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Simple Summary: Compared to the general population, patients with heart failure have reduced
cognition and increased dementia risk. Brain changes have been observed in these individuals,
including reduced brain volumes and abnormal areas suggestive of ischaemia (lack of blood and hence
oxygen supply to tissues). Patients with heart failure who have cognitive impairment have poorer
self-care and are at increased risk of rehospitalisation and death. Causes of cognitive impairment
in heart failure have been suggested, including reduced blood supply to the brain, inflammatory
processes, protein abnormalities and thromboembolic disease (formation of blood clots which may
travel to the brain and impede blood flow). In this article, we discuss these potential causes linking
heart failure and cognitive impairment, and discuss the recognition and management of cognitive
impairment in patients with heart failure.

Abstract: Cognitive impairment (CI) is common in heart failure (HF). Patients with HF demonstrate
reduced global cognition as well as deficits in multiple cognitive domains compared to controls.
Degree of CI may be related to HF severity. HF has also been associated with an increased risk
of dementia. Anatomical brain changes have been observed in patients with HF, including grey
matter atrophy and increased white matter lesions. Patients with HF and CI have poorer functional
independence and self-care, more frequent rehospitalisations as well as increased mortality. Patho-
physiological pathways linking HF and CI have been proposed, including cerebral hypoperfusion and
impaired cerebrovascular autoregulation, systemic inflammation, proteotoxicity and thromboembolic
disease. However, these mechanisms are poorly understood. We conducted a search on MEDLINE,
Embase and Scopus for original research exploring the connection between HF and CI. We then
reviewed the relevant literature and discuss the associations between HF and CI, the patterns of brain
injury in HF and their potential mechanisms, as well as the recognition and management of CI in
patients with HF.

Keywords: heart failure; cognitive impairment; dementia; cerebral haemodynamics

1. Introduction

Cognitive impairment (CI) in patients with heart failure (HF) is common, with a
reported prevalence of 20–80% [1–8]. Patients with HF demonstrate increased cognitive
deficits compared to controls in several cognitive domains [9] and have poorer self-care and
treatment adherence [10]. Cerebrovascular haemodynamics and structural brain changes
have been postulated to contribute to the cognitive deficits seen in patients with HF [11].
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More importantly, CI in HF is associated with a poor prognosis [12]. Although CI is preva-
lent among patients with HF and has a significant impact on these individuals [12,13], the
pathophysiology behind how HF influences cognitive function remains poorly understood.
In this article, we review the associations between HF and CI, the patterns of brain injury
in HF and their potential mechanisms, as well as the recognition and management of CI in
patients with HF. A graphic summary of the reported pathophysiology, brain changes and
impact of CI in HF is shown in Figure 1.
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Figure 1. Summary of the reported pathophysiology, brain changes and impact of cognitive im-
pairment in heart failure. *Proteotoxicity may be a shared disease pathology between specific
cardiomyopathies and CI.

2. Methods

We performed a search on MEDLINE, Embase and Scopus on 1 December 2021, for
articles from inception until 1 December 2021, and included the following terms: (cognition
OR confusion OR cognitive deficit OR cognitive decline OR cognitive impairment OR
dementia OR Alzheimer* OR neuropsych* test OR neuropsych* deficit OR memory OR
neuroimaging) AND (heart failure OR cardiac failure OR reduced ejection fraction OR
myocardial dysfunction OR systolic dysfunction OR diastolic dysfunction) and other related
terms. The included literature comprised original research involving humans, published
in a peer-reviewed journal. Studies exploring the (1) associations between HF and CI,
(2) brain changes in HF, (3) proposed mechanisms behind how HF may contribute to CI,
(4) impact of CI in HF and (5) effect of HF therapies on CI were included. The search was
not restricted by language of publication. Case series and case reports were excluded. Titles
and abstracts were screened and additional articles were identified from handsearching the
references of reviews. A full text review was performed for all relevant articles.
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3. Epidemiology of HF and Prevalence of CI

An estimated 64.3 million people are living with a diagnosis of HF worldwide, with
an increasing prevalence due to population ageing and improved survival after diagnosis.
While HF is primarily a disease of older age, the number of younger individuals with
HF appears to be on the rise [14]. This may be due to an increase in the prevalence of
obesity and its related comorbidities such as type 2 diabetes mellitus, hypertension and
atrial fibrillation [15]. Some have also suggested that the improved survival of patients
with congenital heart disease may contribute to this increase, although this has not been
specifically studied [14]. CI was previously thought to be limited to older patients with
HF, but has since been described in younger HF populations as well [16,17]. While the
prevalence of CI in HF has been reported in many studies, there is significant heterogeneity
in the existing literature [9,17,18]. Patient populations are diverse, with some studies
including patients with stable, chronic HF [19,20] and others including those with acute
decompensated HF [3,5,8]. Sterling and Hammond et al. specifically studied incident
HF [21,22]. There is also a lack of standardisation of the cognitive assessment tools used. For
example, screening tests such as the Mini Mental State Examination (MMSE) [6], Montreal
Cognitive Assessment (MoCA) [7,23] and Hodkinson Abbreviated Mental Test (AMT) [3,13]
were used by some investigators to assess CI, while others used more comprehensive
neuropsychological batteries [2,19,24,25]. Recognising these limitations, CI at least appears
to be common in HF and is present across a wide age range.

4. Cognitive Changes in HF

Compared to healthy controls, patients with HF demonstrate reduced global cognition
as well as deficits in multiple cognitive domains including executive function, psychomotor
speed and verbal memory [9]. Sterling et al. found that the prevalence of CI among
patients with incident HF (14.9%) was similar to controls without HF (13.4%) and was
lower than reported in the general HF population. This suggests that CI may develop at
some point after the onset for HF, rather than it being present prior to HF diagnosis or
due to concomitant cardiovascular risk factors [21]. This is further supported by a study
by Hammond et al. which reported a greater decline in Modified Mini Mental State test
scores of 10.2 points over 5 years in patients with incident HF, compared to 5.8 points in
controls [22].

HF has also been associated with an increased risk of dementia that may not be
limited to vascular dementia [26,27]. Adelborg et al. found that patients with HF were
1.5 times more at risk of developing vascular dementia, and were also 1.3 times more
likely to develop other dementias (defined as any dementia apart from vascular dementia
or Alzheimer’s disease) over a 35-year follow-up period. However, they did not find a
difference in the risk of Alzheimer’s disease between HF patients and controls [27]. In
contrast, Qiu et al. reported an increased risk of both all-cause dementia and Alzheimer’s
disease in patients with HF within a community-based cohort. Over a 9-year follow-up
period, patients with HF were approximately 1.8 times more likely to develop incident all-
cause dementia and 1.8 times more likely to develop Alzheimer’s disease [28]. Compared
to the Adelborg study which identified incident dementia and Alzheimer’s disease from a
psychiatric registry [27], Qiu et al. evaluated their study population on three separate follow-
up sessions with a comprehensive clinical examination and cognitive test battery, with
corroboration between two independent physicians. Therefore, potential misidentification
of dementia and misclassification of dementia subtype in the Adelborg study may have
contributed to these discrepancies in results [27]. In the general population, Jefferson et al.
observed that a lower cardiac index (defined as cardiac output divided by body surface
area measured in L/min/m2) among subjects of the Framingham Offspring Cohort was
associated with higher all-cause dementia and Alzheimer’s risk [29].
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4.1. HF Severity and Degree of CI

A dose–response relationship between HF and CI would further lend support to a
connection between the two diseases. Patients with a more advanced New York Heart
Association (NYHA) class demonstrated lower overall Z-scores compared to those with
NYHA I or II disease and increased HF severity was associated with reduced memory,
visuospatial ability, psychomotor speed and executive function [20]. Harkness et al. also
found that the incidence of CI, defined as MoCA score < 26, was greater in HF patients with
NYHA III or IV class (91%) compared to NYHA I or II class (52%) [23]. Hanon et al. reported
more severe memory impairment, as evaluated by the delayed-recall Memory Impairment
Screen (MIS-D), in patients with higher NYHA class [30] and Lee et al. found that NYHA
class II or higher was independently associated with an increased likelihood of cognitive
decline in patients with HF [31]. Similarly, another study reported poorer attention and
memory in HF patients who scored higher on dyspnoea and fatigue rating scales [32].
Kindermann et al. observed poorer cognition in patients with decompensated HF compared
to those with stable HF, and found that cognition improved after HF compensation [25]. In
contrast, Huijts et al. found that although severe CI was present at baseline more often in HF
patients with NYHA IV compared to NYHA II class, the prevalence of severe CI remained
stable over 18 months in both groups. Moreover, baseline HF severity was not associated
with cognitive decline [13]. These differing findings may be due to the authors’ use of
the AMT to determine CI, which may be more susceptible to ceiling effects compared to
other tools [33]. Myocardial stretch stimulates the release of pro B-type natriuretic peptide
(proBNP), which is then rapidly cleaved into biologically active C-terminal BNP and inert
N-terminal proBNP (NT-proBNP) [34]. BNP and NT-proBNP are both indicators of HF
severity [35]. A connection between higher BNP levels and poorer attention and executive
function was previously reported [36], in addition to reduced hippocampal volume in
patients with higher BNP [37]. NT-proBNP has also been associated with an increased
risk of dementia in an elderly community-dwelling population [38]. Overall, these studies
suggest that HF severity may have an impact on the level of CI but the exact relationship
remains to be elucidated.

4.2. The Impact of Ejection Fraction on CI

Left ventricular ejection fraction (EF), defined as a percentage of stroke volume over
end-diastolic volume (SV/EDV × 100%), is the central measure of left ventricular systolic
function. A lower left ventricular ejection fraction (EF), especially when <30%, has been
associated with lower cognitive scores [39,40]. A study by Festa et al. showed that in
patients 63 years old or older, EF < 30% was associated with poorer memory whereas
memory was stable across all EF levels in younger patients [41]. It is unclear if this is due to
poorer compensatory capacity, since age was not shown to affect dynamic cerebrovascular
autoregulation in a healthy population [42]. Elderly patients do, however, appear to be
more susceptible to watershed infarcts from cerebral hypoperfusion [43]. In contrast, a
similar rate of cognitive decline was found in patients with HF with reduced (HFrEF) and
preserved EF (HFpEF) [22] despite different patterns of cognitive deficits depending on
predominance of systolic or diastolic dysfunction [36,44,45]. Concomitant severe systolic
and diastolic dysfunction may worsen CI, especially in the form of poorer verbal fluency
compared to those with systolic dysfunction alone [40].

4.3. Potential Confounders in the Association between HF and CI

HF and CI share several risk factors and studies which include a control group of
patients with cardiovascular disease without HF may be useful to reduce the effects of
potential confounding factors. Studies have shown that CI remains more common in
patients with HF even when compared to these cardiac controls [2,24]. Vogels et al. reported
that 25% of patients with HF had CI compared to 15% of those with cardiovascular disease
without HF [2]. Another study found that the prevalence of abnormal performance on at
least 3/7 tests in a neuropsychological battery was 57.9% and 43% in patients with severe
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and moderate HF, respectively, as compared to 34.3% in those with other cardiovascular
diseases [24]. The degree of CI also appears to be greater in patients with HF, and HF and
IHD patients were found to have a Cambridge Cognition Examination (CAMCOG) score
of 2.8 and 1.8 less than healthy controls, respectively [16]. In contrast, a prospective study
over 2 years found that while cognitive decline was greater in HF patients than in healthy
controls, it was similar to those with coronary artery disease [46].

5. Anatomical Brain Changes
5.1. Grey Matter Atrophy

Cerebral grey matter (GM) atrophy is a feature of normal ageing. The distribution of
age-related GM atrophy is not homogenous and predominantly affects the frontal, insular
and cingulate cortices [47]. In general, increased GM atrophy has been observed in patients
with HF. Almeida et al. found that patients with HF demonstrated more extensive cortical
and subcortical GM losses especially in the subcortical nuclei, caudate, anterior cingulate
and frontal lobes, which are important regions for demanding cognitive activity such as
attention and memory [16]. In a follow-on study, the authors did not find a significant
decrease in total GM volume and cognitive function after 2 years in those with HF, although
subtle regional GM losses were observed [48]. In both studies, GM changes in patients
with HF were more pronounced than in patients with IHD without HF when compared
to healthy participants. This suggests that while concomitant cardiovascular disease may
contribute to GM loss, it does not fully explain the degree of GM atrophy seen in HF.

Increased medial temporal lobe atrophy (MTA) has been demonstrated in patients with
HF. The medial temporal lobe includes the hippocampus, amygdala and parahippocampal
regions and is mainly involved in the encoding, storage and retrieval of episodic and
spatial memory [49]. Frey et al. found that patients with HF had an approximately 11-fold
greater risk of MTA and demonstrated deficits in attention and memory corresponding to
the degree of MTA. However, progressive hippocampal volume loss over 3 years was no
different from that of physiological ageing [19,50]. Notably, this study consisted of patients
with non-progressive HF. Throughout the 3-year observation period, NYHA II remained
the most frequent class, with no change in left ventricular EF or 6-minute walking distance
(a test of aerobic capacity and endurance). Cognitive function also remained stable in these
patients [50]. This suggests that brain injury and CI may not worsen significantly in patients
with stable disease [51]. Apart from attention and memory, MTA has also been associated
with poorer executive function in patients with HF [52]. Regional GM loss is also seen in
other brain structures in HF patients, including the putamen, mammillary bodies and areas
of the cortex corresponding to autonomic function, cognitive function, affect, language and
vision [53,54].

5.2. White Matter Lesions

White matter lesions (WMLs) are seen in normal ageing and are more prevalent in the
elderly. However, they are also known to be associated with cerebrovascular risk factors
and cerebral ischaemia. Although WM hyperintensities may be detected on T2-weighted
magnetic resonance imaging (MRI) in asymptomatic individuals, they have also been
associated with CI [55,56]. Vogels et al. found that patients with HF had more WMLs and
lacunar infarcts compared to both healthy participants and patients with other cardiovascu-
lar diseases [55]. In addition, a recent study by Stegmann et al. demonstrated an increase in
WMLs with a longer HF disease duration [57]. Frey et al., however, found that the extent of
WMLs in patients with HF was not increased at baseline and progressed within the limits
of physiological ageing [19,50]. This may be attributed to the large proportion of stable HF
patients in this study [50].

6. Proposed Aetiologies of CI in HF

Several pathophysiological pathways have been proposed to contribute to the struc-
tural brain changes and CI among patients with HF. These are outlined in Figure 2.
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Figure 2. Summary of potential pathophysiological pathways linking heart failure and cognitive
impairment. Dotted line: the mechanisms by which systemic inflammation may contribute to brain
changes and cognitive impairment in heart failure are not well described. Dashed line: proteotoxicity
may be a shared disease pathology between specific cardiomyopathies and CI. IL, interleukin; TNF,
tumour necrosis factor.

6.1. Cerebral Hypoperfusion and Impaired Autoregulation

Reduced cerebral blood flow (CBF) is one of the proposed mechanisms of brain
injury and CI in HF [55,58]. Several studies have demonstrated lower CBF velocities on
transcranial Doppler (TCD) in those with HF [59–61]. Furthermore, TCD measurements in
patients with HF showed a decline over a 12-month period [62]. Lower CBF in HF patients
impacted global cognitive function, attention and executive function [62,63], while reduced
regional hippocampal CBF was associated with poorer performance on measures of delayed
memory [64]. A low output state in HF may result in chronic cerebral hypoperfusion in
patients with HF, making them more susceptible to watershed infarcts. Additionally, owing
to the similar risk factors shared by patients with HF and cerebrovascular disease, patients
with HF may also have a poorer collateral blood supply due to atheromatous stenosis of
the cerebral arteries [43]. Some studies compared CBF measurements against structural
neuroimaging or neuropsychological testing and evaluated the relationship between CBF
and CI in HF [55,59]. Alosco et al. found that reduced CBF in patients with HF was
associated with increased WMLs, which were in turn related to poorer MMSE scores [59].
Vogels et al. similarly described lower CBF in patients with HF, but did not find a correlation
with brain changes on neuroimaging [55].

In the general population, Jefferson et al. reported higher MRI-assessed cardiac in-
dex to be positively related to total brain volume and information processing speed [58].
Similarly, a lower cardiac index was associated with increased dementia risk [29]. In a
study of 4366 individuals from the United Kingdom Biobank, van Hout et al. found that
individuals with subclinical reduced left ventricular EF had reduced total brain volume
and GM volume, and also increased WMLs [65]. Interestingly, only WM and hippocampal
volume loss were associated with CI, and both were not related to EF [65]. Arterial stiffness,
microvascular damage, atherosclerosis and inflammation in HF may possibly confound the
reported relationship between EF and CI. These pathophysiological mechanisms are ad-
versely associated with both cardiac function and cognition, making it difficult to ascertain
the true association between EF and CI [66,67]. However, Park et al. found that total brain
volume and hippocampal volume remained associated with poorer left ventricular systolic
function even after adjustment for cardiometabolic disease [37]. Left ventricular stroke
volume and cardiac output have also been linked to CI [68]. The potential mechanisms by
which cardiac dysfunction may influence brain atrophy are not well understood but may
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be related to decreased cerebral metabolism. Patients with HF with extensive hibernating
myocardium had reduced cerebral metabolism in frontal and hippocampal areas in a study
utilising 18F-flurodeoxyglucose positron emission tomography/computed tomography
(18F-FDG PET/CT) imaging [69].

A reduced CBF is unlikely to be the sole explanation for cortical GM loss [16,54]. Brain
areas such as the periventricular white matter, basal ganglia and hippocampus are suscepti-
ble to cerebral hypoperfusion due to their location at the junction of large-vessel arterial
territories, or due to their irrigation by long-penetrating end arterioles. In contrast, the
cortex has a rich dual blood supply and can better tolerate cerebral hypoperfusion [43,70].
The interplay of other cardiovascular risk factors may also contribute to cortical GM loss,
since similar patterns of GM loss have been observed in HF and IHD patients [16]. Leeuwis
et al. further argued that CBF may not be the main reason for CI in HF in light of their find-
ings that while CBF was lower in patients with HF, this did not correspond with reduced
cognitive function [71].

CBF has been shown to increase after heart transplantation [72] and heart transplanta-
tion has been associated with improved cognitive function [73,74]. Cognitive improvement
has also been reported after left ventricular assist device (LVAD) placement [75,76]. How-
ever, these improvements were marginal and MoCA scores increased by approximately
1.6 following LVAD placement [76]. Schall et al., on the other hand, did not find a sig-
nificant difference between pre- and post-operative cognitive scores after 7.7 months in
their patients with dilated cardiomyopathy who underwent heart transplantation, despite
greatly improved physical health [77]. A possible explanation is the shorter follow-up
duration compared to other studies [73]. Several cognitive scores showed a non-statistically
significant increase and a longer reassessment interval may have revealed further cognitive
improvement [77]. Another reason may be the use of an extensive neuropsychological
battery by Schall et al. compared to less rigorous screening measures such as the MoCA in
other studies [74]. Patients with HF may also have diminished cerebrovascular autoregu-
lation, with greater impairments in those with NYHA IV compared to NYHA II and III.
Accordingly, cerebral oxygen saturations were found to be lower in patients with HF [78,79].
Previous studies have shown a blunted haemodynamic response and greater CBF reduction
in patients with HF in response to upright posture [80,81]. More recently, Kharraziha et al.
observed a more pronounced decrease in cerebral tissue oxygen saturations in response
to head-up tilt in patients with HF [82]. While it is unclear how HF may lead to impaired
autoregulation, it could result in increased susceptibility to low cardiac output states due
to an inability to maintain CBF via vasodilatory mechanisms.

6.2. Systemic Inflammation

The systemic inflammatory state recognised in patients with HF may further contribute
to CI in HF. Tumour necrosis factor (TNF)-alpha, interleukin (IL)-6 and cortisol are markers
of inflammation which, together with high total plasma homocysteine (tHcy), have been
associated with neuronal degeneration [83]. Increased secretion of cytokines was previously
shown to correlate with decreased memory performance [84]. Patients with HF may
demonstrate enhanced expression and release of inflammatory cytokines, with elevated
levels of circulating cytokines proportionate to NYHA class and cardiac performance [85,86].
High tHcy was shown in a study by Almeida et al. to be independently associated with
cerebral GM loss in HF [16].

6.3. Proteotoxicity

The possibility of proteotoxicity contributing to the development of both HF and
CI has also been explored [87]. Misfolded proteins aggregate to form soluble oligomers,
soluble aggregates and finally associate to form inclusion bodies. These aggregated proteins
may induce cell death and this process is known as proteotoxicity. Misfolded proteins are
associated with neurodegenerative diseases such as Alzheimer’s disease, Huntington’s
disease and Parkinson’s disease [87,88]. Protein misfolding has also been implicated in
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certain cardiomyopathies. One such example is cardiac amyloidosis, where misfolded
monocloncal immunoglobulin light chains or transthyretin results in the aggregation of
amyloid fibrils. Extracellular deposition of these proteins in the myocardium results
in myocardial distortion [89]. Upregulation of cytoskeletal, linkage and extracellular
proteins have also been found in dilated cardiomyopathy [90]. Although some have
suggested that protein misfolding may represent a shared pathophysiology between HF and
neurodegenerative diseases [91], these specific cardiomyopathies are relatively uncommon
causes of HF and hence proteotoxicity is unlikely to be a shared aetiological factor for HF
and CI in the vast majority of patients with HF.

6.4. Thromboembolic Disease and Cerebral Infarction

There is considerable evidence in the literature linking atrial fibrillation (AF) and
risk of CI and dementia [92]. Patients with HF and concomitant AF were shown to have
worse global cognition and memory as well as reduced CBF velocities [93]. The association
between AF and CI in those without clinical stroke suggests that occult embolic disease
may contribute to cognitive decline in these patients [92]. While the impact of AF on CI
is compelling [92], it cannot fully explain CI in HF as CI remains prevalent in patients
with HF after controlling for AF [2]. In those with HF in sinus rhythm, downregulation
of thrombomodulin, reduced myocardial contractility and resultant stasis of blood in HF
may also lead to microemboli and occult cerebral infarction [94]. Hypercoagulability and
increased risk of venous thromboembolism in HF further increase thromboembolic risk [95].

7. Impact of CI on Prognosis in HF

Although the mechanisms proposed for CI in HF are multifactorial and incompletely
understood, the negative impact of CI on patients with HF are well known. Deficits
in executive function in patients with HF have been associated with poor functional
independence, decreased ability to manage medications as well as non-compliance to
smoking cessation [10]. Functional decline in these patients has also been demonstrated
in prospective studies [96]. Cognitively impaired HF patients also tend to display lower
levels of self-care and self-confidence [97]. Reduced medication adherence in patients
with HF [98] is particularly concerning as these patients tend to be on several medications,
many of which confer significant mortality and morbidity benefit. Inability to self-care
is also likely to negatively impact fluid and dietary restrictions as well as recognition
of symptoms of decompensation. It is therefore unsurprising that CI is associated with
increased rehospitalisations in these patients [12,99]. Short- and longer-term mortality is
also higher in HF patients with severe and milder CI [13,99,100] although worst outcomes
are seen in those with severe cognitive dysfunction [101]. The relationship between CI and
mortality is not limited to sicker patients in hospital [12] and has also been observed in
stable outpatient HF populations [102].

8. Screening for CI in Patients with HF

Despite the prognostic implications and management considerations of CI in HF, CI
remains poorly recognised by physicians [6] as well as cardiologists [30]. A complete
neuropsychological battery is unlikely to be practical for all patients but brief screening
tests for CI may be valuable [103]. A systematic review by Cameron et al. concluded that
the MMSE had a low sensitivity (26%) but high specificity (95%) [104], and others suggested
that the MoCA may be a better screening tool [103]. Hawkins et al. compared the MoCA
and MMSE against a gold standard neuropsychological test battery in patients with HF
and found that both MoCA score < 25 and MMSE score < 28 were optimally sensitive and
specific (MoCA: 64% sensitive, 66% specific; MMSE 70% sensitive, 66% specific) [105]. The
Mini-Cog is a quicker test and may be useful in dementia but is limited in mild CI [106].
More comprehensive testing in selected high-risk patients may be useful, and patients with
HF performed especially poorly in the Trail Making Test B, Symbol Digit Modality Test and
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California Verbal Learning Test compared to controls [9]. However, there are currently no
guidelines on screening for CI in HF.

9. Impact of HF Therapies on CI

Angiotensin converting enzyme (ACE) inhibitor use has been associated with im-
proved cognition in patients with HF independent of blood pressure changes. The degree
of cognitive improvement appears to be greater with higher ACE inhibitor dose and treat-
ment duration [107]. ACE inhibitors may be involved in cerebrovascular autoregulation
and have also been suggested to modulate neuronal regeneration processes via angiotensin
II type 2 (AT2) receptors following neuronal injury [108]. CRT improves cardiac function
and reduces morbidity and mortality in selected HF patients [109]. CRT implantation
has also been associated with increased CBF [110] as well as cognitive improvement in
patients with HF [111,112]. Fumagalli et al. found that patients with HF on optimal med-
ical therapy who then underwent CRT implantation had improved cognitive function
6 months after the procedure, although the effect was small (increase in MMSE score by
1.1 points) [111]. Biventricular defibrillators (CRT-Ds) were also shown to be associated
with significant cognitive improvement compared to implantable cardioverter defibrillators
(ICDs) in controls, in terms of concentration ability and scores of global cognition [112].
Similar to heart transplantation [73,74] and LVAD placement [75,76], the delay or reversal
of CI in patients with HF following CRT implantation may be due to enhanced cardiac
function. In addition, functional performance measured by the Short Physical Performance
Battery (SPPB) has been shown to improve following CRT implantation [111]. Dedicated,
supervised exercise training [113] and nurse-led management programmes [114] have
also been shown to improve cognitive function in HF patients with CI. Deficits in global
cognition, attention, executive function, psychomotor function and memory were reduced
after cardiac rehabilitation in older adults with cardiovascular disease [115].

10. Future Challenges

Previous systematic reviews and meta-analyses have been limited by the heterogenous
literature [17,18,116]. However, the overall evidence suggests that there is a connection
between HF and CI, possibly mediated by HF-induced brain injury. Further studies incorpo-
rating measures of cardiac function, neuroimaging and comprehensive neuropsychological
assessments will be useful to investigate these heart–brain interactions. At present, such
studies are rare [50]. The incidence of CI in HF is also largely unknown, although some
have investigated incident CI in relation to cardiological measures in the general popula-
tion [29]. Prospective studies following patients with incident HF and no previous CI will
be especially useful to evaluate the development of CI corresponding to disease duration.

The negative impact of CI on patients with HF and its association with morbidity and
mortality highlight the importance of prompt diagnosis and management. Screening for CI
in HF is rarely performed in the clinical setting and cognitive dysfunction in patients with
HF remains poorly recognised [6,30]. In a study of 282 elderly patients with HF identified
to have CI via the MMSE, only 22.7% had their CI documented by physicians during
clinical encounters. Those who had less severe impairment were more likely to have their
CI missed. Importantly, this study found that 6-month mortality or hospital readmissions
were increased in patients with undocumented CI but not in those with documented CI,
when compared to patients with normal cognition [6]. Similarly, Hanon et al. studied
912 ambulatory patients with HF and found that 45.6% had memory impairment identified
via the MIS-D, whereas cardiologists only suspected memory impairment in 12% before the
test [30]. Administration of a global cognitive screening tool such as the MoCA or MMSE
in outpatient clinics or during admissions for HF may help to identify patients with CI.
Metabolic derangements and other causes of acute delirium should be excluded, especially
in patients with decompensated HF. Follow-up at a nurse-led outpatient clinic was found
to improve cognitive function and knowledge of self-care [114], suggesting that a trial of
similar interventions as resources allow may be of use. With the potential benefits of ACE
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inhibitors on cognitive function, closer monitoring of medication adherence in patients
with HF may be more important than ever. The increased burden of frequent follow-up
clinic visits on healthcare resources can be alleviated by the use of telemedicine.

11. Conclusions

Current evidence supports a relationship between HF and CI. Brain injury in HF is not
yet well understood and further study is needed to elucidate the underlying pathophysio-
logical mechanisms. The prognostic implications and potential reversibility of CI in HF
highlight the importance of early disease recognition.
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