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Electromagnetic wave-based extreme deep
learning with nonlinear time-Floquet entanglement

Ali Momeni' & Romain Fleury® ™

Wave-based analog signal processing holds the promise of extremely fast, on-the-fly, power-
efficient data processing, occurring as a wave propagates through an artificially engineered
medium. Yet, due to the fundamentally weak non-linearities of traditional electromagnetic
materials, such analog processors have been so far largely confined to simple linear pro-
jections such as image edge detection or matrix multiplications. Complex neuromorphic
computing tasks, which inherently require strong non-linearities, have so far remained out-of-
reach of wave-based solutions, with a few attempts that implemented non-linearities on the
digital front, or used weak and inflexible non-linear sensors, restraining the learning perfor-
mance. Here, we tackle this issue by demonstrating the relevance of time-Floquet physics to
induce a strong non-linear entanglement between signal inputs at different frequencies,
enabling a power-efficient and versatile wave platform for analog extreme deep learning
involving a single, uniformly modulated dielectric layer and a scattering medium. We prove
the efficiency of the method for extreme learning machines and reservoir computing to solve
a range of challenging learning tasks, from forecasting chaotic time series to the simultaneous
classification of distinct datasets. Our results open the way for optical wave-based machine
learning with high energy efficiency, speed and scalability.
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ecently, artificial intelligence (AI) systems based on

advanced machine learning algorithms have attracted a

surge of interest for their potential applications in proces-
sing the information hidden in large datasets!:2. Wave-based
analog implementations of these schemes, exploiting microwave or
optical neural networks, promise to revolutionize our ability to
perform a large variety of challenging data processing tasks by
allowing for power-efficient and fast neuromorphic computing at
the speed of light. Indeed, wave-based analog processors work
directly in the native domain of an analog signal, processing it while
the wave propagates through an engineered artificial structure
(metamaterials and metasurfaces)3-%, as previously established in
the cases of simple linear operations such as image differentiation,
signal integration, and integro-differential equations solving’~17.
For more complex processing tasks, for example, image recognition
or speech processing, both nonlinearity and a high degree of
interconnection between the elements are desired, requirements
that have led to various proposals of neuromorphic processors
exploiting optical diffraction, coupled waveguide networks, dis-
ordered structures!8-27, or coupled oscillator chains?®2%. A parti-
cularly vexing challenge, however, is the implementation of
nonlinear processing elements. While power-efficient neuro-
morphic schemes require a pronounced, particular form of non-
linearities, optical non-linearities, such as in Kerr dielectrics, are
typically weak at low intensitites, and cannot be much controlled.
This leads to sub-optimal systems that must operate with high input
powers?>30-32_ As an alternative, non-linearities that are external to
the wave-based processor have also been considered, for example by
exploiting the intensity dependency of a sensor, that needs an
additional electronic interconnection. Unfortunately, exploiting
such weak and non-controllable non-linearities drastically confines
the performance of most machine learning schemes, and the rele-
vance of wave-based platforms has so far been largely restricted to
the implementation of simple linear matrix projections.

Here, we propose to leverage the physics of wave systems that are
periodically modulated in time, the so-called time-Floquet
systems33-48, to solve this vexing challenge by implementing a
strong, controllable nonlinear entanglement between all the neuron
signals. We propose to use a simple, thin, uniform dielectric slab,
whose refractive index is slowly and weakly modulated in time.
With the addition of linear random scattering disorder, we imple-
ment very efficient recurrent neural networks (RNNs) schemes,
namely extreme learning machine (ELM) and reservoir computing
(RC). We demonstrate the high accuracy of our Floquet extreme
learning machine in challenging computing tasks, from the pro-
cessing of one-dimensional data (learning nonlinear functions), to
challenging multi-dimensional data (e.g., the abalone dataset clas-
sification problem). We also demonstrate the flexibility of our
scheme that can be multiplexed to tackle two unrelated classifica-
tion tasks at the same time, simultaneously sorting COVID-19 X-
ray lung images and handwritten digits. Finally, we validate our
Floquet RC by predicting the time evolution of a chaotic system
over a large time period (the Mackey-Glass time-series). The
reservoir size of the proposed wave-based reservoir computing
system is enhanced by leveraging both spatial and spectral domains
in order to improve the learning performance compared to prior
works, without imposing additional filters or a larger computational
overhead. Such extreme time-Floquet analog learning machines are
not only fast, easy-to-train, power-efficient, and versatile, but also
feature a unique accuracy performance that is comparable to that
obtained with the best digital schemes.

Results
We consider a particular class of neural networks, known as
recurrent neural networks (RNNs). RNNs are ideal to process

intricate data due to the internal cyclic connections between
internal neurons, whose outputs depend on both the current
inputs and the previous states of the neurons*®. This memory
effect allows RNNSs to detect recursive relations in the data, which
are relevant for example to process temporal signals. In digital
implementations, however, the heavy internal connectivity
matrices that are involved in the training process make RNNs
particularly computationally expensive and complicated®0-33. In
order to solve these challenges, a number of alternative com-
puting approaches such as long short-term memory (LSTM)>4,
echo state networks (ESNs)®, extreme learning machines
(ELMs)°6->8, and reservoir computing (RC)°1->3>° have
emerged. These schemes are particularly well suited for wave-
based implementations, because wave propagation inherently
relies on the inertial memory of the medium, which can be
enhanced and engineered by leveraging resonant elements, or
multiple scattering. In addition, wave interferences are a parti-
cularly efficient way to create a high degree of interconnections
between a large set of inputs.

Our time-Floquet neuromorphic processor implements an
ELM, schematically shown in Fig. la. ELMs, or closely related
methods based on random neural networks® or support vector
machines®!, are a powerful scheme in which only a last layer of
connections is trained (in blue). The fundamental mechanism is
the use of the non-trained part of the network, whose layers are
represented in gray and red in Fig. la, in order to establish a
nonlinear mapping between the initial space of the dataset and
higher-dimensional feature space, where a properly trained clas-
sifier performs the separation and classification. In our case, this
nonlinear mapping is performed by letting one of the non-trained
layers (in red) be weakly modulated in time at a frequency much
lower than the one of the signal, and with a modulation phase
that depends on the input state.

A concrete implementation of this scheme in a wave platform
is shown in Fig. 1b. It consists of three parts: (i), an array of
monopole antennas that radiates the various components of the
input vector into the surrounding medium; (ii), a propagation
space composed of a few scatterers and a thin dielectric slab,
called a scattering time-modulated slab (STMS), whose index of
refraction is weakly modulated in time; and (iii), the output layer
made of an array of receiving antennas and a single dense layer,
digitally trained to perform the desired regression or classification
tasks. At the input layer, the input vector (™ with components

T,y is first encoded into N signals si", injected directly into
the source antenna array (see further details in section Details of
the proposed wave-based ELM architecture of the Methods). We
assume that (" is modulated at two distinct close-by frequencies
w; and w,, such that:

st = & (sin(w, t) + sin(w,t)). (1)

The permittivity €, of the STMS is modulated with a depth 6,
and a phase ¢, at a frequency w,,=|w; — w,|/2, so that
€, = €, + 0, cos(w,,t + ¢). This choice of modulation frequency
allows for the two input frequencies to be efficiently mixed at the
dominant Floquet harmonic (w; + w,)/2 (see Fig. 1c). As we will
now see, the reflection and transmission coefficients of Floquet
Harmonics can show a strongly nonlinear dependency on the
modulation phase, a key property that we will leverage to make
the ELM very efficient.

To understand how time-Floquet systems can be used to
induce large nonlinear entanglement between the incident and
reflected signals, let us consider the toy model of a generic two-
port time-Floquet system, where incident and reflected signals at
ports 1 and 2 are represented by their time-varying complex
amplitudes a;,(f) and by ,(f). This model applies for each plane
wave incident on our STMS, with transverse wave number k, on
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Fig. 1 Wave-based time-Floquet extreme learning machine. a Schematic of a neural network including a time-Floquet layer made from neurons whose
properties are modulated periodically in time, and traditional random layers. Only the last layer (output) is trainable. b Concrete implementation with

electromagnetic waves. The input signals Ci,,” are modulated at w; and w,. The sums of these frequency components forms input signals that are
independently radiated into the surrounding space by an array of source antennas (black disks). As the waves propagates in the green region, they
encounter a thin dielectric slab whose index of refraction is modulated at the frequency w,, = |w; — w2|/2, as well as five sub-wavelength scatterers,
randomly located in the domain. The modulation phase depends on the input vector (j,'f(t). The gray rectangle represents an absorbing boundary layer. The
outputs ¢°"(t) are fed into an adaptable blue dense layer, and used for regression and classification. € Nonlinear phase entanglement. The modulated slab

n

mixes signals at w; and w, into Floquet harmonics spaced by w,, whose interferences depend non-linearly on the input vector.

which the actual field can be decomposed. Assuming the mod-
ulation frequency w,, to be much smaller than the operation
frequency w;%%%3, we can neglect dispersive effects and write the
following instantaneous relation between the signals at each
ports®2-04;

[al(t) az(t)} 2)

by(t) by(t)

where ‘i’(a)k, t) is the transfer matrix at wy, which varies slowly
with time. Taking the Fourier transform of both sides yields

} = \if(wk,t){

[Al(w)} ~ W, @)+ [Az(w)}
By(@) By(w) 6
— /\ij / AZ(w/) /
- (wka w— w) Bz(w/) dw )

Since the scattering process into each Floquet harmonic com-
ponent is linear, we can define the reflection and transmission
coefficients into each harmonic as Ry(wx + nw,,) = B;(w; +
nw,,)/A;(wx) and To(wy + nw,,) = A(wr + nw,,)/A;(wy). A direct
calculation shows that (see Sec. 1 of the Supplementary Material
for detail derivations):

Ry(wy + nw,) = e Ry(w, + nw,,) 4)

T y(wy + nw,,) = " Ty(wy + nw,,), (5)

where we have used the notation Ry to highlight the dependency
of the scattering coefficients on the modulation phase ¢. These
equations imply that upon adding a phase delay ¢ to the mod-
ulation, the generated frequency harmonic of order n will acquire
a phase shift of n¢, both for the forward and backward scattered
plane waves. On the other hand, the amplitude of harmonic
waves is constant when we alter the phase delay.

Now, consider the superposition of two incident plane waves at
frequencies w; and w,. Recalling our choice of modulation fre-
quency, namely w,, = |w; — w,|/2, we can write the reflection and
transmission waves for all Floquet harmonic components of
frequency w; + nw,, = w, + mw,, by using the superposition
principle:

|R:p| = Ie"”‘bRO(w17 w, + nw,,) + e"’""SRO(w27 w, + mw,,)| (6)

Tyl = " To(wy, 0, + nw,,) + " To(w,, 0, + maw,,)l,  (7)

where n and m are the orders of the Floquet harmonics with
respect to w; and w,, respectively. A particular example is the
harmonic located at the average frequency w = (w; + w,)/2, for
which n=1= —m (orange spectrum in Fig. 1c). According to
Egs. 6 and 7, the relation between the modulation phase and the
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Fig. 2 Nonlinear Floquet entanglement. a-d Theoretical demonstration of the nonlinear dependency of the intensity T;A of the central Floquet harmonic
(w = (w7 + ®3)/2) on both the modulation phase ¢ and the real or imaginary part of one of the generated harmonics. The results are based on Eq. 7. The
fixed parameters for a-d are: a T(w; + w,,) = 0.1 — 0.25i and R{T(w; — @,)} =0.1. b T(w> — w,,) = 0.1 — 0.25/ and R{T(w; + @)} =0.1.

¢ T(w + @) =0.1—0.05i and S{T(w» — ®,,)} =0.05. d T(w; — w,,) = 0.1—0.05/ and F{T(w; + w,,,)} = 0.05. e, f The numerical demonstration of
linear/nonlinear Floquet entanglement for the central harmonic wave for different readout nodes in terms of input intensity, for static (e) and dynamic

phase delays (f).

intensity of scattered harmonic fields is highly nonlinear. In fact,
we can control the amplitude of the Floquet harmonics only by
changing the modulation phase. In order to have a nonlinear
input-output mapping, we must therefore entangle the phase
delay with the input vector (i.e., ¢ = f({i")). This can be done by
using a simple voltage-controlled phase shifter (VCP) (see further
details in section Details of the proposed wave-based ELM
architecture of the Methods). In other words, the value of the
modulation phase is directly determined by the value of the input
vector, which is fixed when the system is excited, automatically
turning the scattering process into a highly nonlinear function of
the input, regardless of the input power. This makes such time-
Floquet nonlinear entanglement highly advantageous in neuro-
morphic computing schemes.

To exemplify the strong nonlinear response of the proposed
system, we plot the amplitude of the transmitted central har-
monic (w = (w; + w,)/2) as a function of various variables,
including the phase delay ¢. The results are displayed in
Fig. 2a-d. We fix one of the harmonics and plot T, versus the
modulation phase and the real or imaginary part of the other
transmitted harmonics, T(w, + w,,) (or T(w, — w,,)). As we can
see in Fig. 2a-d, we indeed obtain a complex nonlinear semi-
sinusoidal form for T}, upon altering the modulation phase. The
dependency on the real or imaginary parts of the other trans-
mitted harmonic is also always nonlinear.

Next, we implement the entanglement with the input vector to
demonstrate the complex nonlinear behavior of the Floquet sys-
tem, using a full-wave finite-difference time-domain simulation
of the setup of Fig. 1b (see Methods). We compute the intensity of
the central harmonic with respect to the input intensity for two
different scenarios: a static phase delay and an entangled phase
delay. In the first scenario, the phase delay is fixed and not
dependent on the input (¢ =0), and as shown in Fig. 2e, the

harmonic intensities are linear in terms of input intensities. In the
second scenario, the delay phase is a simple linear function of the
input (i.e, ¢ =2n(")). Figure 2f shows the complex nonlinear
form of the proposed system. The oscillating nonlinear mapping
performed by the proposed system is completely different from
any earlier approach. As we will show, it is surprisingly effective
in transforming the input data space to a nearly linearly separable
output data space.

Note that another alternative approach to reach such a highly
nonlinear input-output mapping is to entangle the input data
with the modulation depth instead of the modulation phase. In
this case, no phase shifters are needed. In section 2 of the Sup-
plementary Material, more explanations about this alternative can
be found, including a demonstration of its high performance in
terms of transforming the input data space to a nearly linearly
separable output data space.

Learning highly nonlinear functions. We now demonstrate the
performance of the Floquet ELM by starting with simple regression
problems, on a dataset generated with nonlinear relations. Such a
dataset is often used as a standard benchmark in machine learning
since linear regression of a nonlinear function is impossible without
a nonlinear transformation31:>6, The input information ({) is a set
of randomly generated numbers between —m to 7 and the corre-
sponding output labels (y;) are generated according to nonlinear
functions, namely y, = asin(4n{")(|{"|/n), y,=rect({") (pulse
function), and y, = sin(n{")/(n{"™). We use 1000 randomly gen-
erated samples, which lie in [—7, 77] to cover the entire characteristic
behavior of the function. We map each input value to a vector by
multiplying it with a fixed random 1D vector (mask), here of
dimension 1 x 10. In this task, we use 10 and 20 input and readout
nodes, respectively. By recording the intensity of the harmonics in

4 NATURE COMMUNICATIONS | (2022)13:2651| https://doi.org/10.1038/s41467-022-30297-5 | www.nature.com/naturecommunications


www.nature.com/naturecommunications

ARTICLE

a b c
1 1 ! P
o A * Ground truth| 0.8 L] * Geound truth * Ground truth
0.5 [ ) [ (]
o ke] o 0.5
8 e o &8¢ 206 ® ® E
E RN 2 g
g0 HEEIR £04 ® e £
< : ® << ® ® < 0
05 $3 0.2 ® ®
OV i
ol eemm==f 2SN os
] ) 0.
-4 2 0 2 4 -4 -2 0 2 4
4 2 0 2 4 n o
¢" ¢ ¢
d e f
0.1
1 p 0.01
041 0.08
,,0-008
w w
2 20-06 20.00
T 0.05 o T
: 0.04 0.004
0.02 0.002
b > 0 b
0 0
1 2 3 4 5 1 5 3 . 5 1 2 3 4 5

Number of harmonics

Number of harmonics

Number of harmonics

Fig. 3 Floquet extreme I_earn_ing for highly nonlinear maps. a-c Comparison between ground truth and predicted values for three different nonlinear
functions: y; = asin(4n{")(|{"| /), and y, = rect(¢) and y; = sin(z{")/(n{"), respectively. d-f The corresponding values of root-mean-square error
(RMSE) upon increasing the numbers of involved Floguet harmonics at the readout nodes.

the readout nodes of many input values, linear regression is per-
formed on the output data (see Fig. 3a—c). A remarkable learning
performance, with very low root-mean-squared error (RMSE) for
all three nonlinear functions, is obtained. Interestingly, in the pro-
posed wave-based neural network with a nonlinear time-Floquet
layer, the multiple generated harmonic fields can be used to extend
the dimension of the nonlinear mapping, and increasing their
number improves the accuracy of classification/regression. This
tendency is demonstrated in Fig. 3d-f), which plots the RMSE
versus the number of considered Floquet harmonics. This
mechanism is a clear advantage of the Floquet ELM: by involving a
higher number of scattered harmonics, we can improve the RMSE
and enhance the accuracy of learning with no additional compu-
tational cost. It should be noted that in order to compute outputs at
the decision layer, we simply rescale the linear regression weights
without having to use additional filters. (see further details in sec-
tion Training of readout of the Methods).

We can explain the learning principle of the proposed
computing system with well-known kernel methods. Kernel
methods use kernels (or basis functions) to map the input data
into a feature space. After this mapping, simple models can be
trained on the new feature space, instead of the input space,
which can result in an increase in the performance of the
models®>%6, We can describe the projections of input samples in
the feature space by T’ = H,,,(p({")), where p is encoding
function, here for example p({™) = (™ (sin(w, t) + sin(w,?)) and
H,,, is a nonlinear and complex function associated with the
time-Floquet entanglement. Essentially, H,,, can be seen as an
explicit form of optical kernel function which contains both the
multiple scattering occurring in the media and the complex
nonlinearity form. This kernel contains several polynomial basis
functions, {x,x2,x3,x% ...} (we can theoretically show it by
Taylor expansion of Egs. 6 and 7). Hence, we have a combination
of different orders of polynomial mappings with random
coefficients in the feature space for each readout node, resulting
in transferring different features of the input data into the feature

space. The proposed kernel is thus expected to be very efficient in
performing all tasks, even when compared with a strongly
nonlinear Kernel such as the modulus square operator (x2),
typically found in sensors and detectors used in prior arts.

To prove this quantitatively, we compare the feature space
projection of our kernel with the form of nonlinearity that is most
commonly used: a square-law at the detector, x2. As a reference,
we also look at the purely linear case. As an example, we consider
again the nonlinear interpolation of y=sinc(x). In order to
perform well, the data projected in the feature space should be
highly nonlinear with respect to the feature coordinates. To
visualize this, we use principal component analysis (PCA) to
reduce the dimension of the output data, because it lives in a
high-dimensional space (10 dimensions, set by the number of
readout nodes). PCA is a kind of linear projection that consists in
transforming correlated variables into new variables, de-
correlated from each other. These new variables are called
“principal components” or principal axes®”. In Fig. 4a, b, we
calculate and plot this projected data in a 3D PCA space for three
distinct cases: linear, x* nonlinearity, and time-Floquet entangle-
ment. Panels (a) and (b) show that in both the linear and x2 cases,
the projected data is on a line, whereas in the case of the time-
Floquet entanglement, the data follows a highly nonlinear relation
with respect to the principal axes. For this reason, the sinc(x)
interpolation fails when using both a linear system or one with x2
nonlinearity at the detector (see Fig. 4c, d). Conversely, time-
Floquet entanglement is extremely good at performing the sinc
problem (see Fig. 4e).

Abalone dataset. In the previous section, we have used our
Floquet ELM to learn nonlinear functions and their interpolation
capability. However, interpolation is not always the relevant task,
especially in complex inference problems. Therefore, we now
move to a more challenging multivariable problem: the abalone
dataset. This dataset is one of the most used benchmarks for
machine learning and concerns the classification of sea snails in
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terms of age and physical parameters. It lists eight physical fea-
tures of sea snails that can be used for the prediction of their age.
To tackle this problem with our Floquet ELM, we encode the 8
physical features of sea snails on our input nodes (8 input nodes),
and consider 50 readout nodes to feed the decision layer, which
performs a linear regression. Figure 5a presents the true ages and
the corresponding predictions; the figure indicates that the fra-
mework learns the ages of the abalone with remarkable accuracy.
For a direct comparison, we plot the predicted values for 75
random input data (Fig. 5¢). The RMSE with respect to a number
of harmonic waves is plotted in Fig. 5b. A remarkable accuracy
(RMSE = 0.064) can be achieved by considering five generated
harmonics. The achieved RMSE is smaller than the best value
reported in prior art31,

Parallel image classifications. Another remarkable feature of
time-Floquet systems is that since the inputs are modulated at a
certain carrier frequency, we can use several frequency bands and

multiplex different signals to classify them simultaneously using
the same system, and at no additional cost in terms of power
consumption. Let us now demonstrate this in a specific complex
parallel classification task. We examine the possibility to perform
parallel image classification using two wavelength inputs. We use
two distinct datasets: the MNIST dataset of handwritten digits
and the COVID-19 X-ray images (see Fig. 6a, b). We resize all of
the images into 10 x 10 pixels, down-sampling them to decrease
the number of input and readout nodes and the total size of our
structure. In this task, we use 100 nodes to encode the images
with the amplitude of the input waves, and 100 readout nodes.
The MNIST data are encoded onto a (randomly selected) fre-
quency range from 4 to 4.125 THz, and the COVID-19 data are
encoded between 4.375 and 4.5 THz (see the red and blue fre-
quency bands in Fig. 6¢). In the output layer, we use Softmax
regression to perform classifications (See Methods).

The training results are shown in Fig. 6d-g. The observed test
accuracies were 88.2% for the COVID-19 and 85.3% for the
MNIST datasets. These classification accuracies are competitive.
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For example, they are higher than the ones reported in reference®
(parallel image classification). Also, the classification-accuracy
results are comparable with other relevant works despite decreasing
the pixel sizes of all images®3. In addition, this frequency
multiplexing technique is the first demonstration of wave-based
parallel task processing with extreme deep learning. This enables
the use of wide bandwidth as a computational resource, which
significantly boosts computation efficiency.

Nonlinear Time-Floquet-based RC system for autonomous
forecasting chaotic time-series. To show the high versatility of
the proposed nonlinear time-Floquet neuromorphic computing
system, we slightly modify it to implement a reservoir computing
(RC) scheme. Consider an input vector i(f) that is injected into a
high-dimensional dynamical system called the reservoir. The
reservoir is described by a vector h(t) and the initial state of the
reservoir is defined randomly. Let the W,,, matrix define the
internal connections of the reservoir nodes and the W;, matrix
define the connections between the input and the reservoir nodes.
Both matrices are initialized randomly and fixed during the whole
RC training process. The state of each reservoir node is a scalar
h(t), which evolves according to the following recursive relation:

®)

where 7 is the discrete time-step of the input and F is a nonlinear
function. From Eq. 8, we see that the reservoir is defined as a
dynamical system provided with a unique memory property;
namely, each consequent state of the reservoir contains some
information about its previous states and about the inputs
injected until that time. In the training phase, the input i(t) is fed
to the reservoir, and the corresponding reservoir states are
recursively calculated. The final step of the information proces-
sing is to perform a simple linear regression in order to minimize
the RMSE that adjusts the W,,, weights. The output can be
computed with O(t) = W, h(t). It should be noted that the
output weights are the only parameters that are modified during

h(t + 1) = F(wi,i(t) + wyeh(t))
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the training. The input and reservoir weights are fixed throughout
the whole computational process, and they are used to randomly
project the input into a high-dimensional space, which increases
the linear separability of inputs.

In our concrete scheme, we implement this memory using a
feedback loop, and use the intensity of harmonic waves as
reservoir states. The reservoir computing in our scheme can be
described by the following recursive relation:

Tt +7) = F(wmi(t) + wresth;,(t)) )
where F the nonlinear function describing our system, v, is a
tunable parameter that selects one (or more) harmonics as
reservoir states, and Tj is the intensity of transmission

harmonic waves. In general, the RC and its different imple-
mentations have proven to be very successful for various tasks,
such as spoken digits recognition, temporal Exclusive OR task,
Mackey-Glass, or Nonlinear Autoregressive Moving Average
time-series prediction%8:69,

We use the nonlinear time-Floquet RC for the prediction of
chaotic time-series. Forecasting chaotic time-series is an extre-
mely difficult task due to the accumulation of quantitative
differences between the ground truth and the predicted value in
subsequent predictions, which lead to exponential errors at large
times. Indeed, the positive Lyapunov exponent in chaotic systems
leads to exponential growth for the separation of close
trajectories, so that even small errors in prediction can quickly
lead to divergence of the prediction from the ground truth?®. We
test our system using the Mackey-Glass time-series defined

by 970,

Wt —1)
1+ (y(t—1)"
Unlike deterministic equations, predicting such time-series for
specific values of parameters is difficult and thus has been widely

used as a benchmark for challenging forecasting tasks. To obtain
chaotic dynamics, here, we set the parameters f=0.2, y=0.1,

dy_

pri B — () (10)
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Fig. 7 Floquet reservoir computing for forecasting the chaotic Mackey-Glass time-series. a Training results: The ground truth (blue) and the predicted
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Fig. 8 Autonomous forecasting of Mackey-Glass time-series. Training and forcasting results: a The ground truth (blue) and the predicted output from the
RC system (red) for 100 next time-steps are plotted. b Trace of time-series values, phase space, for predicting phase with respect to the previous time-

step.

7= 18, n=10. During the training phase, as soon as the reservoir
states are calculated, a simple linear regression is executed to
adjust the W,,,, weights such that their linear combination with
the calculated reservoir states makes the actual output as close as
possible to the next time-step of the input. Finally, to
automatically predict the future evolution of i(f), we make a
feedback loop from the output to the input by replacing the next
input i(t + 1) with the one-step prediction W,,,0(f), as is done in
conventional RC. The ability of the proposed RC system in time-
series prediction is tested using a reservoir with 100 input nodes
and 50 readout nodes. We consider the middle harmonic as a
reservoir state and input, {}, to feed our RC system for each
interaction (Eq. 9). All of the intensity harmonics and reservoir
states are then applied to the readout layer (see Methods) to
generate the predicted data for the next time-step. Figure 7 shows
the results obtained during training from the simulation.
Excellent agreement between the target and the predicted value
can be obtained, indicating that the trained readout weights can
correctly calculate the next time-step signal on the basis of the
internal states of the reservoir. Further evidence of successful
training can be found by examining the network performance in
regression and phase space, as shown in Fig. 7b, ¢, where an
excellent agreement can again be observed.

The network is then used to forecast the time-series
autonomously. After training for 400 time-steps, the output from
the readout function, that is, the predicted data for the next time-
step is then connected to the reservoir as the new input, and the
system autonomously produces the forecasted time-series con-
tinuously. Figure 8 shows the results for autonomous time-series
prediction using the proposed RC system. Afterward, the
autonomously generated output (from the 400th time-step

onwards) still matches very well the ground truth, showing the
ability of the proposed RC system to autonomously forecast the
chaotic system. After more than 70 time-steps of autonomous
prediction, the predicted signal starts to diverge from the correct
value, which is unavoidable due to the chaotic nature of the series.
Increasing the size of the reservoir further, by using more nodes
and using more previous states may reduce the prediction error
so that the length of accurate prediction can be increased.
Another solution for long-term forecasting without increasing the
dimension of the system is utilizing a periodical update procedure
as in ref. ¥ . In section 3 of the Supplementary Material, we
compared the computing performance of the proposed system
with prior works for all tasks.

In conclusion, we have shown how nonlinear Floquet
entanglement can be used to enable wave-based neuromorphic
computing, by allowing for strong and tailored nonlinear
mapping to a higher-dimensional space without involving any
nonlinear material. Our nonlinear time-Floquet learning machine
can process information to compute complex tasks that are
traditionally only tackled by slower, sophisticated, and digital
deep neural networks. In our benchmarks, the proposed
computing platform performs as well as its digital counterparts.
With better energy efficiency in comparison to the previous
proposals and a path to high scalability, our nonlinear time-
Floquet system provides a unique solution for supercomputer-
level optical computation.

Methods

Numerical simulations. We use a two-dimensional finite-difference time-domain
(FDTD) method for all simulations’!72. Figure 9 shows the rectangular layout of
the employed setup. We set the parameters €, =3, §,, = 0.3, ©,, = |w; — w,|/2.
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Fig. 9 A detailed schematic of the proposed wave-based ELM architecture. On the left, the input side includes a signal generator (SG) with variable
attenuators (VOA) that encode the information. A Voltage-controlled phase shifter (VCP) is used to change the phase of the modulation depending on the
voltage applied, which is fixed for each input and does not change in time. AA denotes the array of source antennas. V,, is the required voltage to control
the VCP (V, = yfm), where Zm and y are the mean of input vector and a scaling factor, respectively.

Furthermore, the propagation space’s height and width, as well as the thickness of
the STMS, are set to be 151y, 101y, and Ay/4, respectively. We use five high index
permittivity dielectrics sub-wavelength scatterers, randomly located in the propa-
gating substrate. The time window of simulation and the spatial window (time- and
space-discretization factors) is set as a d; = d,,/(2C) and d,, = A¢/30, respectively,
(C is speed of light). We use 10,000 time-steps to ensure convergence.

Details of the proposed wave-based ELM architecture. We encode the input
information with simple circuit elements, namely variable attenuators and a
voltage-controlled phase shifter. These devices are set externally to a certain
operating point once the input is selected, and do not change as the neural network
processes a given input. Therefore, no dynamic tuning, or conversion between
amplitude and phase, is needed between the temporal signal sent by the generator
and the modulation signal: just like in standard learning machines, they are just set
externally once an input is selected to be processed by the system. More details can
be found in Fig. 9. The amplitude-coding scheme that we employ is simple and
physically feasible by using variable attenuators (VOA). Since the values of input
vector (': are normalized between zero and one, the input information can be
encoded on the amplitude of the temporal signal generated by a single signal
generator (SG), as illustrated in Fig. 9. Variable attenuators provide the input node
amplitudes depending on the external voltages applied. In addition, a lower fre-
quency oscillator with a voltage-controlled phase shifter (VCP) is used to drive the
modulation of the time-Floquet layer. VCPs are tunable, and the applied voltage is
simply calculated by the external user from the input vector. Discussion about
realistic physical platforms for realizing the time-Floquet layer is provided in
section 4 of the Supplementary Material.

Training of readout. Here, we show how to train the decision layer using the data
of temporal signals received at the readout nodes without using extra filtering
operations. Consider (;‘"(t) as the temporal signal received at the output antenna g,

and its discrete Fourier transform of the discretized signal ZZM =

T .
(c;“‘(o» C(tg), - (3 ((n — 1>t0)) defined by y, = 33 (5" (t)exp(=2 jk)

where j=0,...,n— 1, (.)T is the transpose operation, and f, is the sampling time.
The relation between the Fourier coefficients y; and the discretized signal is
]

described by the so-called Vandermonde matrix:

¥, 1o 1 1 (0
b/ D (o) an
Y 1 K=" )\ CM(n = Dtg)

i

where x = ¢, Generally, we are only interested in the middle harmonic whose

component g can be calculated by the scalar product yfq- = F]Z;m, where F; =
I/

(1, W,k ) and j is correspond to desired harmonics. In order to train the
readout function by linear regression (which is commonly defined by a linear
matrix operation of the form Y = WX, where W is the weights matrix), we must
compose both operations, multiplying the F; and weight matrices:

Y =WFEX)" (12)

—out out

where X = (( LGy e ng). Clearly, just like a regular extreme learning

machine (Y = WXT), the output of the Floquet extreme learning scheme involves a
simple multiplication of matrices without sensitive or complex filters. This can be
also viewed as a mere rescaling of the weight matrix of the digital layer.

The relationship between ¢ and (" is set to be (¢ = y(m), where ¢ and y are
the mean of input vector and a scaling factor, respectively. The value of y for
learning nonlinear functions is 1 and for other tasks is equal to 27.

For learning nonlinear functions, Abolone dataset, and forecasting chaotic time-
series, we used a supervised learning algorithm, linear regression, to train the
readout function. The predicted output is compared with the ground truth, and the
error is calculated and used to update the weights in the readout network following
the linear regression learning rule.

To train the readout network, for classification task-parallel image processing,
we used the Python toolkit Keras, which provides a high-level application
programming interface to access TensorFlow. A supervised learning algorithm,
softmax regression, was used to train the readout network. A softmax function is
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used as the activation function of the readout network to calculate the probability
corresponding to the different possible outputs. The cost is calculated following a
categorical crossentropy. A standard gradient-based optimization method is used
to minimize the cost function and train the output network. There are several ways
of converting images into one-dimensional representations. For simplicity, we used
a flattened version of downsampled images as an output vector.

Data availability

The datasets containing the raw information for abalone dataset are from (https://
archive.ics.uci.edu/ml/datasets/Abalone), Mnist dataset is from (https://www.tensorflow.
org/datasets/catalog/mnist), and COVID-19 dataset is from (https://www.kaggle.com/
tawsifurrahman/covid19-radiography-database).

Code availability

The code used for simulation is a standard finite-difference time-domain (FDTD), and all
parameters required are presented in Methods. The codes used for ELM and reservoir
computing are standard linear and softmax regressions, which can be found at https://
scikit-learn.org/stable/modules/linear_model.html and https://scikit-learn.org/stable/
modules/generated/sklearn.linear_model.LogisticRegression.html.
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