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ORIGINAL CLINICAL REPORT

Developing and Validating a Prediction Model 
For Death or Critical Illness in Hospitalized 
Adults, an Opportunity for Human-Computer 
Collaboration
OBJECTIVES: Hospital early warning systems that use machine learning (ML) 
to predict clinical deterioration are increasingly being used to aid clinical deci-
sion-making. However, it is not known how ML predictions complement physician 
and nurse judgment. Our objective was to train and validate a ML model to predict 
patient deterioration and compare model predictions with real-world physician 
and nurse predictions.

DESIGN: Retrospective and prospective cohort study.

SETTING: Academic tertiary care hospital.

PATIENTS: Adult general internal medicine hospitalizations.

MEASUREMENTS AND MAIN RESULTS: We developed and validated a 
neural network model to predict in-hospital death and ICU admission in 23,528 
hospitalizations between April 2011 and April 2019. We then compared model 
predictions with 3,374 prospectively collected predictions from nurses, residents, 
and attending physicians about their own patients in 960 hospitalizations be-
tween April 30, and August 28, 2019. ML model predictions achieved clinician-
level accuracy for predicting ICU admission or death (ML median F1 score 0.32 
[interquartile range (IQR) 0.30-0.34], AUC 0.77 [IQ 0.76-0.78]; clinicians median 
F1-score 0.33 [IQR 0.30–0.35], AUC 0.64 [IQR 0.63–0.66]). ML predictions 
were more accurate than clinicians for ICU admission. Of all ICU admissions 
and deaths, 36% occurred in hospitalizations where the model and clinicians dis-
agreed. Combining human and model predictions detected 49% of clinical dete-
rioration events, improving sensitivity by 16% compared with clinicians alone and 
24% compared with the model alone while maintaining a positive predictive value 
of 33%, thus keeping false alarms at a clinically acceptable level.

CONCLUSIONS: ML models can complement clinician judgment to predict clin-
ical deterioration in hospital. These findings demonstrate important opportunities 
for human-computer collaboration to improve prognostication and personalized 
medicine in hospital.

KEY WORDS: artificial intelligence; clinical prediction; machine learning; 
mortality; prognosis

Unrecognized clinical deterioration is the most common cause of un-
planned ICU transfer in hospital (1). Although physicians and nurses 
are able to predict death, critical illness, and recovery in hospital (e.g., 

area under the receiver operating characteristic curve [AUC] values ranging from 
0.70 to 0.85) (2–5), early warning systems are designed to systematically predict 
a patient’s likelihood of clinical deterioration with the goal of protocolizing care 
escalation and expediting early intervention to prevent deterioration (6–9).
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Simple early warning systems generate a points-
based score from a small number of inputs (e.g., pa-
tient vital signs and mental status) (10, 11) and have 
been widely implemented with varying effectiveness in 
reducing mortality (6). They are generally less accurate 
than physicians and nurses at predicting in-hospital 
mortality (4, 12–17). More advanced early warning 
systems include a broader range of inputs and more 
sophisticated modeling (9, 18–20). Implementation 
of one such system across 19 hospitals in California 
reduced mortality for high risk medical-surgical 
patients (21). However, most implementations of early 
warning systems have not significantly improved pa-
tient outcomes (22). Early warning systems based on 
machine learning (ML) are relatively novel, and few 
have been validated or implemented in real-world clin-
ical settings (5, 23–27). A ML sepsis warning system 
was associated with reduced mortality only when pro-
viders confirmed their agreement with the alert within 
3 hours (38% of cases) (27, 28). This highlights the im-
portance of understanding how human judgment and 
computer predictions interact. Yet, little is understood 
about how ML early warning systems might supple-
ment physician or nurse judgment about patient risk.

Our objective was to develop and validate a ML-based 
model to predict ICU admission or in-hospital death 
among general internal medicine (GIM) inpatients at 
an academic hospital. We compared ML model predic-
tions with a commonly used points-based deterioration 

score (National Early Warning Score, NEWS) (10) and 
real-world physician and nurse predictions. Finally, 
we investigated the accuracy of predictions in cases of 
agreement and disagreement between clinicians and the 
ML model. Taken together, these experiments seek to 
illuminate opportunities for human-computer collabo-
ration in predicting clinical deterioration in hospital.

MATERIALS AND METHODS

Design and Setting

This was a retrospective and prospective study con-
ducted among GIM patients at St. Michael’s Hospital, an 
academic health center in Toronto, ON, Canada. GIM 
patients are cared for by four clinical teaching unit (CTU) 
teams and one nonteaching “day admission” team. Every 
team is supervised by an attending physician. The CTU 
teams have one senior medical resident (in their second 
or third year of postgraduate medical training) and sev-
eral first-year residents and medical students. CTU teams 
typically care for 15–25 patients at any given time. Nurses 
on the GIM ward were trained as registered nurses and 
typically cared for four patients on each 12-hour shift 
during the study period. There was no active early warn-
ing system or other similar system (e.g., sepsis risk pre-
diction) at our hospital during the study period.

This study was reported in alignment with the 
Transparent Reporting of a Multivariable Prediction 
Model for Individual Prognosis or Diagnosis 
(TRIPOD) statement (29). This study was conducted 
in accordance with ethical standards consistent with 
the Helsinki Declaration of 1975 and approved by the 
St. Michael’s Hospital Research Ethics Board (REB 
no.:19-008, April 04, 2019, Title: “Comparing clinical 
predictions with an automated early warning system 
tool for detecting clinical deterioration”).

Study Outcomes

The primary outcome of interest was a composite of 
in-hospital death or ICU transfer. Secondary outcomes 
included in-hospital death or ICU transfer separately.

Model Development: Outcomes

Because in-hospital death or ICU transfer is relatively 
rare, we trained models on a composite outcome that 
also included transfer to the GIM step-up unit (a four-
bed monitored unit) in addition to in-hospital death 

 
KEY POINTS

Question: How does a machine learning model 
compare with physician and nurse predictions 
about the risk of patient deterioration in hospital?

Findings: A machine learning model was devel-
oped in 23,528 hospitalizations and compared 
prospectively to 3,374 physician and nurse pre-
dictions in 960 hospitalizations. Combining human 
and model predictions detected 49% of clinical 
deterioration events, improving sensitivity by 16% 
compared with clinicians alone and 24% com-
pared with the model alone while maintaining false 
alarms at a clinically acceptable level.

Meaning: Machine learning models can comple-
ment clinician judgment to improve the prediction 
of clinical deterioration in hospital.
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and ICU transfer. To train the models, we censored pa-
tient visits at the first occurrence of any component of 
the training outcome.

Model Development: Data Sources

For the training and validation data, we extracted 
patient visit data from the hospital’s enterprise data 
warehouse. We included all complete inpatient 
admissions to the GIM service between April 2011 
and April 2019, when data from electronic medical 
records were available. We split the data into train-
ing and validation datasets by date: April 2011 to 
November 2018 for training and December 2018 to 
April 2019 for validation. To avoid biasing model de-
velopment with outlier cases, we used the latter 40 
days of a visit for any visits whose length of stay was 
greater than 40 days.

Inputs to the model consisted of static and time-
varying features: patient demographics (age, sex, hous-
ing status), ICU admission prior to GIM admission, 
laboratory test results, and vital signs (for all inputs, 
please see Appendix Table 6, http://links.lww.com/
CCX/B174). We selected these inputs based on a com-
bination of most frequent counts in the training data 
and clinical judgment.

Model Development: Data Preprocessing

Considering Each Visit as a Time Series. For time-
varying features, we binned the data into 6-hour 
intervals. The time-series was censored at hospital dis-
charge or the first occurrence of the composite training 
outcome. When there were multiple input measures 
within the same interval, we took the average value. 
We created a “window since start” variable to track the 
number of 6-hour intervals that elapsed since the pa-
tient was in hospital. To avoid “signal leakage” (gen-
erating predictions based on factors that are directly 
related to the outcome, such as predicting death based 
on withdrawal of ventilator support, which would lack 
clinical utility [30]), we removed the 6-hour block be-
fore outcomes in the training data.

Numeric Measures and Missing Data. To minimize 
the impact of extreme values, we trimmed all numeric 
labs and vitals values less than the first percentile and 
greater than the 99th percentile (as determined from 
the training data) and then normalized the values using 
the first and 99th percentile. An indicator variable 

flagged whether or not the feature was measured in the 
6-hour window. We also added a “time since last-mea-
sured” variable for each feature. To address missing-
ness, we imputed data using last observation carried 
forward followed by population mean imputation if no 
prior measurement was available. We calculated the 
population mean using all observations in the training 
data. The mean and median values and missingness 
for all model inputs are reported in Appendix Table 7 
(http://links.lww.com/CCX/B174).

Model Development

We trained a gated recurrent unit neural network 
model on the training data and with early stopping on 
the validation data. In order to determine the alerting 
threshold, we performed 10-fold cross-validation on 
the training dataset to find the probability threshold 
that would give a 30% encounter-level positive pre-
dictive value. This was selected after engagement with 
physicians and nurses who felt that there should be no 
more than two false alarms for every one true alarm, to 
minimize alarm fatigue and excessive workload (31).

Prospective Clinical Validation

Between April 30 and August 28, 2019, a research as-
sistant attended the GIM ward on weekdays and inter-
viewed attending physicians, senior medical residents, 
and nurses once daily about their patients using a 
standardized questionnaire. The clinicians were asked 
to review every patient on their roster and identify, 
“Which of the patients that you are currently caring for 
are likely to die or require ICU care at any point during 
this hospital visit?” The time of each clinical prediction 
was documented.

Early warning scores are not designed to func-
tion based on a single prediction, but to alert clini-
cians whenever a patient’s risk crosses a predefined 
threshold. Given that it was not feasible to collect real-
time clinical predictions every 6 hours, we designed 
this study to approximate the real-world use of an early 
warning system. We considered all ML and NEWS 
model predictions in the 48 hours prior to the clinical 
prediction and selected the highest model risk pre-
diction to capture all patients who would receive an 
“alert” in an early warning system. Alerts are generally 
what drives clinical action in an early warning system, 
and focusing on highest predicted risk has been used 
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to assess model performance in other studies (32). A 
48-hour lookback period to include model predictions 
was selected because clinicians reported that this is a 
useful time window to predict patient deterioration 
(25). Both clinical and model predictions were assessed 
for outcomes occurring at any time during the rest of 
the hospitalization.

Based on published estimates of clinician accuracy 
in predicting clinical deterioration (2, 12) and a histor-
ical rate of death or ICU transfer in 7% of GIM admis-
sions at our hospital, we calculated that a sample of 948 
admissions would be needed to identify a 20% differ-
ence in sensitivity between clinician and model predic-
tions, with 80% power.

We followed encounters for up to 30 days after the 
end of the data collection period to capture outcomes.

Statistical Analysis

We report the demographic and clinical characteris-
tics of the model training and validation datasets and 
the prospective clinical validation cohort. We report 
performance of the ML model using area under the 
receiver operating characteristic curve (AUC) and 
F1-score. The F1-score is the harmonic mean of sen-
sitivity and positive predictive value (PPV) and is a 
good measure of model performance when there 
is class imbalance (i.e., the outcome is rare) (33). 
Because an important clinical aim is to minimize 
false alarms, we report the model’s sensitivity, speci-
ficity, PPV, and negative predictive value at a prespec-
ified threshold PPV of 30% in the training data (31). 
We considered predictions above this threshold to be 
“high risk.” We calculated 95% CIs by bootstrapping 
across 500 random samples with replacement, within 
each dataset.

To report model performance, we censored patient 
visits at the first occurrence of any outcome event 
for the composite primary outcome but not for in-
dividual secondary outcomes. We compared clinical 
predictions with ML model predictions and NEWS 
model predictions (10, 11) in the prospective cohort. 
As recommended (10), we considered a NEWS score 
of more than 6 to be “high risk.” We report the perfor-
mance of all types of clinicians grouped together and 
of each group separately. Because multiple predic-
tions were sometimes made for single patient admis-
sions, we randomly sampled one clinical prediction 

per encounter to compare with the highest model-
predicted risk in the prior 48 hours. We repeated 
this sampling 500 times and report the median and 
interquartile range (IQR) of results across the boot-
strapped samples.

Finally, we report the accuracy of predictions when 
clinicians and the ML model agreed or did not agree, 
and when clinician and ML model predictions were 
combined. To combine predictions, we considered 
“low risk” to be the cases where both clinicians and 
the ML model agreed on low risk and “high risk” to be 
when either clinicians or the ML model predicted so.

The ML model was trained using Python 3.7 
(Python Software Foundation) and the Pytorch library 
(PyTorch Foundation) (34). Analyses were performed 
using R 3.6 (R Foundation for Statistical Computing, 
Vienna, Austria) and the tidyverse package (35).

RESULTS

There were 22,361 hospitalizations in the model 
training cohort, 1,167 in the historical validation co-
hort, and 960 in the testing (prospective clinical) co-
hort. Across the three cohorts, the median age was 
approximately 67 years, and approximately 40% of 
patients were female (Table 1). Baseline character-
istics across the three cohorts were generally com-
parable. Death or ICU admission occurred in 1,800 
hospitalizations (8.0%) in the training cohort, 83 
hospitalizations (7.1%) in the validation cohort, 
and 61 hospitalizations (6.4%) in the testing cohort 
(Table 1).

Model Development and Historical Validation

Model performance across the training, validation, and 
testing cohorts is presented in Table 2 and Appendix 
Tables 1 and 2 (http://links.lww.com/CCX/B174). In 
the historical validation cohort, the model had an AUC 
of 0.75 (95% CI 0.68–0.81) and F1-score of 0.49 (95% 
CI 0.39–0.58) for predicting ICU or death. At a PPV of 
0.43 (95% CI 0.33–0.53), the sensitivity was 0.57 (95% CI 
0.46–0.68), specificity was 0.95 (95% CI 0.94–0.96), and 
negative predictive value (NPV) was 0.97 (95% CI 0.96–
0.98). In the testing cohort, the model had an AUC of 0.81 
(95% CI 0.73–0.87) and F1-score of 0.43 (95% CI 0.34–
0.53). At a PPV of 0.34 (95% CI 0.25–0.44), the sensitivity 
was 0.60 (95% CI 0.48–0.73), specificity was 0.93 (95% CI 
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TABLE 1.
Patient Characteristics and Outcomes in Retrospective and Prospective Cohorts

Characteristic Training Validation Testing 

Number of admissions 22,361 1,167 960

Number of unique patients 14 567 991 847

Age, median (IQR) 67.0 (53.1–80.1) 66.6 (52.9–79.7) 65.7 
(52.9–79.4)

Sex female, n (%) 9,554 (42.7) 463 (39.7) 383 (39.9)

Charlson Comorbidity Score, n (%)
 0
 1
 2+

5,608 (25.1)
5,118 (22.9)

11,635 (52.0)

269 (23.1)
239 (20.5)
659 (56.5)

219 (22.8)
205 (21.4)
536 (55.8)

Temperature, median (IQR)a 36.4 (35.9–36.8) 36.6 (36–37.3) 36.4 (36–36.8)

Heart rate, median (IQR)a 84 (72–98) 92 (78–109) 81 (71–94)

Systolic BP, median (IQR)a 129 (114–146) 130 (113–150) 129 (115–145)

Diastolic BP, median (IQR)a 73 (65–82) 76 (66–86) 73 (65–81)

O2 saturation, median (IQR)a 97 (95–98) 97 (95–99) 97 (95–98)

Respiratory rate, median (IQR)a 19 (18–20) 18 (18–20) 18 (18–20)

Hospital length of stay (d), median (IQR) 4.9 (2.7–9.2) 4.7 (2.7–9.0) 6.5 (3.8–11.8)

ICU admission, n (%) 906 (4.1) 43 (3.7) 31 (3.2)

Step-up unit admission, n (%) 768 (3.4) 20 (1.7) 28 (2.9)

Death, n (%) 1134 (5.1) 49 (4.2) 37 (3.9)

Composite death or ICU 1800 (8.1) 83 (7.1) 61 (6.4)

BP = blood pressure, IQR = interquartile range.
aVital sign measurement contributing to first machine learning model prediction.
Temperature in degrees Celsius.

TABLE 2.
Performance of Machine Learning Model on the Composite Outcome of Death or ICU 
Transfer

Measure 

Death or ICU

Training Validation Testing 

Area under the receiver operating characteristic curve 0.81 (0.80–0.82) 0.75 (0.68–0.81) 0.81 (0.73–0.87)

F1-score 0.44 (0.42–0.46) 0.49 (0.39–0.58) 0.43 (0.34–0.53)

Positive predictive value 0.36 (0.34–0.38) 0.43 (0.33–0.53) 0.34 (0.25–0.44)

Sensitivity 0.56 (0.53–0.58) 0.57 (0.46–0.68) 0.60 (0.48–0.73)

Specificity 0.92 (0.92–0.93) 0.95 (0.94–0.96) 0.93 (0.91–0.95)

Negative predictive value 0.96 (0.96–0.97) 0.97 (0.96–0.98) 0.98 (0.96–0.99)

F1-score = harmonic mean of sensitivity and positive predictive value.
We calculated 95% CIs through bootstrapping. Results were calculated on 500 random samples, with replacement, within each dataset. 
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0.91–0.95), and NPV was 0.98 (95% CI 0.96–0.99). In the 
testing cohort, the median time from the first “high risk” 
model prediction to the first occurrence of ICU admis-
sion or death was 117 hours (IQR 70–244 hr).

Prospective Clinical Comparison

The prospective clinical study included 3,374 real-time 
clinical predictions for 960 hospitalizations represent-
ing 847 unique patients. This included 1,264 predictions 
from 23 attending physicians, 1,097 predictions by 20 
resident physicians, and 1,013 predictions by 129 nurses.

Across 500 bootstrapped samples, clinicians (nurses 
or physicians) predicted ICU or death with a median 
AUC of 0.64 (IQR 0.63–0.66) and F1-score of 0.33 
(IQR 0.30–0.35) (Fig. 1) (Appendix Figs. 1 and 2 and 
Appendix Table 3, http://links.lww.com/CCX/B174). In 
comparison, the ML model predicted ICU or death with 
a median AUC of 0.77 (IQR 0.76-0.78) and F1-score of 
0.32 (IQR 0.30-0.34). The NEWS model was less accu-
rate, with median AUC of 0.60 (IQR 0.59–0.61) and 

F1-score of 0.12 (IQR 0.10–0.14). Across bootstrapped 
samples, the median F1-scores for nurses, residents, and 
attending physicians in predicting ICU or death were 
0.27 (IQR 0.25–0.30), 0.38 (IQR 0.36–0.41), and 0.37 
(IQR 0.34–0.39), respectively (Appendix Fig. 2, http://
links.lww.com/CCX/B174; Appendix Table 3, http://
links.lww.com/CCX/B174).

The ML model was consistently more accurate than all 
types of clinicians for predicting ICU admission (Fig. 1) 
(Appendix Figs. 1 and 2 and Appendix Tables 3-5, http://
links.lww.com/CCX/B174).

Agreement and Disagreement Between ML 
Model and Clinicians

Across bootstrapped samples, clinicians and the ML 
model agreed on 92.0% (IQR 91.6–92.3%) of predic-
tions overall (Table 3). Among all high risk predic-
tions (median n = 88), clinicians and the model agreed 
on only 11 predictions (12.5%) (Table  3). Death or 
ICU admission occurred in 60.0% of patients (IQR 

Figure 1. Accuracy of clinicians and the machine learning (ML) model in predicting ICU and death across 500 bootstrapped samples. 
Boxplots depict the distribution (horizontal bar denotes median, box is 25/75 percentile) of the F1-score of the ML model and clinicians 
across 500 bootstrapped samples. Different bootstrapped samples were used for each clinician type, resulting in slightly different estimates 
of ML model performance in each comparison. The ML model demonstrates superior F1-scores in predicting ICU admission, but the model 
was not more accurate than clinicians in predicting death. Combining model and clinician predictions leads to improvements in F1-scores, 
which is particularly important given that the value of identifying true positive cases outweighs identification of true negatives in an early 
warning system.

http://links.lww.com/CCX/B174
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53.9–66.7%) when clinicians and the model agreed 
patients were high risk and 3.7% of patients (IQR 3.5–
3.9%) when clinicians and the model agreed patients 
were low risk. When only the model predicted patients 
were high risk, death or ICU admission occurred in 
34.8% (IQR 30.0–38.5%). When only clinicians pre-
dicted patients were high risk, death or ICU admission 
occurred in 26.5% (IQR 23.6–28.9%).

Combining clinician and model predictions yielded 
a median AUC 0.71 (IQR 0.69–0.73), F1-score 0.39 
(IQR 0.37–0.41), sensitivity 0.49 (IQR 0.46–0.52), and 
PPV 0.33 (IQR 0.31–0.34) for ICU or death (Fig.  1) 
(Appendix Table 3, http://links.lww.com/CCX/B174). 
This approach improved detection of ICU admissions 

or death by 16% compared with clinicians alone and 
24% compared with the model alone, while keeping 
the PPV at two false alarms for one true alarm.

DISCUSSION

A ML model performed comparably to clinicians in 
predicting clinical deterioration in hospital. Overall, 
the ML model was superior to a simpler model 
(NEWS) and was better than clinicians in predicting 
ICU transfers, whereas physicians were better at pre-
dicting deaths. The ML model and human predictions 
were complementary, with each identifying cases that 
the other missed. Thus, collaboration between humans 

TABLE 3.
Patient Characteristics and Outcomes When Clinicians and the Model Agree and Disagree

Measure 
Agree High 

Risk 
Agree Low 

Risk 
Disagree—Model 

Predicts High Risk 

Disagree—
Physician Predicts 

High Risk 

Number of predictions 11 (9–13) 872 (868–875) 23 (21–25) 54 (51–57)

ICU or death, % (IQR) 60.0 (53.9–66.7) 3.7 (3.5–3.9) 34.8 (30.0–38.5) 26.5 (23.6–28.9)

ICU, % (IQR) 16.7 (10.0–23.1) 2.3 (2.2–2.4) 20.0 (16.7–23.8) 7.8 (6.0–9.6)

Death, % (IQR) 46.7 (40.0–55.6) 1.9 (1.7–2.1) 20.8 (17.4–23.8) 19.6 (17.4–21.6)

Age, median (IQR) 66.9 (62.4–71.8) 65.7 (65.6–65.9) 70.3 (69.6–70.9) 63.5 (63.1–63.9)

Sex female, % (IQR) 37.5 (30.0–45.5) 40.3 (40.1–40.6) 30.4 (26.9–34.8) 36.4 (33.7–39.6)

Charlson Comorbidity 
Score, % (IQR)

 0

0 (0–0) 24.6 (24.4–24.7) 0 (0–0) 9.1 (7.0–10.9)

  1 10 (6.7–16.7) 21.8 (21.7–22.0) 15.4 (12.5–18.2) 18.3 (16.1–20.8)

  2+ 88.9 (81.8–92.3) 53.6 (53.4–53.8) 84.6 (81.8–87.5) 72.9 (70.1–75.5)

Temperature, median 
(IQR)a

36.6 (36.4–36.7) 36.4 (36.4–36.4) 36.4 (36.4–36.6) 36.5 (36.5–36.5)

Heart rate, median 
(IQR)a

97 (93–99.5) 80 (80–80) 96 (96–100) 86.5 (84–88)

Systolic BP, median 
(IQR)a

124 (123–126) 129 (129–129.5) 122 (119–123) 122 (119.5–124)

Diastolic BP, median 
(IQR)a

76 (73.5–77.5) 73 (73–73) 67.5 (65–70) 70.5 (70–71.5)

Oxygen saturation, me-
dian (IQR)a

95 (95–95.62) 97 (97–97) 95 (94–95) 96 (96–96)

Respiratory rate, median 
(IQR)a

20 (20–20) 18 (18–18) 20 (20–20) 20 (20–20)

Hospital length of stay 
(d), median (IQR)

27.5 (18.3–31.9) 6.2 (6.1–6.2) 18.6 (12.9–23.8) 8.7 (8.2–9.5)

BP = blood pressure, IQR = interquartile range.
aVital sign measurement contributing to first machine learning model prediction.
Temperature in degrees Celsius.

http://links.lww.com/CCX/B174
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and ML models can improve the prediction of clinical 
deterioration events. We found that combining human 
and model predictions led to the detection of 49% of 
deaths or ICU transfers, improving sensitivity by 16% 
compared with clinicians alone and by 24% compared 
with the model alone while maintaining false alarms at 
an acceptable level (PPV of 33%). This is particularly 
promising, as a central goal of early warning systems is 
to prevent a “failure to rescue” (1, 36) by increasing the 
recognition of deteriorating patients.

A recent scoping review identified 18 studies of au-
tomated systems for detecting clinical deterioration 
and found that only four studies reported significant 
improvements in clinical outcomes (22). The authors 
highlighted the importance of clinical response pro-
tocols and involvement of attending physicians as 
determinants of successful implementation (22). Yet, 
we have poor understanding of how early warning 
systems interact with clinical judgment. Numerous 
studies have demonstrated that clinicians are mod-
estly accurate in predicting death, critical illness, or 
recovery (2–5, 37). Simpler risk prediction tools are 
generally inferior to clinical judgment (4, 12–17, 37), 
but advances in data science have improved predic-
tion of clinical deterioration (9, 19, 38). A recent sys-
tematic review identified 24 studies of ML models to 
predict clinical deterioration (19). Of these, only one 
was prospectively validated, and none were compared 
with real-world clinical predictions. Outside of this 
systematic review, two small studies showed that ML 
predictions of patient deterioration were comparable 
or superior to physician predictions (5, 39). ML mod-
els have also been compared with clinical judgment 
in other contexts (23), and human-computer collab-
oration is promising across several applications of 
computer vision (40–42). Comparisons between ML 
and human performance are often artificial as clini-
cians are asked to interpret a clinical scenario (43) or 
photograph (44, 45) rather than actually assess a pa-
tient. Such experiments disadvantage clinicians, who 
typically make decisions through holistic patient 
assessments that include narrative history, physical ex-
amination, and formation of a clinical gestalt (46, 47). 
A major strength of our study is including real-world 
clinician predictions about their own patients.

Our study has several limitations. First, this was a sin-
gle-center analysis of GIM patients, who have relatively 
high rates of severe illness (48, 49), at an urban teaching 

hospital. Our results may not generalize to other settings 
or patient populations. For example, accuracy of clin-
ical judgment or criteria for admission to ICU may vary 
across centers. Additionally, at our institution, admis-
sion and comorbidity diagnoses were not available from 
the electronic medical record in real-time (they were 
coded after discharge); therefore, they were not included 
as model inputs. We would expect their inclusion to im-
prove ML model performance. However, given that our 
ML model had similar performance to those in the liter-
ature (8, 9, 19) and because, in many cases, ML models 
perform best when trained within a specific context, our 
article demonstrates how models can be validated lo-
cally to inform implementation. Second, clinicians may 
have had different interpretations of the question about 
which patients were “likely” to deteriorate. Although 
our survey aligned with other approaches that rely on 
a subjective assessment of likelihood (3), asking clini-
cians to quantify the probability of their prediction or 
to assess clinical agreement with model predictions in 
real-time may strengthen future research. Third, we 
only collected physician and nurse predictions during 
working hours on weekdays. It is possible that clinician 
predictions would be less accurate on the weekends, or 
overnight, when staffing levels may be lower and quality 
of care may differ (50). After-hours settings may rep-
resent an even greater opportunity for ML model pre-
dictions to inform clinical decisions. Differences in the 
apparent accuracy of physician and nurse predictions 
should be interpreted cautiously as our study was not 
designed or powered to investigate these differences. 
Fourth, we were unable to present model predictions to 
clinicians in real-time to assess how model predictions 
would shape clinical predictions. This remains an im-
portant area for future research in prognostic accuracy, 
as previous studies have demonstrated that faulty model 
predictions can mislead clinicians in diagnostic accu-
racy (42). It remains unknown how regular interaction 
with ML model predictions might influence clinicians, 
as this could plausibly improve their accuracy by pro-
viding more systematic feedback or reduce their accu-
racy by fostering dependency on automated support.

CONCLUSIONS

ML models can enable human-computer collabora-
tion to improve prediction of deterioration in hospital-
ized patients. Combining clinical and model predictions 
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augmented case detection without excessively increasing 
false alarms. These insights can inform the implementa-
tion of ML-based early warning systems to improve early 
recognition of clinical deterioration and reduce the harms 
associated with a “failure to rescue” deteriorating patients.
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