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Recent experiments have shown that mouse primary visual cor-
tex (V1) is very different from that of cat or monkey, including
response properties—one of which is that contrast invariance
in the orientation selectivity (OS) of the neurons’ firing rates is
replaced in mouse with contrast-dependent sharpening (broad-
ening) of OS in excitatory (inhibitory) neurons. These differences
indicate a different circuit design for mouse V1 than that of
cat or monkey. Here we develop a large-scale computational
model of an effective input layer of mouse V1. Constrained by
experiment data, the model successfully reproduces experimen-
tally observed response properties—for example, distributions
of firing rates, orientation tuning widths, and response modu-
lations of simple and complex neurons, including the contrast
dependence of orientation tuning curves. Analysis of the model
shows that strong feedback inhibition and strong orientation-
preferential cortical excitation to the excitatory population are
the predominant mechanisms underlying the contrast-sharpening
of OS in excitatory neurons, while the contrast-broadening of OS
in inhibitory neurons results from a strong but nonpreferential
cortical excitation to these inhibitory neurons, with the resulting
contrast-broadened inhibition producing a secondary enhance-
ment on the contrast-sharpened OS of excitatory neurons. Finally,
based on these mechanisms, we show that adjusting the detailed
balances between the predominant mechanisms can lead to con-
trast invariance—providing insights for future studies on contrast
dependence (invariance).

orientation selectivity | contrast invariance | contrast dependence

The front end of the visual system in the cortex, the primary
visual cortex (V1), has proven for cat and monkey to be

appropriate for large-scale computational modeling—primarily
because of the rich collection of experimental measurements on
V1 that biologically constrain these models. These large-scale
models have then been used to suggest potential mechanisms
for various response properties in cat (or monkey) V1, such
as orientation selectivity (OS) (1, 2). Individual neurons in V1
respond preferentially to the orientations of edges in the visual
scene. This orientation preference is measured by the neuron’s
orientation tuning curve, a graph of the neuron’s firing rate
versus the orientation of the visual stimulus. The tuning curve
is (usually) uni-modal, with a peak at “preferred orientation”
(PO) and troughs at the “orthogonal orientation” (OO). Its half-
width at half-maximum, the tuning width, is one measure of
the neuron’s OS. Although neurons’ firing rates often increase
with the contrast of the visual stimuli, surprisingly, the OS in
cat (or monkey) is found to be approximately contrast-invariant
(3, 4). Many theoretical (5–8) and experimental (9–11) works
have addressed the source of this contrast invariance. In mouse,
despite its poor visual acuity, neurons in V1 are surprisingly
well-tuned for orientation (12–14), with tuning widths similar to
those of cat or monkey. A series of experiments (13, 15, 16),
as well as a behavioral vs. neuronal discrimination experiment

(14), have shown that instead of contrast-invariant OS, excitatory
(inhibitory) neurons in mouse V1 exhibit contrast-sharpened
(broadened) OS.

Sophisticated optogenetic tools for mouse are providing even
more comprehensive experimental data than are available for
cat or monkey. Visual neuroscientists now have a detailed cir-
cuit structure of mouse V1 (17–21) and rich measurements of
its response properties (12, 13, 22, 23). Thus, it is time for the-
orists to develop comprehensive large-scale models of mouse
V1, which may unravel the mechanism underlying its response
properties, such as the contrast-dependent OS.

There are significant hardwired differences between mouse V1
and cat (or monkey) V1, which we incorporate into our model.
Neurons of mouse V1 receive only weakly tuned input (19) from
the lateral geniculate nucleus (LGN); the receptive fields (RF)
of this input have strongly overlapping ON and OFF subregions
(15, 23), and the diameters of the LGN RFs are very large—
averaging more than 10◦ for excitatory neurons and 20◦ for
inhibitory neurons (23) (Fig. 1 A, Top Left), while in cat and
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Fig. 1. Simulation setup. (A, Top Left) Typical size of an LGN RF in mouse
vs. that of a monkey, a small point to the right. (Top Right) Gaussian dis-
tribution of normalized distance between subregions with a mean of 0.305
and SD of 0.1. (Bottom) Examples of inherited RF from LGN for V1 excita-
tory (Exc) and inhibtory (Inh) neurons with the ON subregion (red) and OFF
subregion (blue). (B) A patch of V1 neuron (colored dots) plotted on a grid
of LGN cells (black dots) in a visual field. Different colors indicate different
POs. (C) Histogram of EPSPs to excitatory neurons with log-normal distribu-
tion. Inset shows the same data but with log x axis, with a mean of 0.45 mV
and SD of 0.68 mV. (D) The distribution of EPSPs (dots) received by an exam-
ple excitatory neuron over the pairwise RF CC distribution of its presynaptic
excitatory neurons (background).

monkey the subregions are more segregated (24, 25), with diam-
eters mostly below 1◦. Cat and monkey V1 have ordered maps
of PO, tiled by orientation pinwheels (26); in contrast, mouse V1
has a disordered “salt and pepper” map of PO (27). Layer 2/3
(L2/3) in cat and monkey V1 is dominated by “complex” (non-
linear) neurons (28, 29). However, in mouse, “simple” (linear)
neurons make up the majority (70∼ 80%) of excitatory neurons
in L2/3 and L4, and most of the inhibitory neurons are complex
(12). An early lesion experiment on mouse has shown that LGN
axons arborize in L2/3 as well as in L4 (30). The layer-specific
data from ref. 12 also indicate that the linearity (F1/F0) distri-
bution, the OS distribution, and the RF size are similar in L2/3
and L4. Taken together, the common properties shared by
L2/3 and L4 in mouse provide certain justification for combining
L2/3 and L4 into a single “effective layer.” It is also found that the
excitatory neurons selectively receive strong excitatory postsy-
naptic potentials (EPSPs), ∼ 4.5 mV, from neurons with similar
RFs (21), while an amplitude of 1∼ 2 mV is considered large
in cat V1 (31). The inhibitory population in mouse V1 receives
strong input from the LGN as shown in refs. 32 and 33, while such
data are rather scarce for cat and monkey. Inhibitory neurons in
mouse V1 receive strong input from cortical excitatory neurons
regardless of their PO (17), and they show much poorer OS (22,
34) than the inhibitory neurons in cat or monkey V1 [but see a
sharply tuned subtype (35)]. These hardwired differences suggest
that different mechanisms may underlie the response properties
of mouse V1 from those of cat or monkey.

Here we construct a comprehensive large-scale, biologically
constrained by experimental data, model of an effective input
layer of mouse V1 from which many experimentally observed
response properties emerge; then we analyze in detail the
contrast-sharpening (contrast-broadening) of the OS of excita-
tory (inhibitory) neurons and extract the underlying mechanisms
from the model by probing the excitation–inhibition (E–I) bal-
ances; based on the extracted mechanisms, we further identify
the adjustments to the E–I balance and the selectivity of connec-
tivity that result in contrast invariance. Thus, with the experimen-

tally constrained nature of the model, our result bears insights for
future studies on contrast invariance and contrast dependence.

Methods
Our model consists of a grid of 16× 16 LGN cells covering a visual field of
75◦× 75◦ and a patch of 10,800 V1 neurons in a single layer compressed
from L2/3 and L4, with an effective neuronal density of 2.9× 104/mm2 (36).
The V1 patch is a uniform mixture of a 120× 72 grid of excitatory neu-
rons and a 60× 36 grid of inhibitory neurons, such that the E-I ratio is
kept at 4 : 1. The model is described with sufficient details in SI Appendix to
enable the reproduction of simulation results; the source code can be found
at https://github.com/g13/mouseV1. Here we only present an overview of
the model setup, emphasizing its salient features including each that dis-
tinguishes mouse V1 from that of cat or monkey, as summarized in the
Introduction.

LGN Layer, Mapping to V1. The LGN input to V1 is modeled with a linear–
nonlinear Poisson paradigm. Drifting sinusoidal waves with a temporal
frequency of 4 Hz, a spatial frequency of 0.04 cycle per degree, and con-
trasts of 12.5%, 25%, 50%, and 100% are used as the external inputs to
LGN. We adopt the parameters and a typical gain curve from the experi-
ment on mouse dorsal LGN cells (37) to construct a spatiotemporal separable
center-surround RF kernel and a static nonlinearity, respectively. We apply
the nonlinearity on the result of the convolution of the RF kernel with the
input. Its output is then used as the rate of a Poisson process from which we
form the spike train inputs to V1 neurons.

Each V1 neuron is connected postsynaptically to a collection of LGN cells
with two largely overlapping subregions, one of ON LGN cells and the other
of OFF LGN cells. Taken together, these two subregions form the RF of
the V1 neuron inherited from LGN. The extent of overlap is described by
a normalized distance between the two subregions’ tentative centers (see
SI Appendix). The normalized distance has a Gaussian distribution across
the population (Fig. 1 A, Top Right), whose mean and SD are derived from
the experiments in refs. 19, 23. Examples of V1 neurons’ RFs resulting from
such connections are shown in Fig. 1 A, Lower. Notice the size difference
between excitatory and inhibitory RFs, as multiple experiments have shown
for mouse V1 that inhibitory neurons receive about twice the LGN input
received by excitatory neurons (32, 33). To implement this experimental
result, we assume the following: (i) an increase in LGN input to inhibitory
neurons through an increase in the number of presynaptic LGN cells project-
ing to the inhibitory neuron (∼ 30 to each inhibitory neuron, ∼ 15 to each
excitatory neuron), and (ii) the increase in LGN cells extends along the major
axes of the ON and OFF subregions. We make these two detailed assump-
tions in the model to show a more prominent contrast-broadening effect
in inhibitory neurons; however, they are not essential (see SI Appendix,
Fig. S2).

Cortical Layer. The salt and pepper distribution of POs in mouse V1 (Fig.
1B) is modeled by presetting each V1 neuron’s RF with a uniform distribu-
tion of POs. The probability of intracortical connections decays over distance
through an isotropic Gaussian distribution for both excitatory and inhibitory
neurons. Periodic boundary conditions are applied when the connection dis-
tance exceeds the boundary of the V1 patch, and all of the neurons are
used in analysis. The total connection probability to an excitatory neuron
is sparse—15% (20) (∼ 400 E and ∼ 100 I neurons). Excitatory neurons in
L2/3 of mouse V1 are known to have larger probabilities to connect with
excitatory neurons that share similar RFs and POs (20, 21), and a similar pref-
erential connectivity between excitatory neurons (E→ E) is likely to exist
in L4 as well (19). Likewise, the same connection preference has also been
implied for the I→ E connections by Tan et al. (38). Thus, we introduce
another Gaussian distribution to capture these orientation preferential cou-
plings to excitatory neurons (details available in SI Appendix). In addition to
the orientation preferential connection probability, Cossell et al. (21) found
the E→ E connection strengths to be dependent on the pairwise correlation
coefficient (CC; see SI Appendix for its definition) of RFs, and the EPSPs have
a highly skewed distribution toward a larger amplitude (21). In this model,
we implement this dependency with a log-normal distribution (Fig. 1C, com-
parable with the experiment in ref. 21; the Inset figure shows the same data
in log-scale). One example of an excitatory neuron’s presynaptic EPSP distri-
bution for such a setup is shown in Fig. 1D, where the background histogram
gives the distribution of RF CC with its presynaptic neurons (higher value
indicates a more similar RF). Note that, although few in number, those with
larger RF CC produce much larger EPSP amplitudes such that, on average,
50% of the cortical excitation is contributed by those 18% of presynaptic
neurons with larger RF CC, comparable with the experiment in ref. 21.
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On the other hand, the E→ I connections are found experimentally to
be much stronger, more numerous, and with no selectivity over orientation,
as shown by Bock et al. (17). Consistently, in our model, the corresponding
connection probability is set at 60% (∼ 1000 E and ∼ 300 I neurons) and
only depends on distance, with connection strength on par with the largest
excitatory-to-excitatory connection strength.

Each V1 neuron is represented as a conductance-based exponential
integrate-and-fire point neuron model (39) with frequency adaptation. The
adaptation is modeled by a self-inhibitory conductance gadap that only
increases when the neuron itself fires. The voltage dynamics of the ith
neuron in the kth population is thus governed by

dV i
k

dt
=−gL,k

(
V i

k −VL

)
+ gL,k∆T exp

(
V i

k −VT

∆T

)

+Iisyn,k(t)− gi
adap(t)

(
V i

k −VI

)
,

Iisyn,k(t) =−
(

gi
E→k(t) + gi

LGN→k(t)
)(

V i
k −VE

)
−gi

I→k(t)
(

V i
k −VI

)
, [1]

where k = E or I. gL,E = 50 s−1 and gL,I = 70 s−1 are the leak conductance
of excitatory and inhibitory neurons, respectively. VL = 0, VE = 2.8, and VI =

−0.4 are the dimensionless reversal potentials. ∆T = 0.4375 concerns the
voltage slope of spike initiation, and VT = 1 is the soft threshold; the hard
threshold where V i

k is reset to VL is set to 4.375. Iisyn,k is the total synaptic

current, where the excitatory (gi
E→k), LGN (gi

LGN→k), and inhibitory (gi
I→k)

conductances are summed over all spikes of the corresponding presynaptic
neurons. The temporal profiles of all of the conductances are modeled by
alpha functions (see SI Appendix). A modified Runge–Kutta scheme in ref.
40 is used in the simulation.

We use 1− CV =
∣∣∣Σjrje

2iθj
∣∣∣ /Σjrj , where CV is circular variance and rj is

the firing rate with input orientation θj , to describe the overall sharpness of
a tuning curve (12, 13); a larger 1− CV indicates a sharper OS.

Results
Our effective input-layer model largely reproduces the response
properties of the V1 network, including the distributions of fir-
ing rates, tuning widths, response modulation F1/F0 (simple
and complex neurons), and interspike intervals. These are pre-
sented, discussed, and compared with experimental observations
in SI Appendix. In the main text, we focus on the results of
contrast-related OS properties.

Contrast Dependency. The contrast-sharpening (contrast-broad-
ening) of OS in excitatory (inhibitory) neurons is captured by
the model, as shown in Fig. 2. Fig. 2 A and B show two sets of
tuning curves with various firing rate levels, for excitatory and
inhibitory neurons, respectively. Both contrast-sharpening and
contrast-broadening phenomena are present saliently in Fig. 2
C and D, where population-averaged tuning curves at different
contrasts are normalized and aligned to the optimal input ori-
entation for excitatory and inhibitory populations, respectively.
The phenomena of contrast dependencies are also apparent in
terms of 1−CV in Fig. 2 E and F, as the 1−CV distribution of
excitatory and inhibitory populations are separated by the dotted
contrast-invariant line.

The tuning curves of the conductances impinging on excitatory
and inhibitory neurons are shown in Fig. 2 G and H, respectively,
where all tuning curves are normalized to their own maxima,
except the first temporal harmonic of the LGN conductance, F1
(magenta), which is normalized by its mean value, F0. The F1
part of the LGN conductance shows negligible signs of contrast
dependency and is only weakly tuned for orientation. However,
as shown in Fig. 2G, the tuning curves of cortical excitatory
conductance (red, gE→E ) are clearly contrast-sharpened, while
the inhibitory conductance (blue, gI→E ) is contrast-broadened,
comparable with the experiment in ref. 13. Other input conduc-
tances, such as gE→I , are orientation-unspecific (Fig. 2H), which
is consistent with the experiment in ref. 17 (see SI Appendix,

A

B

E F I

HD

C G

Fig. 2. Simulation results. Tuning curves of 12.5%, 25%, 50%, and 100%
contrasts are in dotted, dot-dashed, dashed, and solid lines, respectively. (A
and B) Examples of firing rate tuning curves of excitatory and inhibitory neu-
rons, respectively. (C and D) Population averages of excitatory and inhibitory
neurons’ firing rate tuning curves, respectively. Every tuning curve is nor-
malized by its maximum firing rate. (E and F) Heatmaps for the density
distribution of 1− CV with contrast at 25% vs. 100% for the firing rate
tuning curves of excitatory and inhibitory populations, respectively. The dot-
dashed line indicates contrast-invariant OS. (G and H) Population averaged,
normalized tuning curves of conductances in excitatory and inhibitory neu-
rons, respectively. The legend follows I. The total LGN conductance is not
shown here, since it is flat and overlapped at y = 1. Instead, we plot the
F1 component of the LGN conductance (magenta) normalized to the F0
component. (I) Absolute levels of different conductances in the inhibitory
population across contrasts corresponding to H, with averaged total LGN
conductance in green.

Fig. S6). The magnitude of the excitatory conductance gE→I

(Fig. 2I) increases substantially with contrast, surpassing and
then overwhelming the LGN conductance. This strong and
orientation-unspecific cortical excitation to the inhibitory pop-
ulation is crucial in the model for the contrast-broadening of OS
in inhibitory neurons, which then give rises to the broadening of
gE→I with increasing contrast.

Underlying Mechanisms. Next, we describe and analyze the mech-
anisms underlying the contrast dependencies in our model, as
illustrated in Fig. 3A, where input orientations are indicated by
different colors. At low contrasts, since the excitatory firing rates
are low, feed-forward input (from LGN) makes up the majority
of the excitation (Fig. 2I). Thus, the tuning curves are largely
shaped by the LGN inputs, which themselves are only weakly
tuned due to the strong overlap between the ON and OFF sub-
regions. In addition, the orientation-specific I →E inhibitory
connections result in weakly tuned gI→E that helps to lift the cap
on the excitatory firing rates at OO, while limiting the firing rate
at the PO. Thus, at low contrasts, the excitatory neurons’ tuning
curves are relatively broad.

At higher contrasts, increased cortical firing rates cause the
cortical drive to become stronger. Therefore, excitatory neurons
experience enhanced cortical excitation at PO but only small
increases at OO—since excitatory neurons of similar RF and PO
are more likely to be connected and connected with stronger
EPSPs. This orientation-specific cortical excitation raises the
excitatory neurons’ responses, especially at PO. Meanwhile,
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Fig. 3. Underlying mechanisms. (A) Diagram of the mechanism for the
contrast-dependent phenomena, with excitatory sharpening on Lower and
inhibitory broadening on Upper. The arrow along the x axis marks the
direction of increasing contrast. Tuning curves at low contrast are indi-
cated by the dotted lines, while the tuning curves at high contrast are
in solid lines, and the input orientations are indicated by bars of differ-
ent colors. Schematic illustrations of excitatory presynaptic connections are
shown in between the tuning curves of low and high contrasts. The col-
ored filled circle at each center is an excitatory (inhibitory) neuron of
interest, and its presynaptic neurons of different POs (indicated by dif-
ferent colors) are connected with a different strength in dashed gray,
solid gray, thin solid black, and thick solid black lines (from weak to
strong). (B) 1− CV value of the firing rate tuning curves for excitatory
populations under 100% contrast vs. 25% contrast, with the same stan-
dard parameters used as in Fig. 2, except the SD of I→ E connections,
σI→E = 0.6, 0.8, 1.0,∞, as shown in the legend (0.6 is used for Fig. 2).
SDs along both axes are shown by the error bars. (C) Same as B, but
with 70% cortical inhibition in excitatory neurons. Connection strengths
are adjusted correspondingly. (D) Same as B but with single-valued EPSP
instead of log-normal distributed EPSP.

inhibitory neurons receive much stronger cortical excitation at
all orientations, which dominates the LGN input (Fig. 2I) and
produces high inhibitory firing rates that inflict strong feedback
inhibition onto excitatory neurons. This orientation-unspecific
cortical excitation results in the broadened OS of inhibitory neu-
rons, which in turn broadens the tuning curves of gI→E . In the
meantime, this broadened feedback inhibition pulls down the
excitatory neurons’ responses at all orientations (more so at OO
than that of low contrast). Thus, the OS of excitatory neurons is
significantly sharpened.

Both the level of the inhibition (gI→E ) and its contrast-
broadened profile contribute to the contrast-sharpening of OS
in excitatory neurons. To show which property of gI→E con-
tributes more, we vary the SD of the connection probability of
the I →E connections, σI→E , from 0.6 to∞ with other parame-
ters unchanged. σI→E sets the sharpness of the tuning curves of
gI→E at low contrast (illustrated by the legend in Fig. 3B), when
the inhibitory firing rate is relatively selective (Fig. 2D). Since
at higher contrast, gI→E is always flat following the contrast-
broadened inhibitory firing rate, the effect of the contrast-
broadening of gI→E is largely determined by σI→E at low
contrast—the smaller σI→E , the larger the effect of the contrast-
broadening of gI→E . Thus, the case with σI→E =∞ represents
the complete absence of contrast-broadening in gI→E , since it is
flat across all contrasts. The simulation results in Fig. 3B show
that all of these cases reside above the contrast-invariant line,
indicating that the contrast-sharpening phenomenon exists with
or without the contrast-broadening of gI→E . On the other hand,
if we reduce the overall level of inhibition to 70% by decreas-
ing connection strengths, while keeping the firing level relatively
unchanged, none of the cases retains contrast-sharpening (Fig.

3C). This indicates that the level of inhibition is more relevant
than the contrast-broadening of gI→E . However, the broad-
ened profile of gI→E does make a (secondary) contribution
to the contrast-sharpening of OS in excitatory neurons, for if
we quantify the contrast-sharpening effect by the distance to
the contrast-invariant line, then stronger contrast-broadening
of gI→E does shift the OS of excitatory neurons toward the
stronger contrast-sharpening effect (Fig. 3B). Nonetheless, this
sharpening effect is not sufficient to overcome the broadening
caused by a 30% decrease in the magnitude of inhibition. These
results demonstrate that the level of inhibition plays a more
important role than the contrast-broadening of gI→E as mech-
anisms that underlie the contrast-sharpening of OS in excitatory
neurons.

To assess the contribution of the log-normal EPSP distribution
to the contrast-sharpening of OS, we set all E→E connections
to have the same strength value as the mean in the original
log-normal distribution. As shown in Fig. 3D, without the log-
normal EPSP distribution, only a very weak contrast-sharpening
effect exists, as the values are fairly close to the contrast-invariant
line, with the error bars crossing it. Thus, the heterogeneity
from the log-normal EPSP distribution is also important for
the contrast-sharpening of OS in excitatory neurons, as they
compensate an otherwise lower and less tuned cortical excita-
tion. Notice that the populations with smaller σI→E (stronger
contrast-broadening of gI→E ) maintain their close distance to
the contrast-invariant line, showing that the contrast-broadening
of gI→E has a much less effective role in the contrast-sharpening
of OS in excitatory neurons than the standard case shown in
Fig. 3B. Its actual cause can be attributed to both the weak-
ened preferential excitation due to the single-valued EPSP and a
major decrease in the otherwise strong feedback inhibition that is
driven by the now less active excitatory neurons (see SI Appendix
for details).

To summarize, the preferential E→E connections and their
stronger connection strengths, together with strong feedback
inhibition, are the primary mechanisms by which the model
achieves contrast-sharpening of OS in the excitatory popu-
lation, while the nonpreferential E→ I connections lead to
contrast-broadening of OS in inhibitory neurons.

Discussion
In this work, we construct a large-scale effective input-layer
model for mouse V1 under the constraints from experimen-
tal data. The model successfully reproduces response properties

A B

Fig. 4. Contrast-invariant excitatory OS. 1− CV value under 100% con-
trast vs. under 25% contrast for the excitatory firing rates. The dotted
lines indicate contrast-invariant OS. (A) The log-normal EPSP distribution is
replaced with a single-valued EPSP, the same as in Fig. 3D; σE→E = 0.65 (0.5
in standard case) and σI→E = 1.0 are used, and the connection strengths are
not changed. (B) Eighty percent inhibition also achieves contrast-invariant
OS without changes in the connection profile but only with changes in
connection strengths (σI→E = 1.0).
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experimentally observed for mouse V1, including contrast-sharp-
ening (contrast-broadening) of OS in excitatory (inhibitory)
populations. We show that strong, highly preferential (E→
E ) excitation, strong feedback (I →E ) inhibition, and strong
orientation-unspecific cortical (E→ I ) excitation are the pri-
mary mechanisms underlying the contrast-dependent phenom-
ena in the model and that the effects of the contrast-broadening
of gI→E are secondary for the contrast-sharpening of OS in
excitatory neurons.

Previously, theoretical modeling works on mouse V1 of Hansel
and Van Vreeswijk (41) and Sadeh and Rotter (42) have
throughly discussed the mechanisms of emergent OS from a ran-
domly connected network without an orientation map. These
studies focused on contrast invariance and revealed how a small
input bias in orientation can be amplified in a balanced network
or an inhibition-dominated network, respectively. Another study
by Roy et al. (43) explores the parameter space to reproduce
experimentally observed OS distributions in mouse V1 at a fixed
contrast, and they find it necessary to have orientation prefer-
ential E→E connections. In contrast, we constrain our model
by experimental observations of mouse V1 on various input
properties (17, 19, 23, 32, 33)—for example, a highly skewed dis-
tribution of E→E connection strengths (21), which depend on
pairwise correlation of RFs—and investigate contrast-dependent
OS (13) and its possible underlying mechanisms. A simulation-
assisted analysis, as discussed in SI Appendix, provides addi-
tional intuition about the mechanisms underlying the model’s
performance.

There is an informative analogy between our mouse V1 model
and models of monkey V1 (1, 44) where neurons closer to pin-
wheel centers are more sharply tuned than neurons farther from
the centers—because neurons near the centers receive inhibition
from the nearby inhibitory neurons with all POs, while those far
from the center are inhibited by nearby neurons with similar POs.
This process of the distance-dependent “center-broadening” of
inhibition (mediated by the inhibitory conductances) resulting in
the “center-sharpening” of OS is very similar to the process of the
contrast-broadening of gI→E helping to enhance the contrast-
sharpening of OS in excitatory neurons in our mouse model.
Consistently, when inhibition is less dominant in the monkey
V1 models, center-sharpening of OS is also lessened (44), just
as shown by our analysis on the effects of contrast-broadening
of gI→E .

Limitations. First, the gain curves of the excitatory neurons are
relatively too low at low contrast compared with experimen-
tal observations. Second, our model’s 1−CV distribution for
excitatory neurons represents only a sharply tuned subset of
the neurons in the experiments (12, 13) rather than the entire
distribution; moreover, in our model, the OS of the excitatory
population is substantially sharper than the experimental mea-
surements (19, 45). In an effort to address these two limitations,
we have incorporated synaptic depression into the LGN input of
the model. We show in SI Appendix that this modified model has
very similar contrast-dependent phenomena and the same major
underlying mechanisms as in our original model but with more
realistic gain curves and OS. However, in this modified model,
the contrast-broadening of gI→E conductance is significantly
reduced.

Contrast Invariance, With or Without Ordered Maps of PO. The
pinwheel-like ordered map of PO in cat (or monkey) V1 versus

the random salt and pepper map of PO in mouse V1 is one of the
most striking differences between the two anatomically. How-
ever, topographically, they have similar selective connectivities
based on PO. In monkey, the ordered map of PO implicitly cre-
ates selective connectivity since nearby neurons are more likely
to be connected than distant neurons and nearby neurons natu-
rally have similar POs in the map. In mouse, an explicit selective
E→E connectivity based on similar POs replaces the implicit
selectivity for monkey.

It seems that the explicit connectivity in mouse V1, con-
tributing substantially in producing contrast-sharpening, may
be stronger than the implicit connectivity in an ordered map
of PO, even though the neuronal density of macaque V1 is
about 2.5 times that of a rodent (46), which together with
the pooling of neurons (with similar POs) in the ordered
map of PO provides a larger reservoir of potential prefer-
ential connections than is available to excitatory neurons in
mouse V1, which have to search through the uniformly dis-
tributed PO. Thus, it is very likely that the much stronger
bias in the E→E connection strengths (21) in mouse V1
overcompensates for the low availability of preferential connec-
tions to help achieve contrast-sharpening of OS in excitatory
neurons.

Thus, one may wonder whether contrast invariance can be
observed if one were to correct the overcompensation of E→E
orientation preference. Indeed, if we moderately weaken the
preference of E→E connections by increasing σE→E from
0.5 to 0.65 and reduce the strength of their EPSPs (through a
single-valued EPSP distribution), contrast invariance in the exci-
tatory population is obtained, as shown in Fig. 4A. A major
consequence of this relative decrease in excitation is a result-
ing decrease in feedback inhibition to the excitatory neurons,
which decreases sharpening. Therefore, an alternative way to
achieve contrast-invariant OS in the model (without explicitly
modifying the preferential excitatory connections) is to directly
decrease the overall level of inhibition as hinted by Fig. 3C.
To do this, we follow the scheme used for Fig. 3C, keep-
ing the I → I connection strength constant and decreasing the
other connection strengths. Note that we only decrease them
moderately so that the overall inhibition is weakened only
by ∼ 20%, in contrast to the 30% used for Fig. 3C. Again,
contrast-invariant OS of excitatory neurons is obtained, as shown
in Fig. 4B.

With these two examples, we demonstrate two ways to pro-
duce contrast-invariant OS in the excitatory neurons. Impor-
tantly, both methods adjust the E-I balance, by decreasing either
the preferential cortical excitation or the feedback inhibition—
the two primary and interrelated mechanisms that underlie the
contrast-sharpening of OS in excitatory neurons. Thus, with
reasonable variability of E-I balances, it is possible that both
contrast-invariant and contrast-sharpening of excitatory neurons
are actually present in mouse V1, which suggests further experi-
mental studies on contrast dependence of OS in mouse and bears
an implication for the understanding of contrast invariance of
other species in general.
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