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Abstract

Lesion inference analysis is a fundamental approach for characterizing the causal contribu-

tions of neural elements to brain function. This approach has gained new prominence

through the arrival of modern perturbation techniques with unprecedented levels of spatio-

temporal precision. While inferences drawn from brain perturbations are conceptually pow-

erful, they face methodological difficulties. Particularly, they are challenged to disentangle

the true causal contributions of the involved elements, since often functions arise from coali-

tions of distributed, interacting elements, and localized perturbations have unknown global

consequences. To elucidate these limitations, we systematically and exhaustively lesioned

a small artificial neural network (ANN) playing a classic arcade game. We determined the

functional contributions of all nodes and links, contrasting results from sequential single-ele-

ment perturbations with simultaneous perturbations of multiple elements. We found that

lesioning individual elements, one at a time, produced biased results. By contrast, multi-site

lesion analysis captured crucial details that were missed by single-site lesions. We conclude

that even small and seemingly simple ANNs show surprising complexity that needs to be

addressed by multi-lesioning for a coherent causal characterization.

Author summary

The motto “No causation without manipulation” is canonical to scientific endeavors. In

particular, neuroscience seeks to identify which brain elements are causally involved in

cognition and behavior, by perturbing them. However, due to multi-dimensional interac-

tions among the elements, this goal has remained challenging. Here, we used an Artificial

Neural Network as a ground-truth model to compare the inferential capacities of two

principal approaches, lesioning a system one element at a time versus sampling from the

set of all possible combinations of lesions. We show that lesioning one element at a time

provides misleading results. Hence, we argue for employing exhaustive perturbation

regimes. We further advocate using simulation experiments and ground-truth models to
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verify the assumptions and limitations of current approaches for brain mapping by

perturbation.

Introduction

One of the most challenging goals of neuroscience is to identify neural elements–brain regions,

populations, neuronal circuits, and large-scale networks–that are responsible for cognition

and behavior [1]. During the past two decades, brain mapping has flourished with the help of

neuroimaging techniques that are employed to statistically associate neural elements and brain

functions. Arguably, however, the historical method of mapping brain function, by studying

brain lesions and the resulting functional deficits (cf. [2]), still holds an authoritative role in

establishing causation, since it indicates the necessity of elements for a given function [3,4]. In

contrast to correlational approaches that quantify the statistical association between system

elements and functions [5], perturbing and manipulating the system results in changes that

can be used to pinpoint actual causes, since the manipulation is assumed to differentiate con-

tributing causes from covarying confounds [6,7]. Historical cases of lesion inference after

brain damage in patients [8] as well as modern cutting-edge experimental approaches employ-

ing opto- and chemogenetics [9,10] have mainly followed a “Single-element Perturbation

Analysis (SPA)” framework. In this framework, one neural element is perturbed at a time. For

instance, a classical lesion study considers a causal contribution for a brain element i with

respect to a behavior X, if a lesion in i results in a deficit in X. By contrast, a more elaborate

“double dissociation” study is assumed to further disentangle causal contributions of pairs of

regions. If lesioning region i results a behavioral deficit in X and not in behavior Y, while abla-

tion of a different region j causes a deficit in Y and not X, then i is considered to be a key player

in producing X and j in producing Y. Moreover, the contributions of i and j are considered to

be independent. Importantly, the perturbations are also independent and are sequentially per-

formed, therefore, this approach is a subset of the SPA framework.

Shortcomings of the Single-element perturbation analysis framework

Although “no causation without manipulation” [11] is indisputably true and points towards

the eminence of perturbation approaches for identifying causal relationships in the brain, the

practical and methodological difficulties of perturbation inferences are still underexplored

[12,13]. Namely, previous studies have shown that localized perturbations result in network-

wide effects even in the absence of direct connections from the perturbed site to spatially dis-

tant sites, a phenomenon known as ‘diaschisis’ [14–16]. Diaschisis demonstrates that neural

elements are not independent, but are in fact linked functionally or structurally [13]. There-

fore, perturbation approaches may suffer from covarying confounds, similar to correlational

approaches [3,13]. However, there prevails an intuitive assumption that a large or even an

exhaustive number of sequential perturbations can overcome these confounds and provide

sufficient insight into the causal elements of a system.

The practical merits of the SPA framework were recently put to the test in an influential

study by Jonas and Kording [17]. They performed an exhaustive lesioning of every transistor

in a simulated microprocessor, to investigate if the approach provides a meaningful causal pic-

ture of the system. They defined the microprocessor’s behavior as its ability to boot different

games, which allowed them to differentially map disrupted behaviors, that is, a failure in boot-

ing games, to the deactivated transistors. Moreover, their choice of a microprocessor as a

ground-truth model provided them with confound-free access to virtually every
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computational unit [17]. As expected, they found subsets of transistors that, if perturbed,

would disrupt specific behaviors. However, they declared the results “grossly misleading”,

since “The transistors are not specific to any one behavior (. . .) but rather implement simple

functions” [17]. Thus, Jonas and Kording [17] demonstrated that, even by perturbing all ele-

ments of a system, one at a time, we are still far from a coherent understanding of the charac-

teristic causal functional contributions and interactions of the elements of a system.

Further inferential limitations of the SPA framework were discovered after simultaneous
perturbations of multiple brain regions. Paradoxical lesion effects and, in particular, the “Spra-

gue effect” are intriguing phenomena in this context [18,19]. The Sprague effect describes a

setting in which disruptions in behavior caused by a first lesion revert towards normal behav-

ioral state after a second lesion [19,20]. In other words, lesioning region i disrupts the given

behavior X, providing apparently compelling evidence for its necessity for the behavior. Sur-

prisingly, however, a subsequent lesion to another region j, while i is still perturbed, partly or

completely restores the behavior X, showing the redundancy or degeneracy of the contribution

of i. In this case, SPA can misattribute causal contributions. This includes double dissociation

studies since they still draw conclusions from lesioning one element at a time [14].

Summary of the current study

Paradoxical lesion effects, where the lesioning of two (or potentially more) elements may lead

to unpredictable outcomes, and the practical findings of Jonas and Kording demonstrate that a

SPA of every element does not provide a reliable causal picture, even if performed exhaus-

tively. Therefore, a systematic approach that covers all possible combinations of lesions is

needed as the basis for an objective multivariate evaluation of the system by perturbation.

Consequently, in this study, we used the approach of “Multi-perturbation Shapley value

Analysis” (MSA) that, in contrast to SPA, derives causal contributions of elements from all

combinations of multi-element lesions [21,22]. MSA is based on the Shapley value, a game-

theoretical metric used for fair distribution of the outcome of a coalition, among members of

it [23]. In the context of neuroscience, members are arbitrarily defined neural elements of a

system that then will be ranked according to their contributions to a quantified behavior or

cognitive function [24,25] that is, the coalition’s outcome.

We used an ANN as our ground-truth model and systematically and exhaustively perturbed

its components. Specifically, we targeted all neurons and all connections, either one element at

a time via SPA, or combinations of elements by MSA. To train the network, we specifically

used an evolutionary algorithm focused on the network’s topology to avoid handcrafting and

potentially biasing its organization.

We found that not every perturbation necessarily revealed causation. Although data from

both lesioning regimes showed similarities, SPA missed some of the key contributing elements

and miss-attributed their causal ranks. Therefore, SPA provided biased contributions for indi-

vidual elements, while the MSA captured these nuances more accurately. To further quantify

the complex interaction of elements within the system, we used an extension of MSA, here

called Pairwise Causal Interaction Analysis (PCIA) [21,22], and found a handful of element

pairs in which lesioning one unit while the other was perturbed restored the disrupted behavior.

Finally, we investigated the intrinsic mechanisms of the network to identify why MSA

ranked the units in the given way and what these units do that SPA was insensitive to. We

found that the most critical functional contributions originated from connections rather than

nodes and in particular from connections underlying mutual inhibition and self-inhibition of

two nodes. We discuss the findings, the limitations of the current approach, and potential

questions for future research.
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Results

Our in-silico experimental setup was the ATARI arcade game Space Invaders [26], in which an

agent, located at the bottom of the environment, needs to defend itself by using laser canons

from aliens descending from the upper part of the screen. The main objectives of the game are

to stay alive by avoiding alien laser shots and scoring as many points as possible by eliminating

aliens. On average, a human subject obtains a score of 1652, and an algorithm that randomly

selects actions reaches a score of 148 [27]. Other classic algorithms, such as an earlier imple-

mentation of a Deep Q-learning Network (DQN), State–Action–Reward–State–Action

(SARSA), and a refined DQN, reach scores of 581, 271, and 1976, respectively [27,28].

Instead of training deep networks using backpropagation in a predefined architecture, we

evolved a compact network using a Neural Architecture Search (NAS) algorithm called Neuro

Evolution of Augmenting Topologies (NEAT) [29]. Briefly, NEAT uses evolutionary princi-

ples, such as cross-over of genes (network topologies), speciation (preserving novelty), and

incremental complexification to find the “fittest” topology. This means that the network’s

architecture and connectivity are not handcrafted, nor does the algorithm solely optimize con-

nection weights. Instead, the fittest network is evolved with respect to the environmental con-

straints, in this case to achieve the highest score by adjusting its topology according to a set of

given limitations, for instance, low probability of adding connections versus higher probability

of removing them after each evolutionary step (see section Evolutionary Optimization).

In addition to these sets of hyperparameters and to further enforce a compact architecture,

we compressed the game frames using a deep auto-encoder and fed two feature vectors into

our network, amounting to a total of 12 features at each time point, see neurons labeled with

negative numbers in Fig 1. We fed in two frames instead of one due to the non-Markovian

structure of the game in which knowing only the current position of laser beams does not pro-

vide enough information about the beams’ directions.

Fig 1. The complete wiring diagram of the evolved ANN. The network received a compressed version of the game-state as a vector of 12 features, six features per frame

at each time point. It then chose an action from six available actions (output nodes). Due to its importance, which was revealed later in the analysis, we plotted node 0

separately with additional information on the right part of the figure. The aggregation function for this node is max, the activation function is a sigmoid function, and the

bias is -0.9. Note that these settings are different for each node (see section Evolutionary optimization).

https://doi.org/10.1371/journal.pcbi.1010250.g001
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On average, our evolved network obtained a score of 337 that is significantly higher than

that of a random agent with a score of 148 (Mann-Whitney U statistics; MWUs = 39542, p-

value<0.001, S1 Fig). In order to ensure that the score was not merely higher because of innate

topological privileges, we further compared the performance with the performance of two con-

trol networks. In one, we kept the network as it was and fed it with noise instead of features. In

the other, we shuffled the connection weights while the network was receiving game-states.

Both control networks obtained substantially lower scores, from 175 (MWUs = 50919, p-value

<0.001) to 129 (MWUs = 31157, p-value<0.001), respectively. Altogether, these results show

that our compact network did learn the task to some degree and could reach a good-enough

score (S1 Fig) that formed the basis of the subsequent perturbation analyses.

Perturbing all elements, one at a time

After evolving the network, we intervened to establish if the perturbation of elements could

reveal their causal importance for the behavior. We first silenced neurons one at a time and re-

ran the simulation with the lesioned networks. Conventionally, we searched for neurons,

which, when lesioned, resulted in a considerably deteriorated performance, indicating their

“necessity” for the network behavior. As (Fig 2A) shows, lesioning either of two input neurons

nodes -1 or -9, had such a disruptive impact, while individually perturbing most other neurons

had a negligible effect on the performance. Interestingly, lesions of two neurons, nodes 4 and

-5, improved the performance, suggesting their hindering role during normal functioning.

To account for the consequences of lesioning network connections rather than nodes, we

performed the same lesioning scheme on all connections. Specifically, wanted to test if sever-

ing individual connections of neurons, instead of silencing a whole node with all its

Fig 2. Single-element Perturbation Analysis versus multi-perturbation Shapley value Analysis of the ANN. This figure shows the result and the rank difference

derived from a SPA (A; 512 samples per element) versus an MSA (B; 1,000 samples per element). On the left side the nodes, and in the middle the connections, are sorted

according to their inferred average contributions. For SPA, the lowest value means the most influential while the other way around applies to Shapley values, with the

highest value means the most critical. Error bars indicate %95 Confidence Interval (CI; bootstrapped 10,000 times). The blue, yellow, and red strips show the %95 CI of

the labeled control networks. Red labels on the x-axes show significant elements (alpha inflation is corrected using Bonferroni correction, see Statistical Inference in

Materials and Methods). On the right-hand side, the node rankings are compared.

https://doi.org/10.1371/journal.pcbi.1010250.g002
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connections, could further localize functional contributions in our ANN. For example, should

neurons -1 and -9 be considered as essential elements for the behavior of the ANN, or are

there connections of these neurons such that the neurons only appear to be critical in the sense

that lesioning them perturbs those connections as well? In this context, we expected to see

either one of two potential outcomes. Either no specific connections would appear to be caus-

ally crucial, showing that the selected neurons were the actual units of causation, or a major

disruption in behavior might follow lesions to the outgoing connections of neurons -1 and -9.

In this case, the nodes would just appear to be critical because in fact the outgoing connections

were critical.

Surprisingly, a loop from neuron 0 to itself (self-loop) appeared to be the most critical ele-

ment (Fig 2A). This observation implies that, although SPA of all elements resulted in some

degree of coherence, by first capturing neurons -1 and -9 as major players and then tracking

their importance to connections (-1! 4) and (-9! 2), another key player was missed. Firstly,

lesioning single connections did impact the performance considerably. Secondly, the most

critical connection was not a connection from or to the most important neurons, but a self-

loop of a neuron that itself had a near-zero causal contribution.

To summarize, results from the SPA of each neuron indicated that ablation of neuron 0 had

little impact on the performance, while removing the self-loop (0! 0) disrupted the behavior

most strongly. Note that, throughout the lesioning experiments, there was no plasticity consid-

ered, the connection weights were fixed, and network’s architecture determined its behavior.

Therefore, the fact that lesioning connection (0! 0) alone caused the greatest damage, while

lesioning neuron 0 with all its 11 connections including (0! 0) did not produce any behav-

ioral impairment, shows that higher-order perturbations are required for a more coherent

characterization of the system. In the next section we describe how MSA infers causal contri-

butions from such higher-order perturbations.

Multi-perturbation shapley value analysis of all elements

Next, we adopted a multi-element lesioning approach, MSA, to systematically perturb combi-

nations of all neurons and all connections. MSA is based on a game-theoretical concept called

the Shapley value (γ). Shapley values account for the “worth” of elements in a system in terms

of an element’s contribution to the overall system performance. The value is deduced from the

element’s contribution to all possible combinations of groupings in the system [21–23]. To

build an intuition of the problem, consider a group of people sharing the energy bill of their

common office. The straightforward way to do so is to divide the cost equally, however, this is

not necessarily the fair solution since they may not equally consume energy. A fair, and thus,

stable solution should allocate a proportional cost, such that the largest amount should be paid

by the person contributing most to the energy cost, while the person who did not consume

any energy should pay nothing. Similarly, in the context of this work, a group of neuronal ele-

ments should be ranked fairly according to their contribution to the performance of the net-

work. In fact, Shapley values do so by mathematically satisfying the following axioms [23]:

1. Symmetry: If two elements are functionally interchangeable, then their contributions will

not differ by changing their labels.

2. Null player property: If an element does not contribute to the given function, its Shapley

value is zero.

3. Additivity: Summing the contributions of all elements results in the outcome of the grand

coalition, i.e., the network’s overall performance.
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As with the SPA framework, MSA aims to find elements that, when lesioned, most strongly

impair the behavior. In this case, these elements have the highest Shapley value derived from

their role in all combinations of multi-site lesions, rather than isolated single-site lesions. To

elaborate on the pipeline for computing Shapley values, first the individual elements are shuffled

iteratively to form a permutation space. Then, for each permutation, a set of elements excluding

the target element is lesioned and the performance of the lesioned system is quantified. The tar-

get element is then lesioned alongside the lesioned set and the performance is quantified again.

The difference between performances in these two conditions, both negative and positive, is

what lesioning the target element contributed to that specific group of lesioned elements (Fig 3).

Lastly, averaging over these contributions results in the Shapley value of the target element, indi-

cating its average marginal causal contribution to the system’s performance.

Exploring all possible combinations of subsets can be computationally prohibitive in large

sets. Therefore, we used an unbiased estimator of the Shapley value that samples coalitions

from the space of 2N possible combinations, where N is the number of all elements. Here we

used 1000 permutations per element, since we found that the resultant Shapley values were

consistent with those estimated from a larger number of permutations. However, this is not

necessarily a representative case and exploring larger permutation spaces might yield more sta-

ble rankings for some settings (see [22] for more details).

As mentioned in the third axiom above, the Shapley value is additive and, thus, has an intui-

tive interpretation in which sum of all values results in the performance of the intact network,

which here was 337. This means that an element with a Shapley value of 80 accounts for a frac-

tion of 23% of the network’s performance. A negative Shapley value follows the same line of

interpretation, that is, an element with a Shapley value of -80 on average prevents the network

from an additional 23% increase in performance.

As depicted in Fig 2B, MSA indicates many noncontributing nodes and connections, just as

the single-site lesion analysis did. Importantly, according to the MSA, neuron 0 is the most

influential, followed by many less critical nodes. Interestingly, neuron -4 is assigned a negative

Shapley value, indicating its proportionally large and disruptive contribution to the intact sys-

tem. This result contradicts the result obtained from SPA that pointed to nodes -5 and 4 to

have such an influence (Fig 2C).

As with SPA, we also perturbed and analyzed connections but this time using MSA, to test

if we could further trace the causal influence of critical neurons down to their connections.

Again, we speculated that either no particular single connection would have a

Fig 3. Visual depiction of the MSA algorithm. Since there are 2N possible combinations of coalitions, an analytical solution for the Shapley value of

elements in large systems is computationally prohibitive. Therefore, we sampled 1,000 permutations from all N! possible orderings (permutation space)

and used them to dictate which coalitions to perturb (combination space). The contribution of elements to each coalition was then quantified by

calculating the difference between the score of the coalition with the element (e.g., {B, C, A}) and the score of the same coalition without the targeted

element (i.e., {B, C} to isolate A). Shapley value of each element was then calculated by averaging individual contributions of each element to the formed

coalitions.

https://doi.org/10.1371/journal.pcbi.1010250.g003
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disproportionately large Shapley value, or there were critical connections corresponding to the

influential nodes.

MSA traced the importance of node -4 to a single connection from -4 to 0, and similar

observations applied to the elements with the highest Shapley value. For example, the causal

contribution of neuron 0 could be attributed to its connection (0! 0), since, apart from (0!

0) and (-4! 0), other connections of this neuron had negligible contributions (Fig 2B). As a

sanity check, we performed the same procedure on the blinded network. Here we expected

that no element would contribute to the network’s overall performance, since, on average, the

network had the same baseline score. As shown in S2 Fig this was indeed the case.

The most crucial difference between SPA and MSA was how the respective approaches

ranked connections (0! 0) and (-4! 0). Remember that even the SPA indicated (0! 0) as

the most critical connection, while perturbing all 11 connections of node 0, including (0! 0),

resulted in no adverse effect. MSA attributed a negative Shapley value to the connection (-4!

0), meaning that, on average, lesioning (-4! 0) alongside other elements resulted in an

improvement of performance. Interestingly, SPA assigned minor importance to (-4! 0). This

means that removing (-4! 0) alone resulted in no particular change in the performance.

Altogether, MSA and SPA found key elements to be a small and localized set. MSA differen-

tiated these results and assigned the negative contribution to neuron -4, which SPA missed.

While SPA excluded neuron 0, MSA ranked it as the most critical neuron and further dissected

this importance to the self-loop. It then assigned a negative value to an incoming connection

from -4 to 0 that could explain why removing node 0 with all its connections did not impact

the behavior, while removing its feedback loop alone did. We further dissect the relationship

of these connections in the section Understanding the Paradoxical Lesion Effect.

Impact of Lesioning on functional connectivity

In addition to their direct impact on the behavioral functions of a system, lesions may also dis-

rupt the distributed activity patterns and functional connectivity (FC). In turn, different fea-

tures of the impact on FC are associated with behavioral performance. Thus, FC forms a

bridge, or ‘intermediate phenotype’ from structure to function and behavior [30–33]. It was

shown that lesions of critical brain regions in terms of FC, such as hubs, have a greater impact

on the dynamics of the whole brain [32]. To explore this aspect in our in-silico model, we first

calculated the FC of the intact network using Pearson’s correlation of the nodes’ time-series.

We then employed a SPA framework for all units, that is, nodes and connections. To quantify

the impact of lesioning individual elements on global FC, we calculated the element-wise dif-

ferences between intact and lesioned FC matrices. The absolute sum of the resulted difference

matrix was considered as the impact of lesioning on Functional Connectivity (IFC; Fig 4). A

larger IFC results from a greater difference between FC of the intact network and FC of the

lesioned network and intuitively indicates the importance of elements, this time by their con-

tribution to overall functional connectivity, instead of performance.

Interestingly, IFC is negatively correlated with both nodal and connection perturbation sce-

narios, corroborating previous findings (Fig 5). However, IFC is not associated with Shapley

values of these elements. This means that although SPA has internal coherency by identifying

units that, perturbed one by one, have the largest effect on both functional connectivity and

the agent’s performance, these units are not the same as those captured by an MSA framework.

In other words, by employing SPA, changes in the dynamics of the network supports its rank-

ing of critical nodes. However, as shown in Fig 2, the actual players remained obscure. In the

next two sections, we show why the rankings differ and propose a possible underlying mecha-

nism that accounts for this discrepancy.
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Quantifying complex interactions between causal building blocks

In previous sections, we presented two causal rankings of elements from the same ground-

truth neural network model, one using a SPA framework and the other using MSA (Fig 2C).

We found that the changes in the inner dynamics of the system perturbed using SPA support

this approach’s ranking, which mistakenly adds more confidence to the accuracy of the

approach in finding critical units. Here we show why these rankings differ by measuring the

complex interactions of units. Although MSA is a multivariate approach that accounts for a

large variety of combinations of units, it eventually describes the system in terms of how

much, averaged over all combinations with other units, single units contribute to the output.

In other words, it isolates the average individual contributions, and not directly reveal their

interactions by which the causal influence of one element is intertwined with the state of oth-

ers. Using an extension of MSA, here called Pairwise Causal Interaction Analysis (PCIA) [21],

we formalized and then quantified these interactions.

To elaborate, quantifying the complex pairwise interaction of two elements i and j in contribut-

ing to behavior requires to calculate the Shapley value of them jointly as a single compound ele-

ment γ(ij), as well as the Shapley value of each of them separately while the other one is perturbed,

gð�i ;jÞ and gði;�jÞ, respectively. As Fig 6 shows, subtracting the conditioned contributions from the

joint contribution provides an interaction term that, if positive, indicates “net-synergy” between

the pair and, if negative, shows “net-redundancy” or functional overlap. Note that the definitions

of synergy and redundancy here are not the same as those defined by information theoretical

approaches, for example Partial Information Decomposition (see [34]). Conceptually, PCIA quan-

tifies how much the causal contribution of a joined pair of units is bigger or smaller than the sum

of their individual contributions [21], with contribution here referring to a quantity with respect to
the networks performance. In other words, PCIA quantifies the difference between the joint contri-

bution of i and j and their individual contributions to the performance.

Fig 4. Calculating the impact of lesions on functional connectivity. We recorded the activity of all neurons to compute the functional connectivity of the network. We

exhaustively perturbed all units one by one and compared the element-wise differences between intact and lesioned FC matrices. The absolute sum of this difference

matrix (IFC) quantifies how much a lesion caused the network dynamics to deviate from the uninterrupted state. On the left-hand side, the activity of two scenarios is

depicted. In the upper timeline, the network is intact, and the score is 670, while in the lower timeline, the feedback loop (0! 0) is lesioned, leading to a drastic decrease

in performance. Red vertical lines show when the agent was shot and lost a life. Brown cells indicate the chosen action, and the dashed window is the same time window

that was zoomed in in the section Understanding the Paradoxical Lesion Effect.

https://doi.org/10.1371/journal.pcbi.1010250.g004
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Since PCIA involves the calculation of multiple MSAs, it is computationally even more

expensive than the MSA of individual elements. Therefore, we focused on the connections,

and to calculate all pairs of them, we sampled 100 permutations per element instead of 1000, as

in the case of MSA.

The results are shown in Fig 7, and as quickly stands out, there appeared a strong net-syn-

ergy between two elements (0! 0) and (-4! 0), followed by a handful of strongly redundant

and many minuscule interactions in both directions. We next formalized the Sprague effect as

a scenario in which element i has a negative Shapley value when element j is perturbed

gði;�jÞ < 0, thus hindering the performance and has a positive contribution when j is intact

Fig 5. Correlation between IFC and single-site lesioning scheme. The upper left scatterplot shows the relationship

between the impact of the SPA of nodes on functional connectivity and the agent’s performance. The lower left

scatterplots show the same relationship but for each connection. Both show a negative correlation, which means that

the larger the impact on functional connectivity, the lower the performance. However, this relationship is absent from

the right-hand side that compares the Shapley value of each element with their IFC. As with the left-hand side, the x-

axis shows the IFC of nodes (upper plot) and connections (lower plots), while here, the y-axis represents Shapley value

instead of raw performance.

https://doi.org/10.1371/journal.pcbi.1010250.g005
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Ii;j þ gði;�jÞ > 0. Put simply, on average, element i disrupts the performance if element j is intact

and improves if j is lesioned [22,25].

To reduce the number of false-positive findings, we looked for this condition among a

smaller set of pairs with an interaction term above and below two standard deviations of the

mean. The results are shown in Fig 7, with connections indicating the interactions and arrows

depicting a Sprague effect between two elements (the stem of the arrow indicates the element i
that has a negative contribution when the pointed element j is lesioned.) As depicted, we

found many paradoxical lesion effects predominantly among synergistic interactions, with the

Fig 6. Visual depiction of the PCIA algorithm. At its core, PCIA comprises multiple MSAs. We first start with

calculating the joint contribution of two elements, followed by the contribution of each, given the other is perturbed.

The interaction term is then calculated by subtracting these values from each other, indicating how much the joint

contribution of a pair of elements is bigger or smaller than the sum of their individual contributions.

https://doi.org/10.1371/journal.pcbi.1010250.g006

Fig 7. Pairwise interactions among all connections. An interaction matrix resulting from the PCIA procedure in which warmer colors show greater synergy and

cooler colors indicate functional overlap (left). We excluded the values within a range of ±2 SD above and beyond the mean and applied the “Sprague effect” condition

to the thresholded matrix (middle). On the right-hand side, we plotted the interaction network in which the nodes represent connections in the actual network, and the

edges are interactions among them. Arrows show paradoxical-lesion effects (i! j).

https://doi.org/10.1371/journal.pcbi.1010250.g007
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interaction between (0! 0) and (-4! 0) being the most prominent one. Note that the net-

work in Fig 7 is a higher-order “interaction network” in which the nodes represent connec-

tions in the “structural network”.

To summarize this part, we first quantified how much the joint causal importance of two

elements is larger or smaller than the sum of the importance of the individual elements. We

then found a handful of elements in which lesioning one, while the other one was perturbed,

restored the performance. Among them, the connections (0! 0) and (-4! 0) had the highest

net-synergy, meaning that, jointly, they functionally contributed much more than their

summed individual contributions. This unique interaction is also a paradoxical-lesion effect in

which lesioning (0! 0) alone disrupted the performance while lesioning it alongside (-4! 0)

restored it.

In the next section, by focusing on the two connections (0! 0) and (-4! 0), we show that

paradoxical lesion effects are not an uncommon phenomenon and that their frequent occur-

rence might be a direct result of perturbing a simple and ubiquitous motif of connectivity.

Understanding the paradoxical lesion effect

Paradoxical lesion effects, such as the Sprague effect, were first described in cats and later in

humans, with the underlying mechanisms still partly elusive [18,19]. One theory suggests that

the phenomenon is caused by a reduction of inhibition from a functionally competing region,

and the deficit reverses when both regions are lesioned [35]. To see if this is the case in our net-

work, we focused on the two most prominent units (0! 0) and (-4! 0). Note that the SPA

also ranked (0! 0) among the most critical connections. However, (-4! 0) was only cap-

tured by MSA and was the only unit with a large negative Shapley value.

Fig 8A shows the activity of two nodes, -1 and -4, over a trial in which (0! 0) is lesioned

(also see Fig 4). A Pearson’s correlation analysis showed that they are negatively correlated.

Node -1 was one of the key inputs to node 4, which itself was one of the most frequently chosen

actions by the intact network. Node -4, however, had a strong influence on node 0 (Fig 1) that

was inhibited by the negative feedback loop (0! 0). Since node 0 was the action “no action”,

keeping it dominated allowed the intact network to choose other actions and function properly.

Fig 4 shows how lesioning the feedback loop disrupted the suppression and led to the hyper-

activation of node 0. Fig 8B shows how the decaying activity of node -1 caused node 4’s activity

to decay as well and eventually ‘lose’ to node 0 in the lesioned network. Naturally, the behavioral

consequence of excessively choosing “no action” was a substantially lower score. These findings

explain the difference in rankings from MSA and SPA in which lesioning (-4! 0) alone had no

impact on behavior while lesioning it along other elements improved the performance:

If node 0 received either no input from -4 or was able to suppress the input, then the net-

work remained functional. Removing the feedback loop (0! 0) alone, however, resulted in

the over-activation while removing (-4! 0) alone was harmless. Perturbing both then resulted

in a paradoxical lesion effect because by lesioning the input from -4 to 0 with or without the

feedback loop, node 0 never reached the critical threshold to dominate other actions, and thus,

the performance was restored (Fig 8).

Altogether, by looking deeper into the inner interactions of the units that MSA distin-

guished, we see that a simple motif of connectivity among only four units was enough to pro-

duce a paradoxical lesion effect. The key nodes were -4 and 0; the key connections were (0!

0) and (-4! 0). The input from -4 to unit 0 had a large negative Shapley value because in coa-

litions without (0! 0), it over-activated neuron 0 and caused the network to freeze. The feed-

back loop (0! 0) had a high positive Shapley value, because it prevented this over-activation

and removing it caused the network to freeze. Interestingly, the input from -1 to 4 had the next
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highest Shapley value because, without it, node 4 was dominated by other units, especially an

over-activated “no action” node.

To conclude this section, we showed that a paradoxical lesion effect could emerge from a

simple inhibitory motif. In our case, the inhibition was a negative feedback loop, and the com-

petition was between two output neurons, 4 and 0. We show that, even in a simple agent,

revealing with confidence which elements are causally relevant for behavior and how is

extremely difficult. In the next section, we discuss our results, limitations, and potential future

improvements.

Discussion

In this study, we defined causation as contributions of individual elements to a collectively

produced function, and specifically aimed to understand an ANN in terms of the causal

Fig 8. Focusing on the critical elements discovered by MSA. The panel A shows the negative correlation between the

activity of two input units -1 and -4. This anticorrelation leads to competition between downstream units 4 and 0. In

an intact network, unit 4 is dominant due to the inhibitory feedback loop of unit 0. The panel B shows how activity of

unit 4 decays since it is tightly coupled with the input from -1 while neuron 0 without its feedback loop is driven by the

input from -4. The panel C shows the implications of this rivalry on the performance and how it produces the

paradoxical lesion effect. Lesioning the feedback loop disrupts the performance while lesioning it alongside the input

from -4 restores the deficit since neuron 0 stays dominated.

https://doi.org/10.1371/journal.pcbi.1010250.g008
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contributions of its components to its game-playing performance. We compared two principal

approaches for determining the causal contributions, lesioning its neurons and connections

one element at a time (Single-element Perturbation Analysis, SPA), versus lesioning and ana-

lyzing multi-site lesion effects using the multivariate Multi-perturbation Shapley value Analy-

sis (MSA).

We found the causal ranking produced by MSA to be substantially different from the rank-

ing provided by SPA. Interestingly, MSA ranked nodes and connections such that the most

critical connections belonged to the most critical nodes, a pattern that was missing from the

SPA ranking. Using an extension of MSA, we also quantified the complex pairwise interaction

of all connections. Specifically, we identified a pair of connections that, when perturbed, pro-

duced a paradoxical lesion effect, where lesions of one connection produced a functional defi-

cit, but lesions of both connections restored function. This phenomenon was underlying the

biased ranking of elements by SPA, since, by definition, the effect manifested only after a

simultaneous lesion of two elements. Finally, we focused on the two connections that were

ranked most critical by MSA. We found a rivalrous interaction between these two units to be

the mechanism responsible for the paradoxical lesion effect.

MSA: A step towards quantifying causal contributions

A substantial challenge in depicting a mechanistic blueprint of the brain is to achieve a com-

prehensive causal understanding of it. We propose that a step in this path is to quantify the
degree to which neural elements contribute to cognition and behavior. A knowledge of how
much the element is contributing to a function allows us to rank those elements accordingly.

The Shapley value as a measure of causal contribution is powerful and intuitive, however, it is

important to emphasize what this value does not reflect (see [36] for a technical perspective).

For example, the Shapley value by default does not reveal mechanisms, in the sense that it does

not show what computations were done by individual elements. Instead, it shows how much
each element is functionally contributing to the underlying mechanistic processes. Thus, this is

only the first step towards a comprehensive mechanistic description of the brain, illuminating

which elements to focus on. In the present study we did so by focusing on the few key elements

with high causal contributions and further investigating their connections and functional

interactions.

Versatility of MSA

In this work, we used the metric of ‘performance score’ since it was relatively straightforward

to interpret in the given experiment. However, further analyses could decompose the behavior

and calculate the causal contribution of the elements to each behavioral component. There-

fore, we can expand our knowledge of how elements dynamically form coalitions to solve sub-

tasks of the given task [37]. MSA is a robust method to unravel how neuronal units adaptively

join communities and produce functional hierarchies in the brain.

Additionally, MSA can incorporate metrics and concepts that are already developed to

infer causal structure in networks [38]. Here, we used a different definition for the concepts of

net-synergy and net-redundancy than those provided by the partial information decomposi-

tion approach [34]. These concepts can be harmonized by tracking the synergistic/redundant

contribution of each element to the permuted coalitions instead of its contribution per se.

Namely, if the contribution of coalition {A, B} is 10, and the contribution of {C} is 5, then the

expected contribution of {A, B, C} is 15. However, if adding {C} to {A, B} resulted in values

larger than 15 then the contribution can be assumed net-synergistic, and net-redundant if it is

smaller than 15.
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We also did not pursue the relationship between information and causal contributions

here. In fact, one can unify information theoretical concepts by tracking, for example, entropy

instead of the performance score. Another possibility is to lesion the information by injecting

noise instead of perturbing the node itself [39].

Moreover, we used MSA to compute causal contribution of nodes to behavior, which

means that the causal relationships within the system, that is, the causal contribution of nodes

to other nodes, remained opaque. One can infer such relationships by iterating MSA on each

node while computing causal contributions of others to it. For instance, and to bridge MSA to

information theoretical approaches to uncover causal relationships in the network, one can

iteratively perform MSA on each node and track the changes in, e.g., the mutual information

of the pre-and-post perturbation signals produced by the target node i. This way, MSA ranks

the nodes according to their contributions to i, such that lesioning the most critical node k
results in a reduction of ‘self-similarity’ in i, implying a large deviation of i after perturbing k
compared with the activity of i before perturbing k. Generally, the MSA approach is versatile

and can be adapted to track many metrics and be incorporated in diverse analytical pipelines.

The present work, however, had a more specific agenda and further research is needed to

establish pipelines integrating already existing metrics with MSA.

Current limitations of MSA

Although conceptually and methodologically powerful, MSA has limitations that need to be

addressed. The main limitation is MSA’s computational complexity. Reaching an analytical

solution for Shapley values of large systems is an NP-complete problem [40]. Therefore, heuris-

tics [41], predictors [24], and estimators [22,42] are used and are under further development.

Another current limitation that requires future investigation is the implementation of a

pipeline for higher-order causal interaction analysis. Here we used a pair-wise approach (i.e.,

PCIA; [21]), and it would be interesting to quantify the complex interaction of elements in

higher dimensions. Two points need to be addressed, first the computational complexity and

second the complexity of the results, as PCIA is already accounting for higher-order perturba-

tions, which makes it difficult to interpret the findings of extensions beyond PCIA. Addition-

ally, in this work, thresholding the ‘interaction matrix’ (Fig 7) was done arbitrarily. To

decrease the computational cost of the analysis, we reduced the number of samples from 1000

to 100, which means less certainty in the estimated results. To partly account for this problem,

we excluded values within the range of two standard deviations above and below the mean, a

decision that directly influences the number of discovered paradoxical-lesion effects. There-

fore, a central interest is to address this issue using either better thresholding criteria or estima-

tion methods.

Paradoxical-lesion effects and their implications

Paradoxical lesion effects are intriguing functional phenomena that have attracted much atten-

tion and controversy [43,44]. How were paradoxical lesion effects produced in our example

network? First, our network was fixed throughout the experiments. This setting leaves no

room for plasticity. Second, the network was a simple ANN with no excitatory-to-inhibitory

synaptic dynamics. It is possible that such physiological mechanisms underlie paradoxical

lesion effects in the living brain [19]. However, we did not include them in our model; there-

fore, the paradoxical effects observed here do not result from such dynamic mechanisms. We

found functional inhibition between competing units sufficient to produce a Sprague effect, as

also investigated before ([35,45]; cf. [25] for a fixed artificial network). Here we observed para-

doxical lesion effects in a network of 19 neurons, therefore, further research is needed to
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estimate the possible number of connectivity motifs that can give rise to paradoxical lesion

effects in larger networks. Also note that the motif was costly and sub-optimal, because instead

of simply removing the over-activating input, the evolutionary process added a negative feed-

back loop to cancel its disruptive influence, which produced the motif and led to a paradoxical

lesion effect. It remains to be investigated if other types of connectivity motifs can also give rise

to paradoxical lesion effects.

Single-site lesion analysis as a framework for testing hypotheses

Given our findings, we suggest that SPA by itself does not provide definitive conclusions on

the causal contributions of system elements(cf. [14]) and if used, it needs to be combined with

clear hypotheses and supported by other methods. For instance, Inagaki and colleagues [46]

showed that during a delayed response task, the anterior lateral motor cortex of mice shows a

persistent activity that was involved in maintaining short-term memories. Using perturba-

tions, they revealed that the activity of neurons in this region moves towards discrete dynam-

ical regimes to direct the decision and is generally robust against perturbations. However,

perturbations occasionally resulted in switching between these regimes that consequently

caused a wrong decision. Hence, they combined SPA and computational modeling to answer

what part of the computation a target region might be involve in [46]. The point of this study is

the fact that SPA is used alongside other methods to test a hypothesis, not to map the short-

term memory to the anterior lateral motor cortex as such. To summarize this aspect, and con-

sidering paradoxical lesion effects and the fact that SPA is partially insensitive to identifying

the causal contribution of the involved elements, we suggest that SPA approaches should be

used less as a brain mapping tool and more as a hypothesis testing tool. Even used as such, the

results should be interpreted cautiously and contrasted with other approaches.

Potentials of In-Silico experiments and ground-truth models

Finally, in this work, we used a version of Evolutionary Autonomous Agent models advocated

by [47] as a helpful simulation environment for neuroscientists. Using NEAT, we allowed the

network’s topology to evolve with respect to the environmental constraints instead of model-

ing the architecture ourselves and optimizing the weights or readout units. This way, we liber-

ated ourselves from further assumptions about the network’s connectivity and structure. We

see a potential role for such algorithms in neuroscience since one can evolve arbitrary architec-

tures to solve an ecologically valid task, such as foraging in a patchy environment [48], and

compare their topological features with brains evolved in similar environments.

More cognitively and clinically oriented, in-silico multi-element lesioning experiments can

be used as predictive tools to guide non-invasive brain stimulation experiments. For example,

human brain connectivity can be used as the backbones of ANNs trained to solve cognitive

tasks [49–52]. These connectivity-aware ANNs can then be investigated thoroughly using

MSA to predict critical regions and connections and the corresponding behavioral deficits.

The predictions can be used as testable hypotheses about which regions to perturb in-vivo. In

other words, brain-inspired ANNs, neural network models of cognitive processes [53], and

large-scale models of functioning brains [54] can add a unique value to the repertoire of

ground-truth models to test brain-mapping tools and their limitations (Fig 9).

Materials and methods

In this section, we explain the methods and materials used in this research. The codes and gen-

erated datasets are publicly available in the following repository:
https://github.com/kuffmode/ANNLesionAnalysis
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Briefly, we first trained a deep autoencoder to compress the screen pixels to a handful of fea-

tures per frame. We then evolved a controller network to, based on these features, choose a

proper action. After having both networks, we started the lesioning experiments.

Evolutionary optimization

We used the NEAT-Python toolbox [55] to evolve a network from an initial stage of randomly

connected 12 input and six output nodes. During the evolutionary process, the algorithm was

optimizing many parameters, including the choice of activation functions, aggregation func-

tions, adding or removing hidden neurons, adjusting connection weights and node biases, and

adding or removing connections (see Table 1 for a summary and the file AEconfig-SI.

Fig 9. How MSA can be incorporated into the causal brain-mapping toolbox. Since exhaustive multiple brain

lesioning in experimental biological research is currently beyond the reach, we suggest connectivity-aware or neural

network models of functioning brains to fill the gap. In-silico experiments can then be performed to predict key

elements and their contributions to the behavior. These predictions can then be tested experimentally in-vivo by the

method of choice.

https://doi.org/10.1371/journal.pcbi.1010250.g009

Table 1. A summary of relevant NEAT hyperparameters. NEAT produces a large variety of networks, all from a set

of constraints and probabilities. Since our goal was to produce a good-enough network, we did not tune these parame-

ters for maximum performance and either used the default values or adjusted them according to the experimental

objectives, e.g., sparse connectivity.

NEAT Hyperparameters Value

Fitness Threshold 1200

Population Size 128

Activation Function’s Mutation Rate 0.05

Aggregation Function’s Mutation Rate 0.05

Probability of Linking Nodes 0.5

Probability of Removing Links 0.6

Probability of Adding Nodes 0.6

Probability of Removing Nodes 0.4

Number of Input Neurons 12

Initial Number of Hidden Neurons 0

Number of Output Neurons 6

Survival Threshold 0.3

https://doi.org/10.1371/journal.pcbi.1010250.t001
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txt for the complete list of hyperparameters). There were no restrictions on the connectivity

pattern so that a recurrent architecture could evolve from the initial feed-forward stage. We

chose the probability for removing connections to be slightly higher than for adding (0.6 ver-

sus 0.5) to encourage sparsity. We then ran the evolutionary processes 32 times to have 32 can-

didates. The process ended either after 128 trials or when one member reached the fitness

criterion of 1200 points. In each trial, the generation comprised 128 members that were instan-

tiated from the same initial stage and would play the ATARI game independently. After each

step, the algorithm mutated the genome according to the given probabilities and performed

the cross-over among the top %30 networks to produce the next 128 members. At the end of

the training phase, 32 candidate networks reached either the generation limit or the fitness cri-

terion. We then chose the network with the highest score of 1300 points to move forward with

the lesion experiments.

Preprocessing steps and the autoencoder

We used OpenAI Gym [26] ATARI environment as our game environment. The game screen

generates an array with the size of (210, 160, 3); since the screen is 210 × 160 pixels, each con-

tains three color values, red, green, and blue. Throughout the whole work, the pixels passed

through a preprocessing pipeline first that would:

1. crop-out the unrelated parts of the screen such as scores and the ground,

2. convert colors to the monochrome gray-scale, therefore reducing the 3D space of red,

green, and blue values to one intensity value representing brightness of each pixel,

3. binarize the pixel values to either an “on pixel” or “off pixel”,

4. and finally, flatten the outcome into a vector with a size of 2679 pixels.

This vector represented the game with a series of zeros and ones that were then fed to the

Autoencoder (Fig 10). The Autoencoder was a Keras model [56] trained independently from

the controller network. We first recorded 43,200 frames from the game played by a random

agent, shuffled the frame orders, and used 28,800 frames (�%65 of the dataset) to train and the

Fig 10. Visualization of the Autoencoder’s inputs, latent features, and decoded outputs. The Autoencoder was trained separately from the controller and received

recorded frames from a random action selector agent. We then used the encoder half to reduce the pixel space to six features per frame and fed the controller with two

feature vectors.

https://doi.org/10.1371/journal.pcbi.1010250.g010
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rest for testing the Autoencoder. The architecture was designed with four encoding layers and

four decoding, and a bottleneck of six features.

We used the ADAM optimizer, a binary cross-entropy loss function, 64 epochs, and a batch

size of 512. Since input frames are binarized, we used Rectified Linear Unit (ReLU) activation

functions for all layers except the last decoding layer, for which we used a Sigmoid function

instead. After the training session and accuracy of�%98.8, we kept the encoder network and

fed the latent space to the controller network throughout all experiments and the evolutionary

process of the controller (Fig 10). Together the Autoencoder and the controller network

formed our agent. However, we did not perturb the Autoencoder and focused solely on the

controller during the experiments.

Lesion analysis

We first pruned our network by removing the already “disabled” connections. Briefly, connec-

tions in the network are either enabled, meaning they multiply the incoming value with the

weights and pass it to the receiver node, or disabled and pass zero. During the evolutionary

process, these disabled connections serve as “pseudogenes” that can be reactivated in later gen-

erations due to mutations. Initially, the controller had 7 of such disabled connections that,

after pruning, we had 51 enabled connections to target. We used the same attribute to lesion

the connections by virtually disabling them from passing values from source neurons to receiv-

ers. In other words, a lesion in our experiments was represented by a severed connection

which, technically, would disrupt the flow of information from the source node to the receiver

node. To lesion nodes, we then disabled the incoming/outgoing connections. For example, to

lesion a neuron that sends information to three other neurons, we set those three connections

to zero, which virtually silenced the node.

Each lesion experiment started with silencing the targeted neuron or connection as

described. All experiments consisted of 512 trials in which the network played the game 16

times per trial. The score of each trial was calculated by averaging these 16 scores, leading to a

distribution of 512 scores per lesion experiment.

Multi-perturbation shapley value analysis

MSA is a rigorous method based on a game-theoretical metric called the Shapley value, here γ,

that quantifies the importance of an element for the grand coalition of all elements of a system.

To elaborate, assume the marginal importance of an element i to a set of elements S, with i=2S
is:

DiðSÞ ¼ vðS [ figÞ � vðSÞ

with v being the worth or importance of the element i, and S a coalition of elements. Then γi

with i2N is defined as:

gi N; vð Þ ¼
1

n!

X

R2R

Di SiðRÞð Þ

where R is the set of all n! orderings of N and S(R) is the set of elements preceding i in the

ordering R. We estimated γ of all neurons and connections by sampling 1000 sequences from

the permutation space of 19! neurons and 51! connections. These 1000 permutations then dic-

tate which combinations of elements should be lesioned (Fig 3). After selecting the target ele-

ments, we used the same perturbation approach as for the single-site lesions and disabled the

corresponding connections. The agent played the game 16 times, and the average score was

taken as the score of that random permutation, providing a γ distribution of 1000 data points
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for each element. Altogether, we had around 70,000 unique combinations of lesions to esti-

mate γ from.

Statistical inference

Besides testing the performance of the intact network against the random agent, blind, and

weight-shuffled networks in which we used the non-parametric Mann-Whitney U test, we

used bootstrap hypothesis testing to find significant statistics throughout the study. We first

generated a synthetic null distribution for each statistical test by shifting the original distribu-

tion towards the H0’s mean value, either zero or an arbitrary number. For instance, to compare

a distribution against a null distribution centered around zero, such as Shapley values, we sub-

tracted the average from each data point, centered synthetic distributions around zero. In

cases in which we tested distributions against a second distribution that is not centered around

zero, such as the performance of the single-lesioned network versus the performance of the

intact network, we shifted the synthetic distributions toward the H0’s mean, in this example,

around 337 by adding the mean to each data point.

We then performed the bootstrapping and resampled the mean-adjusted distributions N

times with replacement, with N being the number of original samples, e.g., 512 for single-site

lesions. This generated a bootstrap dataset centered around the H0’s mean (Fig 11). We then

calculated the bootstrap dataset’s mean and repeated the process 10,000 times to generate the

bootstrap histogram of the means. In other words, the bootstrap histogram is a distribution of

means if they were from a null hypothesis. We then checked if the mean values of our

Fig 11. Visual diagram of the hypothesis testing process. For each test, we first created a null distribution by

adjusting the mean. Then we resampled the synthetic distribution and kept track of the averages in the bootstrap

histogram. Lastly, we checked if the original mean falls below or above the Bonferroni corrected p-value.

https://doi.org/10.1371/journal.pcbi.1010250.g011
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distributions fall above or below the p-value that is corrected for multiple comparisons using

the Bonferroni correction method (0.05/Number of tests).

Supporting information

S1 Fig. Distribution of performances. Optimized network is the evolved network, which

reached a good-enough performance. Noise-as-input is the same network that receives ran-

dom values drawn from a uniform distribution [0, 1] as input instead of receiving game-states.

Weight swapped network receives the game-states while the connection weights are shuffled.

Finally, Random action selector is an algorithm that selects a random action, at each timepoint,

regardless of the game-states.

(TIF)

S2 Fig. Shapley Values of the blinded network. As a sanity check, we performed the MSA on

the optimized network connections while feeding it noise instead of game-states. The proce-

dure is explained in the section: Multi-perturbation Shapley value Analysis. We found no con-

nection with considerable causal importance since the network cannot perform properly.

(TIF)
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