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Impact of new UK (B.1.1.7) SARS-Cov-2 variant on interacting with ACE2 and host 
immune response  
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The novel severe acute respiratory syndrome coronavirus 2 (SARS- 
CoV-2) was first identified in Wuhan, China, in December 2019 and has 
rapidly disseminated across the world, resulting in a spectrum of man-
ifestations ranging from mild upper respiratory infection to acute res-
piratory distress syndrome (ARDS) and death (Hu et al., 2020; Paniri 
et al., 2020; Paniri et al., 2021). As of July 25, 2021, 194,645,694 
confirmed cases with 4,171,983 deaths have been reported worldwide 
(https://www.worldometers.info/coronavirus, n.d.). Of note, this dis-
ease discrepancy might be explained by the nature of SARS-CoV-2 itself. 
On December 13, a new SARS-CoV-2 variant named VUI-202012/01 
(also known as B.1.1.7 or alpha variant according to WHO nomencla-
ture), containing 17 mutations has been reported in the UK and it 
quickly spread in London and South East England (https://www.who. 
int/csr/don/21-december-2020-sars-cov2-variant-united-kingdom/en/ 
, n.d.) (Table 1). Among the mutations, N501Y is located in the spike (S) 
protein, and is expected to change the three-dimensional structure of the 
S protein and raise the transmissibility of B.1.1.7 due to its importance in 
interaction with angiotensin-converting enzyme 2 (ACE2) and cell entry 
in comparison with other SARS-CoV-2 variants (https://www.who.int/ 
csr/don/21-december-2020-sars-cov2-variant-united-kingdom/en/, n. 
d.). Studies are ongoing to elucidate possible association of B.1.1.7 
mutations with alterations in virus entry, severity of symptoms, and 
vaccine response. Recent studies have shown that the B.1.1.7 variant is 
more virulent and there are concerns about vaccine efficacy on this 
variant. Owing to discrepancy concerning the impacts of mutations in 
the B.1.1.7 variant on transmissibility, antibody response, and vaccine 
efficiency, in silico studies on this new strain may shed some light on 
these issues (Leung et al., 2021; Collier et al., 2021; Wang et al., 2021; 
Volz et al., 2021). 

Two molecular docking databases including HADDOCK 
(https://wenmr.science.uu.nl/haddock2.4/) and HDOCK (http://hdock. 
phys.hust.edu.cn/) were used to analyze the binding affinity of the S pro-
tein of three SARS-CoV-2 variants, the original Wuhan strain, the SARS- 
CoV-2 D614G mutant, and the VUI-202012/01 variant for ACE2 and 
transmembrane protease serine 2 (TMPRSS2). Interestingly, molecular 

docking results achieved with both tools have suggested that VUI-202012/ 
01 can bind to ACE2 with higher affinity in comparison with the two other 
variants, and may increase cell entry capacity and transmissibility of the 
new variant of SARS-CoV-2 (Table 1). Accordingly, Ramanathan et al. have 
shown that the B.1.1.7 variant harboring the N501Y mutation show a two- 
fold stronger binding affinity to ACE2in comparison with SARS-CoV-2. 
Interestingly, it has also been demonstrated that the B.1.351 variant first 
detected in South Africa and carrying three mutations (E484K, N501Y, and 
K417N) binds to ACE2 with a five times stronger affinity than SARS-CoV-2 
(Ramanathan et al., 2021). Furthermore, in silico investigation by Villou-
treix et al. has revealed that N501Y (identified in both the UK and South 
African strains) influence Spike-ACE2 interaction, and consequently in-
creases transmissibility and possibly its pathogenicity while the K417N and 
E484K substitutions (South African strain) showed no significant impact 
(Villoutreix et al., 2021). Consistently, in silico analysis of ACE2-S protein 
interaction conducted by Singh et al. and Ortega et al. have revealed that 
N501Y might raise the affinity of S protein with host receptor (Ortega et al., 
2021; Singh et al., 2021). 

It is interesting to mention that Calcagnile et al. have reported that 
ACE2 missense variant K26R shows increased affinity for SARS-CoV-2 
Spike protein which is more common in European and American pop-
ulations (Calcagnile et al., 2021). Furthermore, bioinformatics and 
structural approaches analysis conducted by Spratt et al. have shown 
that D614G in Spike protein and P323L in RNA polymerase which are 
present in new variants may increase SARS-CoV-2's infectivity in com-
parison with SARS-CoV variant (Spratt et al., 2021). Nonetheless, results 
from interaction studies between TMPRSS2 and S protein showed no 
significant difference among the three SARS-CoV-2 variants (Table 2 and 
Fig. 1). 

Strikingly, analyses of protein epitopes using the Immune Epitope 
Database (IEBD) (https://www.iedb.org/) has revealed a significant 
difference between epitope profiles of the original Wuhan strain, the 
SARS-CoV-2 D614G mutant, and the B.1.1.7 variant (Table 2). It has 
been shown that B.1.1.7 has 409 unique epitopes with high prediction 
score that are identified by specific antigen-presenting cells containing 
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MHC-II while these epitopes have not been found in SARS-CoV-2 and 
D614G strain. On the other hand, 6 specific epitopes were detected for 
B.1.1.7 that might be identified by cells containing MHC-I in comparison 
with SARS-CoV-2 and D614G strain. Surprisingly, IEBD has also shown 
that 4 of 17 B.1.1.7 mutations including N501Y, A570D, T716I, and 
D1118H are located in epitopes that may be identified by antibodies, 
and consequently hosts might show a different response to this new 
variant in comparison with the two other COVID-19 variants. Interest-
ingly, further analysis by PHYRE2 (http://www.sbg.bio.ic.ac. 
uk/~phyre2/html/page.cgi?id=index) has indicated that N501 has a 

low conservation score, and is sensitive to mutations as we see in the 
B.1.1.7 S protein (N501Y). Furthermore, ligand binding site investigated 
by ITASSER (https://zhanglab.ccmb.med.umich.edu/I-TASSER/) has 
revealed a significant change in ligand binding site of the B.1.1.7 S 
protein (874, 877, 878) in comparison with D614G variant (294, 297, 
298, 301) highlighting the possible impact of new mutations on inter-
action of the B.1.1.7 S protein with different cell receptors, SARS-CoV-2 
virulence, and host immune responses. Collectively, our molecular 
docking results suggest that B.1.1.7 might bind more tightly to ACE2, 
and may therefore become more virulent. Although, there is a 

Table 1 
Non-synonymous and deletion mutations identified in B.1.1.7.  

Gene Nucleotide Amino acid 

ORF1ab 

C3267T T1001I 
C5388A A1708D 
T6954C I2230T 
11288-11296 deletion SGF 3675-3677 del 

Spike 

21765-21770 deletion HV 69-70 del 
21991-21993 deletion Y144 del 
A23063T N501Y 
C23271A A570D 
C237604A P681H 
C23709A T716I 
T24506G S982A 
G24914C D1118H 

ORF 8 
C27972T Q27stop 
G28048T R52I 
A28111G Y73C 

N 28280 GAT-> CTA D3L 
C28977T S235F 

ORF: Open reading frame; N: Nucleoprotein. 

Table 2 
Comparison of S protein-ACE2 docking of SARS-CoV-2, G variant, and B.1.1.7.   

SARS-CoV-2 D614G mutant B.1.1.7variant 

HADDOCK 2.4 

HADDOCK score − 62.7 +/− 10.5 − 71.5 +/− 2.6 − 94.1 +/− 14.0 
RMSD from the overall lowest-energy structure 9.1 +/− 2.0 23.9 +/− 0.4 4.5 +/− 0.1 
Van der Waals energy − 73.7 +/− 2.7 − 73.3 +/− 3.1 − 98.0 +/− 4.1 
Electrostatic energy − 180.3 +/− 30.2 − 218.1 +/− 46.8 − 244.6 +/− 30.8 
Desolvation energy − 17.4 +/− 6.5 − 13.4 +/− 2.3 − 7.6 +/− 4.5 
Restraints violation energy 645.8 +/− 80.0 589.0 +/− 62.7 603.6 +/− 57.1 
Buried Surface Area 2039.2 +/− 112.6 2123.2 +/− 23.4 2939.7 +/− 141.9 
Z-Score − 0.9 − 1.2 − 1.6 

HDOCK Docking Score (ACE2) − 311.01 − 298.48 − 358.28 
Docking Score (TMPRSS2) − 279.02 − 279.02 − 283.33 

IEDB 

MHC I 

Total epitopes: 152 Total epitopes: 146 
VLNDILSRL 
IPTNFTISV 
SPRRARSVA 
GVYYHKNNK 
IAIPTNFTI 
QTNSPRRAR 
YYHKNNKSW 
SVLNDILSR 

VLNDILARL 
IPINFTISV 
LQSYGFQPTY 
QSYGFQPTY 
IAIPINFTI 
QTQTNSHRR 

MHC II 

Total epitopes: 8 Total epitopes: 6 
IPTNFTISVTTEIL 
PTNFTISVTTEIL 
AIPTNFTISVTTEI 
AIPTNFTISVTTEIL 
TNFTISVTTEILPV 
IPTNFTISVTTEI 
IAIPTNFTISVTTEI 
TNFTISVTTEIL 
PTNFTISVTTEILP 
TNFTISVTTEILP 

IPTNFTISVTTEIL 
PTNFTISVTTEIL 
AIPTNFTISVTTEI 
AIPTNFTISVTTEIL 
TNFTISVTTEILPV 
IPTNFTISVTTEI 
IAIPTNFTISVTTEI 
TNFTISVTTEIL 
PTNFTISVTTEILP 
TNFTISVTTEILP  
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Fig. 1. Docking structure of ACE2 binding with spike protein fragment. (A) D614G variant; (B) B.1.1.7. HADDOCK have shown that glycine at position 614 is not 
involved in S protein-ACE2 interaction in the D614G variant. Moreover, it revealed that N501Y strongly contributes to the S protein-ACE2 interaction in the 
B.1.1.7 variant. 
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discrepancy about the rate of transmissibility of the B.1.1.7 variant, 
evidence thoroughly show that the B.1.1.7 variant is more virulent and 
there are concerns about vaccine efficacy on this variant (Leung et al., 
2021; Collier et al., 2021; Wang et al., 2021; Volz et al., 2021; Muik 
et al., 2021). 

Therefore, given the high mutation rate of SARS-COV-2, more 
studies need to be performed to fully elucidate the efficiency of vaccines, 
and thereby updating vaccines may be considered according to new 
variants. 
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