomplished in goats (Ni et al., 2014) and the single-gene knockout
fibroblasts were successfully used for SCNT and resulted in live-born
goats harboring biallelic mutations.

Apart from the knockout strategy based on the aberrant DNA
repair to generate frameshifting insertion-deletion mutations
(indels), whether this genomic engineering technique involving
HR can be used to introduce defined point mutations is another
question. Subsequently, Niu et al. reported a G→A point
mutation in the growth differentiation factor 9 (GDF9) gene
that has a large effect on the litter size of cashmere goats
successfully (Niu et al., 2018). Moreover, Wu et al. succeeded
in integrating an exogenous tGFP (turboGFP) gene into targeted
genes in frame with high efficiency (Wu et al., 2016), which was
the first gene knock-in sheep via CRISPR/Cas9 system. Another
research specifically inserted the thymosin beta 4 (Tβ4) gene into
the goat CCR5 locus (Li X. et al., 2019), which also provided an
example for the establishment of knock-in goats models.

Sheep and goats have been used as interesting models in
biomedical research. Compared to experimental rodents, sheep
and goats offer the advantage of being more suitable in
mimicking human diseases due to their similar size and anatomy.
There have already been some examples of genome editing sheep or

goats by CRISPR/Cas9 system to mimic human disease. Fan et al.
created the first sheep model of human disease of cystic fibrosis (CF)
generated by CRISPR/Cas9 mediated disruption of the cystic fibrosis
transmembrane conductance regulator (CFTR) gene (Fan et al.,
2018). The newborn CFTR−/- sheep developed severe disease
phenotypes consistent with CF pathology in humans, like
pancreatic fibrosis, intestinal obstruction, and substantial liver and
gallbladder disease reflecting CF liver disease that is evident in
humans. Another study reported for the first time the generation
of otoferlin (OTOF) gene disrupted sheep, which provided a model
allowing better understanding and development of new therapies for
human deafness related to genetic disorders (Menchaca et al., 2020).
Additionally, Williams et al. have also reported an interesting sheep
model, recapitulating human hypophosphatasia (HPP, a rare
metabolic bone disease) by applying CRISPR/Cas9(Williams et al.,
2018). In this study, a single point mutation in the tissue-nonspecific
alkaline phosphatase gene (ALPL) was introduced. Thus, the
generated gene-edited lambs accurately phenocopied human HPP,
providing a useful large animal model for the study of rare human
bone diseases. The results of these reports corroborate the great
potential of the CRISPR/Cas9 system to generate gene-edited sheep
or goats that recapitulate human diseases (Kalds et al., 2019).

FIGURE 2 | Schematic diagram of CRISPR/Cas9 and different BEs (A) Schematic diagram of CRISPR/Cas9. Through base pairing between sgRNAs and DNA
as well as the PAM sequence, Cas9 can recognize and cleave the double-strand DNA at the target site to form DSBs (B,C) Schematic diagram of two original base
editors (CBEs). BE3: a SpCas9 nickase (D10A) is linked to a rat cytidine deaminase (rAPOBEC1) through the N terminus, and to a uracil glycosylase inhibitor (UGI) at the
C terminus. Target-AID: the C terminus of SpCas9 nickase (D10A) is linked to both cytidine deaminase from Petromyzon marinus (PmCDA1) and UGI (D)
Schematic diagram of adenine base editor (ABEs). ABEs: fusion of artificially evolved DNA adenine deaminase (TadA*-TadA) with SpCas9 nickase (D10A)
generates ABEs (TadA, wildtype Escherichia coil tRNA adenosine deaminase; TadA*, mutated TadA) (E) Schematic diagram of RNA base editor (RBEs). RBEs:
catalytically dead Prevotella sp. Cas13 (dCas13b) is tethered with deaminase domain of human“adenosine deaminase acting on RNA” (ADAR2DD) to form RBEs.
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Similar to pigs, the sheep or the goat is also one of the most
important livestock in agriculture industry, which urges scientists to
reform its traits via genome editing from different aspects according
to physical demand. Sheep and goats could provide us with donor
organs for xenotransplantation by serving as the host for the growth
of human organs. As a result, Vilarino et al. created PDX1−/−

(pancreatic and duodenal homeobox protein 1) fetus lacking a
pancreas, which provided the basis for the production of gene-
edited sheep as a host for interspecies organ generation (Vilarino
et al., 2017).BMPR-IB (bonemorphogenetic protein receptor type IB,
also known as FecB) is a key candidate gene for the genetic control of
sheep reproductive performance. Researchers created loss-of-
function mutations in the sheep BMPR-IB by using the CRISPR/

Cas9 system, leading to an increase in ovulation rate and
consequently larger litter size (Zhang et al., 2017c). Ma et al.
established an AANAT/ASMT (aralkylamine N-acetyltransferase/
acetylserotonin O-methyltransferase) transgenic animal model
constructed with CRISPR/Cas9 system, which served as the
mammary gland bioreactor to produce melatonin-enriched milk
in the sheep (Ma et al., 2017) or in goats (Zhou et al., 2017; Tian
et al., 2018). Another research showed that CRISPR/Cas9-mediated
loss of fibroblast growth factor 5 (FGF5) activity could promote the
wool growth and, consequently, increase the wool length and yield in
sheep (Li et al., 2017a; Hu et al., 2017) or in goats (Wang et al., 2016a),
and similar research was performed in order to change the coat color
of sheep and goats (Zhang et al., 2017b).

FIGURE 3 | Schematic representation of practical and possible pathways of genetic modification in large animals. To achieve the generation of live founders with
desired genetic modifications (pronuclear injection and nuclear transfer are the two primary procedures), the first step is to conduct genemanipulations in a variety of cells
or organs, including somatic cells, embryonic cells, embryos, spermatozoa, SSCs and other targeted organs by the use of many tools, such as viral vectors,
recombinases, transposons, RNA interference (RNAi), and endonucleases. Through a series of embryonic operations, such as nuclear transfer, genetically
modified cells or embryos can produce genetically modified offspring.
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To meet the growing demand for the meat product of sheep
and goats, many experiments are aimed at improving the yield
and quality of the meat production of sheep or goats, most of
which were conducted by hindering the muscle producing
genes in sheep (Crispo et al., 2015; Niu Y. et al., 2017; Zhang Y.
et al., 2018) or in goats (Wang X. et al., 2015; Guo et al., 2016;
Zhang J. et al., 2018; Wang X. et al., 2018; He et al., 2018), like
MSTN. This strategy was also used in the pig.

THE APPLICATION OF CRISPR/CAS9 IN
DOG MODELS

The dog is also a typical species used in scientific research, though
there are not many labs focusing on the topic of CRISPR/Cas9
system editing dogs. Zou et al. demonstrated for the first time that
a single injection of Cas9 mRNA and sgRNA corresponding to a
specific gene into zygotes, combined with an auto-embryo
transfer strategy, can efficiently generate site-specific genome-
modified dogs (Zou et al., 2015). Their team also generated the
apolipoprotein E (APOE) deficient dogs via similar strategy
3 years later (Feng et al., 2018).

The most exciting breakthrough about gene edited dogs related to
CRISPR/Cas9 system happened in the year of 2018. Researchers of
Olson lab working with dogs successfully fixed a genetic glitch that
causes DMD by further damaging the DNA. They used adeno-
associated viruses (AAV) to deliver CRISPR/Cas9 gene editing
components to four dogs, which allowed the mutated gene to
again make a key muscle protein and greatly alleviated the disease
(Amoasii et al., 2018). The feat-achieved for the first time in a large
animal-raised hope that such genetic surgery could 1 day prevent or
treat this crippling and deadly disease in people, which created a great
interest in the field (Cohen, 2018; Duan, 2018; Wasala et al., 2019;
Mata Lopez et al., 2020).

DISCUSSION

Limitations of CRISPR/Cas9 System in
Large Animal Models
Above all, the progress of genome editing large animal models is
accelerated tremendously by CRISPR/Cas9 system because of
many aspects of advantages. First, this system is nearly able to

TABLE 1 | Examples of genome-edited large animals described in this article.

Species Genes Editing type References

NHPs RTT, MECP2 KO Liu et al. (2014)
PPARG, RAG1 M-KO Niu et al. (2014)
DMD KO Chen et al. (2015b)
TP53 KO Wan et al. (2015)
ARNTL, PRRT2 M-KO Zuo et al. (2017)
PINK1, ASPM KO Tu et al. (2017)
SHANK3 KO Zhao et al. (2017)
mCherry KI Yao et al. (2018)
hrGFP KI Cui et al. (2018)
MECP2 KO Chen et al. (2017)
PINK1 M-KO Yang et al. (2019b)
LMNA BE Wang et al. (2020)

Pigs VWF KO Zhang et al. (2017a)
CD1D, CD163, EGFP M-KO Huang et al. (2017)
PRKN, DJ-1, PINK1 M-KO Wang et al. (2016b)
HTT KI Yan et al. (2018)
Large transgene cassette KI Li et al. (2020a)
F9 KI Chen et al. (2021)
Large transgene cassette KI Ruan et al. (2015)
TPH2 KO Li et al. (2017b)
C3 KO Zhang et al. (2017a)
APOE, LDLR M-KO Huang et al. (2017)
RUNX3 KO Kang et al. (2016)
MSTN KO Wang et al., (2015a)

Wang et al., 2017
Li et al. (2020b)

IGF2 KO Liu et al. (2019)
FBX O 40 KO Zou et al. (2018)
pRSAD2 KI Xie et al. (2020)
pULBP1 KO Joanna et al. (2018)
PDX1 KO Wu et al. (2017)
GGTA1, CMAH M-KO Gao et al. (2017)
GGTA1 KO (Petersen et al., 2016

Chuang et al. (2017)
GGTA1, BGALNT2, CMAH BE Yuan et al. (2020)
TWIST2, TYR BE Li et al. (2018b)

species Genes Editing type References

goats MSTN KO Ni et al., (2014)
Guo et al., 2016
He et al., 2018
Wang et al. (2018b)

CDF9 PM Niu et al. (2018)
Tβ4 KI Li et al. (2019b)
SCD1 KO Tian et al. (2018)
BLG KO Zhou et al. (2017)
FGF5 KO Wang et al. (2016a)
MSTN, FGF5 M-KO Wang et al. (2015b)
FAT1, MSTN KO/KI Zhang et al. (2018a)
FGF5 BE Li et al. (2019a)

sheep tGFP KI Wu et al. (2016)
CFTR KO Fan et al. (2018)
OTOF KO Menchaca et al. (2020)
ALPL PM Williams et al. (2018)
PDX1 KO Vilarino et al. (2017)
BMPR-IB KO Zhang et al. (2017c)
AANAT, ASMT KI Ma et al. (2017)
FGF5 KO Hu et al., (2017)

Li et al. (2017a)
ASIP KO Zhang et al. (2017b)
MSTN KO Crispo et al., (2015)

Rao et al., 2016
(Continued in next column)

TABLE 1 | (Continued) Examples of genome-edited large animals described in this
article.

species Genes Editing type References

Zhang et al. (2018b)
BC O 2 KO Niu et al. (2017b)
SOCS2 BE Zhou et al. (2019)

dogs MSTN KO Zou et al. (2015)
APOE KO Feng et al. (2018)

The table lists genes that have been changed by the way of KO, M-KO, PM or BE or KI.
Abbreviations: KO, knockout; M-KO, multiplex knockout; KI, knock-in; PM, point
mutation (by HDR); BE, base editing.
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target any locus of the genome in animals theoretically as long as
there are PAM sequences near the location (Mali et al., 2013),
which really expanded the range of editing genes compared with
previous strategy. Next, because the targeting strategy relies on 23
base pair matches, CRISPR/Cas9 can target to virtually any genes
in a sequence-dependent manner. As a result, CRISPR/Cas9 can
target two alleles to cause a null mutation in the founder animals,
which would avoid the procedure of mating heterozygous mutant
animals to generate homozygous mutants. This advantage is
really critical to large animals because the outcrossing process
may take much longer time than mouse models, even several
years in nonhuman primates. Third, the CRISPR/Cas9 system
can simultaneously manipulate several genes by the co-injection
of several sgRNAs with Cas9 into fertilized eggs at the one-cell
stage, which makes the establishment of animal models of
multigenic disease possible, especially the complex
neurodegenerative diseases, such as PD and Alzheimer’s
disease (AD). As a result, these models may mimic the genetic
mutations and the symptoms in patients in a better way.

Although the CRISPR/Cas9 system has brought great hope for
the use of large animal models for studying human diseases,
several challenges remain. The first one is the off-targeting effect.
When the approximate 23 base pairs that enable the specific
cutting of Cas9 match other areas of the genomic DNA,
nonspecific editing may happen and cause off-targeting
mutations. Although the off-target events can be diluted over
generations in small animals with short breeding times, this
strategy is infeasible for large animals like monkeys because
their sexual maturation usually requires 4–5 years (Niu et al.,
2014). To eliminate or reduce the side effects of off-target
mutations, truncated guide RNAs in the CRISPR/Cas9 system
can be used to improve the specificity of Cas9 nucleases or paired
nickases (Fu et al., 2013; Sakuma et al., 2014). On the other hand,
the use of bioinformatic screening to search for unique genomic
targets and the use of paired Cas9 nickases can also reduce off-
targets (Tu et al., 2015).

The second problem is the mosaicism in CRISPR/Cas9-
mediated genome editing, which means the presence of more
than one genotype in one individual. The mechanisms of the
mosaicism are still unclear, and there may be several causes. It is
possible that the translation of Cas9 mRNA to produce an active
enzymatic form is delayed until after the first cell division, and
this delay may play a major role in genetic mosaicism. The
mosaicism problem may also result from the prolonged
expression of Cas9 mRNA. Alternatively, differential DNA
repair and non-homozygous recombination activities in
zygotes and divided embryonic cells can also influence genetic
mutation rates and mosaicism (Tu et al., 2015). In a word, the
CRISPR/Cas9 system can continuously target and cleave genes at
different stages of embryonic development in different ways, as a
result, leading to mosaicism of the introduced mutations.
Although the mosaicism is an undesired result in genome
editing animals, there may be several advantages, which
include enabling animals to survive beyond the lethal phase
when manipulated genes are essential to animals. In addition,
mosaic animals help us better understand dosage effects of genes
on developmental defects, especially those which may mimic

human congenital disorders (Zhong et al., 2015). However, the
mosaicism caused by CRISPR/Cas9 is undesirable in most cases.
The biggest problem of chimeric large animals is that the
mutation may be difficult to be transmitted into the offspring
(Oliver et al., 2015) because of the long breeding cycle of large
animals especially nonhuman primates. There are several possible
strategies to reduce the mosaicism. The first way is to speed up the
editing process by the introduction of CRISPR/Cas9 components
in an appropriate format [Cas9/sgRNA ribonucleoprotein
(RNP)] and concentration into very early pronuclear stage
zygotes by using electroporation (Mehravar et al., 2019), so
the CRISPR/Cas9 system will work at the earliest stage of
zygotes. Secondly, as described above, shortening the longevity
of Cas9 in combination with embryo splitting to eliminate the
delayed function of Cas9 also makes a difference (Tu et al., 2017).
The third strategy is to use germline modification. In this way,
genetically-modified somatic cells can be used as nuclear donors
for SCNT into enucleated germ cells. In another way, generally
targeted gene edited spermatogonial stem cells (SSCs) can be used
as donors for transplantation into testis directly.

The last problem is the efficiency of the CRISPR/Cas9 system.
According to the previous study, the efficiency of gene targeting
with CRISPR in large animals (like nonhuman primates) is more
variable and lower than that in mice (Chen et al., 2016).
Therefore, precise gene editing technologies need to be further
improved, to increase the efficiency of gene targeting and the rate
of homozygous mutation by using new Cas protein [like Cpf1
(Cas12a)] and new systems (like base editing system).

Base Editing in Large Animals and Prime
Editing
Although the CRISPR/Cas9 system has been used to establish
gene editing models in multiple species, it is more likely to induce
random indels through error-prone NHEJ rather than the error-
free HDR during gene editing (Kim and Kim, 2014), whichmakes
indels more likely to occur at the editing site than single-
nucleotide substitutions. In addition, DNA sequencing results
show that point mutations, not indels, cause the vast majority of
human genetic diseases (Yuan et al., 2020), which suggests the
importance of the newly developed gene-editing tool base editing
in establishing animal models of human disease. Base editing is a
gene editing tool developed in recent years, which can lead to
gene mutations through changes in a single base pair (Komor
et al., 2016; Nishida et al., 2016; Gaudelli et al., 2017). At the
genome level, BEs can achieve all four kinds of single base
transition, including C to T, G to A, A to G, and T to C
(adenine (A), cytosine (C), guanine (G), and thymine (T)).
There are several basic base editors, include cytosine base
editors (CBEs), adenine base editors (ABEs) and RNA base
editors (RBEs). CBEs is capable of converting the base pair
C-G to into T-A, while ABEs can achieve the transition from
A-T into G-C. RBEs are able to achieve the conversion of A to
Inosine (I) in the level of RNA (Molla and Yang, 2019) (the
structure of these BEs are depicted in Figure 2).

Although there are only several years after the invention of
base editing, scientists have used it to achieve gene editing
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successfully in many small animals and plants, such as mouse
(Ryu et al., 2018), rat (Ma et al., 2018), rabbit (Lee et al., 2018; Liu
et al., 2018), zebrafish (Zhang Y. et al., 2017), rice (Hua et al.,
2018) and wheat (Li C. et al., 2018).

Apart from these, there are also some examples of gene
editing large animal models created by BEs. In the 2018, a
group demonstrated the BE3 (one kind of CBEs)-mediated
base editing can induce nonsense mutations in the goat FGF5
gene. They further characterized the phenotypic and genetic
changes to investigate the consequence of base pair editing,
and provided strong supporting evidence that the BE3
induced off-target mutations were rare at genome-wide
level (Li G. et al., 2019). These successful attempts in goats
opened up unlimited possibilities of genome engineering by
base editing in large animals. Inspired by this, researchers also
created BE3-mediated sheep by co-injection of a BE3 mRNA
and guide RNA aiming at the SOCS2 (suppressor of cytokine
signaling 2) gene in the next year (Zhou et al., 2019).

By using BE3 to target the TWIST2 (twist-related protein 2)
gene [responsible for the ablepharon macrostomia syndrome
(AMS) in human)] and the tyrosinase (TYR) gene [the causal
gene for oculocutaneous albinism type 1 (OCA1)], researchers
created a gene editing pig model successfully in the same year of
the first base editing goats (Li Z. et al., 2018), which mimicked the
phenotypic characteristics of human diseases well. The group of
Liangxue Lai also achieved efficient base editing for several genes
in pigs by combining CBEs with SCNT in the next year, including
DMD, RAG1 (recombination activating gene 1), RAG2
(recombination activating gene 1) and IL2RG (interleukin 2
receptor subunit gamma) (Xie et al., 2019). Another group
also achieved precise base conversion in three genes {[GGTA1
(glycoprotein alpha-galactosyltransferase 1), B4GALNT2 (beta-
1,4-N-acetyl-galactosaminyltransferase 2), and CMAH (cytidine
monophospho-N-acetylneuraminic acid hydroxylasegenes)]} in
pig genome (Yuan et al., 2020). As for NHPs, researchers
generated the first Hutchinson-Gilford progeria syndrome
(HGPS) monkey model by delivering a BE mRNA and guide
RNA (gRNA) targeting the LMNA (lamin A/C) gene via
microinjection into monkey zygotes, and the typical HGPS
phenotypes including growth retardation, bone alterations, and
vascular abnormalities confirmed the reliability of this model
(Wang et al., 2020). Since the appearance of BEs, this tool has
been applied in some species of large animals, like NHPs, goats,
sheep and pigs. It is really convenient to establish disease models
or improve the traits in large animals by base editing for its ability
of precise single base pair editing.

Although base editing has played a great role in precise
genome editing, it is still unable to achieve all base
conversions. To solve this problem, researchers created the
prime editing. This system consists of a Cas9 nickase (H840A
mutation) fused to a reverse transcriptase domain and a
modified sgRNA, named prime editing guide RNA
(pegRNA). The basic principle is to use nCas9 to nick the
non-target strand at the target location, and then use reverse
transcriptase to generate the required sequence using the
template RNA. Then the FEN1 endonuclease is able to
excise the sequence called flap during this process and

contributes to the genome repairing (Anzalone et al., 2019;
Caso and Davies, 2022). Although this technique has only
been reported in the establishment of small animal models
(Liu et al., 2020), it is of great significance for the study of
diseases caused by various base mutations in large animal
models because it can mediate almost all types of base
conversions.

Prospects and Challenges
Large animal models can be used in many areas including
disease pathogenesis investigation and pre-clinical research.
Due to the lack of ESCs from large animals, it has been
difficult to use traditional gene targeting technology to
establish large animal models of human diseases.
Nowadays, the development of precise genome editing
tools especially the CRISPR/Cas9 system has greatly
advanced this field. Many genome-edited large animals
have been created including knockout or knock-in that
cover almost all types of currently used experimental
animals, such as nonhuman primates, pigs, sheep, goats
and dogs. Even so, there are still many limitations in the
establishment of large animal models, which may involve the
inadequate gene targeting efficiency, mosaicism, and off-
targeting. Many strategies and optimized components of
the system have been brought up to reduce these
drawbacks or to improve efficiency.

The BEs recently provide us with a new tool in the
establishment of large animal models with the rapid
development and optimization of this new system.
Although there are only few successful examples in large
animals, the BEs greatly expanded the scope of this area
promisingly because the vast majority of human genetic
diseases are induced by point mutations. On the other
hand, all kinds of other technologies, like somatic cell
nuclear transfer, genome editing of SSCs, and tetraploid
complementation, have played more and more important
roles in the establishment of rodents or even large animal
models nowadays. Therefore, the combination of the BEs or
optimized CRISPR/Cas9 components with other platforms
previously described will make precise genome modification
in large animals more efficient and easier (the procedure of
gene modified large animal models is depicted in Figure 3).

In clinical research, it is a promising direction to use gene
therapy to treat inherited human diseases. The FDA has
approved some gene therapy products for patients, such as
patients with B-cell precursor acute lymphoblastic leukemia
(ALL). Before applying the strategy on patients, evaluating
the efficacy and safety using genetically modified animal
models that can mimic the characteristics of human
disease is necessary, which further underscores the
importance of the establishment of genome editing large
animal models. Xenotransplantation is another promising
direction, as the shortage of human organs is a common
problem, and model animals can provide a sufficient supply
of organ products. Genetic modification of donor animals can
eliminate many problems, especially the immunological
compatibility, and increase the probability of success
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during xenotransplantation. The recent success of
transplanting organs from transgenic pigs into the humans
is a stunning breakthrough in this field, which will in turn
lead to the development of gene-editing large animal models.

In summary, with the development and application of
precise genome editing tools represented by CRISPR/Ca9
system, a great number of large animal models will be
established (the examples of genome-edited large animals
described in this article is listed in Table 1). The
improvement will create ideal animal models that are more
similar to the human, benefit the study of the mechanisms of
human diseases, and make important contribution to the
clinical application.
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