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The brain network structure is highly uncertain due to the noise in imaging signals
and evaluation methods. Recent works have shown that uncertain brain networks
could capture uncertain information with regards to functional connections. Most of the
existing research studies covering uncertain brain networks used graph mining methods
for analysis; for example, the mining uncertain subgraph patterns (MUSE) method was
used to mine frequent subgraphs and the discriminative feature selection for uncertain
graph classification (DUG) method was used to select discriminant subgraphs. However,
these methods led to a lack of effective discriminative information; this reduced the
classification accuracy for brain diseases. Therefore, considering these problems, we
propose an approximate frequent subgraph mining algorithm based on pattern growth
of frequent edge (unFEPG) for uncertain brain networks and a novel discriminative
feature selection method based on statistical index (dfsSI) to perform graph mining
and selection. Results showed that compared with the conventional methods, the
unFEPG and dfsSI methods achieved a higher classification accuracy. Furthermore, to
demonstrate the efficacy of the proposed method, we used consistent discriminative
subgraph patterns based on thresholding and weighting approaches to compare the
classification performance of uncertain networks and certain networks in a bidirectional
manner. Results showed that classification performance of the uncertain network was
superior to that of the certain network within a defined sparsity range. This indicated that
if a better classification performance is to be achieved, it is necessary to select a certain
brain network with a higher threshold or an uncertain brain network model. Moreover, if
the uncertain brain network model was selected, it is necessary to make full use of the
uncertain information of its functional connection.

Keywords: frequent subgraph mining, discriminative feature selection, machine learning, classification, fMRI,
depression, uncertain brain network
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INTRODUCTION

Over recent years, the use of neuroimaging technology to
investigate the interaction of brain regions has gained has
attracted much attention and recognition (Richardson, 2010).
The Blood Oxygen Level-Dependent (BOLD) signal is now
routinely used as a neurophysiological indicator for resting-
state functional magnetic resonance imaging (rs-fMRI) to detect
endogenous or spontaneous activity in the brain neurons.
According to BOLD signals, a functional connectivity network
can be built and then applied to research the pathological
mechanisms underlying brain diseases. This theory has been
widely applied to the diagnosis of brain diseases, including
schizophrenia (Steardo et al., 2020), depression (Sen et al., 2019),
attention deficit syndrome (Riaz et al., 2020), and Alzheimer’s
disease (Shao et al., 2020).

Recent researchers have stated that uncertainty is inherent
in graph data connections and that this is due to problems
associated with data acquisition, the accuracy of equipment, and
evaluation methods (Yuan et al., 2016; Khan et al., 2018b; de
Ridder et al., 2019). These challenges suggest that it is only
possible to provide the probability of a link in the graph,
rather than precise values. For instance, the acquisition of
fMRI data is influenced by a variety of distinct factors, like
subject age (Wig, 2017), head movement (Vakamudi et al.,
2019), scanning time (Hagler et al., 2019), vasoconstriction
(An et al., 2015), heartbeat and respiration (Pinto et al., 2017;
Tong et al., 2019), arterial blood pressure (Steiner et al., 2020),
and arterial carbon dioxide concentration (Driver et al., 2016;
Prokopiou et al., 2018). Moreover, increasing evidence suggests
that even in the resting state, the neural activity in the brain
still exhibits transient and subtle dynamics (Kudela et al., 2017;
Zhao et al., 2020). However, most studies considered that the
interaction of brain regions remains unchanged during the
resting state, so as to construct a brain functional network.
Therefore, they can be concluded that the functional connections
between brain regions are highly uncertain if the rs-fMRI
data is employed to build the brain network. These functional
connections are obtained by considering processing steps, such
as the analysis of temporal correlations in spontaneous BOLD
signal oscillations, where each edge refers to a probability
to calculate the likelihood that the functional connection
exists in the brain.

Previous studies have applied traditional brain network
analysis based on certain network for the diagnosis of brain
diseases (Sporns, 2011, 2018; Farahani et al., 2020; Zhao et al.,
2021). This theory claims deciding whether there is an edge
between two brain regions; this is resolved using a threshold
or a threshold range (Zhou Z. et al., 2020). The employment
of binary networks helps to measuring the network properties
and diminishing the burden caused by the generation of graphs.
However, the employment of the threshold approach to construct
a certain network unavoidably results in the loss of uncertain
information (Kong et al., 2013; Hamdi et al., 2018; Zhang et al.,
2018). Simultaneously, in exiting researches, there is no gold
standard for deciding how to choose the optimal threshold for
constructing the effective certain network (Garrison et al., 2015).

To settle the issues of threshold selection in traditional
network, researchers selected a small range of thresholds to
evade sensitivity related to the selection of a threshold (Jie
et al., 2014); however, this method may result in incomplete
results or even misdirecting results if the network properties are
unsteady within a larger threshold range (Graham et al., 2009;
Zhang et al., 2018). Based on this problem, some researchers
have proposed the minimum spanning tree (MST) method to
build brain networks (Jackson and Read, 2010a; Stam et al.,
2014). However, the MST may miss the emphasize of low weight
connections and clusters in the interaction of the brain regions
(Tewarie et al., 2015), in particularly, from loops formed by
low weight links (Li et al., 2011). Moreover, MST analysis may
be less sensitive to small differences in the signal-to-noise ratio
between subjects because the MST was only lied in the rank
of the link weights of the strongest network connections (Van
Dellen et al., 2018). In addition, although MST analysis is not
dependent on the section of the threshold, it is influenced by the
network scale. which further effect the classification performance
(Van Dellen et al., 2018). In addition, there are other studies
that used direct functional connectivity strength as a feature for
classification (Zhang et al., 2021). Although this method also
effectively avoids the problems caused by threshold selection, it
does not construct a brain network and lacks information relating
to network topology properties; thus, whether the network is
connected or disconnected becomes irrelevant.

Considering above problems, the concept of the uncertain
network was introduced to characterize the uncertainty of
functional connections (Kong et al., 2013; Cao et al., 2015a,b;
Saha et al., 2021). Uncertain networks are based on uncertain
graph theory, where each node represents one object and each
edge is related to probabilities so that we can quantify the chances
that a pair of nodes exit (Khan et al., 2018b; Ke et al., 2020).
In neuroimaging, each node in an uncertain network refers to a
brain region, and each edge refers to a probabilistic connection;
this indicates the likelihood that a functional connection exists
in the brain. Over the past few years, uncertain networks have
been successfully applied to the field of neuroimaging. For
example, Kong et al. (2013) proposed the discriminative feature
selection for uncertain graph classification (DUG) algorithm to
mine discriminative subgraphs in uncertain brain network using
fMRI data and used this to classify Alzheimer’s disease and
normal controls. In another study, Cao et al. (2015b) proposed an
uncertain graph mining framework based on current data mining
techniques and then verified the framework using a bipolar
dataset and identified abnormal subgraph patterns in fMRI data.
In addition, Saha et al. (2021) reported how to compute a novel
concept of betweenness centrality in an uncertain brain network
and used subjects with autism to validate the efficacy of the
proposed solution.

As an important topological feature of an uncertain network,
a “frequent subgraph” represents the connected patterns that
appear most often in the network; this is an essential approach
for characterize uncertain graph (Zou et al., 2009; Kong
and Yu, 2014; Yuan et al., 2016; Chen et al., 2019). This
approach not only models the network connectivity patterns
around nodes but also capture changes on local areas. That is,
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subgraph patterns could balance local topological information
with global graph topological information (Kong and Yu, 2014;
Cao et al., 2015b). Therefore, in the analysis of uncertain
brain networks, most researchers usually used subgraph patterns
to quantify uncertain brain networks and applied them to
explore brain diseases (Kong et al., 2013; Cao et al., 2015b).
Specifically, the mining uncertain subgraph patterns (MUSE)
algorithm was mainly used to mine the frequent subgraphs of
uncertain brain networks, and the DUG method was used to
select discriminative subgraphs. Although the MUSE algorithm
has been successfully applied to extract frequent subgraphs,
a limitation of this algorithm is that the time complexity is
quite high (Papapetrou et al., 2011). Therefore, in the present
study, we improved on this algorithm and then proposed an
approximate algorithm; that is, we developed a frequent subgraph
pattern mining algorithm based on pattern growth of frequent
edge in an uncertain network (unFEPG). In this algorithm,
pattern growth of frequent edge was employed to substitute
the original pruning process exploited to frequent subgraphs.
This decreased the time consumption of the method and gives
an effective solution to the excessive computational cost of the
MUSE algorithm which arose from too many subgraph features
being extracted.

Previous researchers proposed the DUG method to identify
discriminative subgraph features in uncertain graphs based
on a statistical index (Kong et al., 2013; Cao et al., 2015b).
Specifically, based on the discrimination score function, dynamic
programming was used to calculate the probability distribution
of each subgraph. Then, combined with the theory of
the discrimination score function in a certain graph, the
discrimination score (statistical index) of each subgraph
was calculated. Based on discrimination score, discriminative
subgraphs were selected. The DUG method was able to
obtain the discrimination score in an effective manner but
also caused excessive computational consumption due to
the use of the dynamic programming method. In addition,
previous studies reported that the classification accuracy of
brain diseases obtained by the DUG method was too low;
that is, this method could not effectively extract biomarkers
for specific brain diseases (Kong et al., 2013). Thus, in this
paper, we propose a novel discriminative feature selection
method that is based on the statistical index (dfsSI). Unlike
the DUG method, the statistical index (mean value) was
directly calculated as the probability distribution of a subgraph
for each subgraph pattern in positive and negative samples.
Next, based on the theory of the discrimination score
function in a certain graph, the discrimination score for each
subgraph was calculated and discriminative subgraphs were
selected accordingly.

Considering the inherent uncertainty in graphs and the
limitations imposed by a certain brain network, this paper
introduced uncertain graph theory to construct an uncertain
brain network and then used the approximate algorithm
(unFEPG) to mine frequent subgraphs within the uncertain
brain network. Next, discriminative subgraphs were selected
using the statistical index (dfsSI) and the discriminative score
function. Finally, the discriminative subgraph features were

used for classification. Results show that the MUSE and
dfsSI method achieves better classification accuracy than the
traditional DUG method. Furthermore, to further prove the
efficacy of the proposed method, this paper also compared
an uncertain brain network with a certain brain network
in a bidirectional manner based on a unified subgraph
model. Results showed that under certain sparsity conditions
(that is, under certain threshold conditions), the classification
performance of the uncertain brain network was better than
that of the certain network. In addition, we also evaluated
the generalization performance of the classification model
constructed by the proposed method using our dataset
and an independent validation dataset respectively. We also
discuss the number of features, model parameters, and
classifier parameters.

MATERIALS AND METHODS

Method Framework
Figure 1 shows the entire flowchart. Specifically, this process
focuses on the analysis of uncertain brain network and includes
the following parts:

(1) Data acquisition and preprocessing.
(2) Group independent component (IC) analysis.
According to fMRI data, the ICs are estimated.
(3) Construction of uncertain brain networks in

which the correlation method is used to construct an
uncertain brain network.

(4) Mining frequent subgraphs of uncertain networks using
the approximate algorithm method, based on pattern growth of
frequent edge, to obtain a frequent subgraph pattern.

(5) Selection of discriminative features utilizing the
statistical index and the discrimination score function to
obtain discriminative subgraph features.

(6) Support vector machine classification.
A support vector machine (SVM) based on radial basis

function (RBF) kernel function is used for classification.
(7) Comparison of the uncertain and certain brain networks.
The uncertain discriminative subgraph is fitted with a

threshold and the certain discriminative subgraph is weighted
to obtain a consistent subgraph mode. On this basis, the
classification performance of the certain and uncertain networks
can be compared in a bidirectional manner.

Data Acquisition and Preprocessing
Following the recommendations of the Shanxi Medical Ethics
Committee (reference no. 2012013), all subjects needed to
provide their consent to participate. All participants provided
written informed consent in accordance with the Declaration of
Helsinki, including 38 subjects with first-time, drug-free, major
depression disorder (MDD) as the depression group and 28 age
and gender-matched healthy volunteers as the normal control
(NC) group. All subjects were righthanded. Participants in the
depression group participants were first-time, drug-free patients
identified by the criteria provided by the American Manual of
Diagnostic and Statistical Manual of Mental Disorders, Fourth
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FIGURE 1 | A description of the entire framework for the proposed method. (A) Data acquisition and preprocessing. (B) Construction of the uncertain brain network.
(C) Frequent subgraph mining. (D) Discriminative subgraph selection. (E) Classification. (F) Comparison of the uncertain network and certain brain network based on
consistent subgraph patterns. The left graph represents thresholding of discriminative subgraphs in the uncertain network. The right graph represents the weighting
of discriminative subgraphs in the certain network.

Edition (DSM-IV) (First and Gibbon, 1997). The severity of
depression was determined by the 24 Hamilton rating scale for
depression (HAMD) (Williams, 1988) and the clinical global
impression of severity (CGI-S) (Guy, 1976). Using a 3T magnetic
resonance scanner (Siemens Trio 3-Tesla scanner, Siemens,
Erlangen, Germany), resting-state functional magnetic resonance
scans were performed on 28 normal and 38 patients with
depression. Detailed information relating to the subjects is shown
in Table 1. The power analysis for subject inclusion is shown in
Supplementary Text S1.

Data acquisition was completed by the First Hospital of
Shanxi Medical University and all scans were performed
by radiologists who were familiar with the operation of
the MRI scanner. All patients underwent complete physical
and neurological examinations, standard laboratory tests, and
extensive neuropsychological assessments. During the scanning
period, subjects were asked to close their eyes, relax, and not
to think about anything specific, but to remain awake and
not to fall asleep. Scanning parameters were set as follows:
33 axial slices; repetition time (TR) = 2000 ms; echo time
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TABLE 1 | Demographic and clinical characteristics of the subjects.

NC (n = 28) MDD (n = 38) P-value

Age 26.60 ± 9.4 (17–51) 28.40 ± 9.68 (17–49) 0.44a

Gender (Female/Male) 15/13 23/15 0.57b

Handedness (Right/Left) 28/0 38/0 –

HAMD N/A 22.80 ± 13.30 (15–42) –

Data are presented as the range (mean± standard deviation). NC, normal controls;
MDD, major depressive disorder; HAMD, Hamilton Depression Rating Scale. aP-
value was calculated by two-sample two-tailed t-test; bP-value was computed by
two-tailed Pearson’s chi-square test.

(TE) = 30 ms; slice thickness/skip = 4/0 mm; field of view
(FOV) = 192 × 192 mm; matrix size = 64 × 64 mm; flip
angle = 90◦; volumes = 248. Detailed scanning parameters are
given in Supplementary Text S2.

Data preprocessing was performed in SPM8 software1. First,
the dataset was corrected for slice time and head motion.
From the final total of 66 subjects, data were not included
from any subject with a head movement greater than 3 mm
or with rotation greater than 3◦. Then, we performed co-
registration for spatial correction. Next, images underwent 12-
dimensional optimal affine transformation into the standardized
Montreal Neurological Institute (MNI) space, using 3 mm voxels.
Smoothing was further performed to eliminate the differences
between brain structures in different subjects and to improve
the signal-to-noise ratio. Linear dimensionality reduction and
bandpass filtering (0.01–0.10 Hz) were finally performed to
eliminate the effects of line frequency drift and high frequency
physiological noise. In addition, we used head, white matter and
cerebrospinal fluid signals as covariates for regression analysis to
remove nuisance information from images. However, we did not
regress global brain signals (Li et al., 2019).

Group Independent Component Analysis
In the current study, group independent component analysis
(GICA) was used to analyze the fMRI data. GICA was
carried using the GIFT package2. Specifically, the minimum
description length (MDL) criterion was applied to estimate the
optimal number of decomposition components (Koechlin and
Summerfield, 2007) in the normal group and in the depression
group. On this basis, we set the final number of ICs to 54.
Next, the ICs of each subject was decomposed using the Infomax
algorithm, thus resulting in 54 independent spatial components
in each subject. The principle of this algorithm was to minimize
the mutual information among the components of the output
by maximizing the mutual information between the input and
the output (Du and Fan, 2013). To strengthen the stability
and reliability of the ICs, the Infomax algorithm was run 20
times on ICASSO3 by randomly initializing the decomposition
matrix; after these repetitions, the same convergence threshold
(Nenert et al., 2014) was acquired. Finally, the GICA3 (the
third method based on group independent component analysis)

1http://www.fil.ion.ucl.ac.uk/spm
2https://trendscenter.org/software/gift/
3http://www.cis.hut.fi/projects/ica/icasso

algorithm was adopted to reconstruct the data such that the
spatial distribution and time series of the ICs of the subjects
(Erhardt et al., 2011) could be obtained. See Supplementary
Text S3 and Supplementary Table S1 for a detailed explanation
relating to the rationality for selecting the 54 ICs.

The ICs extracted by the GICA in this paper not only
included the components-of-interest from the brain network but
they also included other unrelated components and components
with more noise. Therefore, it was necessary to use a prior
template matching method to screen out these ICs and to further
confirm the components-of-interest using a manual inspection
method (Jafri et al., 2008). The screening criteria used for the
exclusion of intrinsic connection network components included
the following conditions: larger activation areas, where the
multiple regression coefficients matched the prior template; the
distribution of the main activation regions in the gray matter;
the overlap of these regions with known components, such as
blood vessels and head movements in low frequency space; and
the domination of the power spectrum for the time series in
activation regions by low frequency power (Allen et al., 2011).
Finally, 32 unrelated or noisy components were removed, and
22 brain network components were retained; these intrinsic
connectivity network components were identified as being part
of the auditory network, sensorimotor network, visual network,
default mode network (DMN), attention network, or frontal lobe
network. These 22 brain network components were common
regions for the two groups of subjects.

Construction of the Uncertain Brain
Network
Uncertain Graph Theory
Definition 1 (Uncertain Graphs)
Uncertain graphs are undirected graphs with uncertainties

represented as
∼

G = (V, E, p) (Khan et al., 2018b; Ke et al., 2020).
Of these, V = {v1, v2, ..., vn} refers to the node set, E ⊆ V ×
Vrefers to the probabilistic edge set, and p : E→ (0, 1] is a
function denoting the likelihood of the existence of each edge in
E. That is, p(e) denotes the probability of the edge about e ∈ E.
A certain graph is a special case of uncertain graph, where the
probability of its edges [p(e)] is 1.

An uncertain graph
∼

G may include a great quantity of
instances, each of which is a certain graph, represented by G.
Figure 2 shows an example of an fMRI uncertain brain network
including thirteen nodes and thirteen edges.

If all edges E(G) in the graph G are extracted from E(
∼

G) in

terms of the probability p(e) and E(G) ⊆ E(
∼

G), then a certain

graph G = (V, E) can be implied from an uncertain graph
∼

G
(denoted as

∼

G⇒ G). G is an instance of
∼

G, and all instances
consists of a set W(

∼

G) = {G|
∼

G⇒ G}. The probability that a

certain graph G ∈W(
∼

G) is implied from an uncertain graph
∼

G,
which is defined by Eq. 1 (Khan et al., 2018b; Ke et al., 2020).

Pr[
∼

G⇒ G] =
∏

e∈E(G)

Pr
∼

G
(e)

∏
e∈E(

∼

G)−E(G)

(1− Pr
∼

G
(e)) (1)
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FIGURE 2 | An example of an uncertain fMRI brain network. (A) Illustrates an uncertain brain network with thirteen nodes and thirteen edges. The value of edge
denotes the probability value of each edge. (B) Shows all possible instances for an uncertain graph composed of the blue nodes shown in (A).

In Eq. 1, e refers to the edge of an uncertain graph; E(G) refers

to the edge sets of graph G; E(
∼

G) refers to the edge sets of graph
∼

G; Pr∼
G
(e) refers to the existence probability for an edge e ∈ E(

∼

G).
Notably, the uncertain graph was similar with the weighted

graph in terms of its form. However, the largest difference
between the two graphs is the understanding of weights. An
uncertain graph can be considered as a special edge-weighted
graph (Zou et al., 2010) in which the weights refer to the
probability of an edge existing between a pair of nodes, thus
considering the noisy measurements of the underlying truth.
Edge probabilities are semantically different from edge weights,
and there is no meaningful way to perform such a casting (Khan
et al., 2018b). Moreover, with an uncertainty graph, we can set a
threshold probability value and decide to ignore any component
with an existence probability below that threshold (Khan et al.,
2018b). In recent years, uncertain graphs have been applied
to many fields, especially biological networks, mobile ad hoc
networks, social networks, and other applications where edges
are assigned a probability of existence due to a range of factors,
such as noisy measurements, the lack of precise information,
and inconsistent, incorrect, and potentially ambiguous sources of
information (Zhang et al., 2017; Khan et al., 2018a; Li et al., 2020;
Saha et al., 2021).

Construction of Uncertain Brain Networks
An uncertain brain network is based on uncertain graph theory
in which each node represents a region of interest and each edge
is associated with a probability p(e) that relates to the likelihood
that a functional connection exists in the brain. In exiting

studies, uncertain brain networks were mainly constructed
based on Pearson’s correlation method (Kong et al., 2013; Cao
et al., 2015a,b; Saha et al., 2021). Therefore, in this paper, we
used Pearson’s correlation method to construct an uncertain
brain network. Specifically, the locations in the cerebral cortex
that corresponded to the remaining 22 ICs (after removing
noise components) were used as the nodes of the uncertain
brain network. For each subject, a 22 × 22 correlation matrix
was obtained based on Pearson’s correlation method; this was
calculated by Eq. 2.

ri,j =
cov(i, j)

σiσj
(2)

In Eq. 2, ri,j denotes the correlation coefficient of the time
series relating to the independent component i (IC i) and
independent component j (IC j). cov(i, j) denotes the covariance
of the two independent component time series. σiand σj represent
the standard deviations of the time series about the two
ICs, respectively.

Given that the edges of the uncertain network were associated
with a probability that illustrates the likelihood of whether this
edge should exist or not, the correlation matrix was processed
according to Eq. 3.

bij =

{
rij, rij ≥ 0
0, rij < 0

(3)

In Eq. 3, bij denotes the edge value of IC i of IC j in the
uncertain brain network model (Kong et al., 2013; Saha et al.,
2021). Positive correlations were used as edge values (uncertain
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links) among different brain regions to form uncertain networks
(Kong et al., 2013; Cao et al., 2015a; Tokuda et al., 2018).

Frequent Subgraph Mining of Uncertain
Brain Networks
Subgraph Theory
Definition 2 (Subgraph)
In definition 2 (subgraph), g = (V

′

, E
′

) and G = (V, E) denote
two certain graphs, separately. If V

′

∈ Vand E
′

∈ E, then g
denotes a subgraph of G, or G contains a subgraph g (denoted
as g ⊆ G) (Kong and Yu, 2014).

Given an uncertain graph, the probability of
∼

Gcontaining
subgraph g is expressed by Eq. 4.

Pr[g ⊆
∼

G] =
∑

e∈E(g)

Pr(
∼

G⇒ G) · I(g ⊆ G) =

{∏
e∈E(g) p(e), E(g) ⊆ E(

∼

G)

0, otherwise
(4)

In Eq. 4, e refers to an edge of the uncertain graph; E(g) refers

to all edges in the graph g; E(
∼

G) refers to all edges in the graph
∼

G; Pr(
∼

G⇒ G) have the same meaning as in Eq. 1; when g ⊆ G,
then I(g ⊆ G) = 1, if not, then I(g ⊆ G) = 0; p(e) represents the
probability of the edge about e ∈ E(g).

Definition 3 (Support Degree)
Definition 3 (support degree) assumes that the uncertain graph

dataset W(
∼

D) including all of the certain graph set D is a
probability distribution; the support degree of subgraph g in
the middle is a probability distribution, as defined by Eq. 5.[

g1 g2 ... gm
Pr(g1) Pr(g2) ... Pr(gm)

]
(5)

In Eq. 6, the different subgraph patterns of W(
∼

D) are

g1, g2..., gm; Pr(gk) = Pr[gk ⊆
∼

Gi](k = 1, ..., m; i = 1, ..., n)

represents the probability of
∼

Gi including subgraph g which can
be referred to as the support degree of subgraph gk(Li et al.,
2012); m refers to the number of subgraph patterns, n refers
to the number of uncertain graphs; k refers to kth subgraph
patterns; i refers to the ith uncertain graph. Based on this, the
expected support degree of subgraph gk is defined by Eq. 6.

Esup(gk,
∼

D) =
1
n

n∑
i=1

Pr[gk ⊆
∼

G i] (6)

In Eq. 6, Pr[gk ⊆
∼

G i] has the same meaning as in Eq. 6. If the

Esup(gk,
∼

D) is more than the threshold minsup, then the subgraph
is regarded as a frequent subgraph.

Frequent Subgraph Mining Based on the Pattern
Growth of Frequent Edges
Frequent subgraph patterns are an important structural feature
of uncertain networks and balance local with global graph

topological information (Zou et al., 2009; Kong and Yu, 2014;
Yuan et al., 2016; Chen et al., 2019). Considering the limitations
of MUSE algorithm, in the present study, we improved the
algorithm and proposed an approximate algorithm: a frequent
subgraph pattern mining algorithm based on pattern growth
of frequent edge in an uncertain network (unFEPG) in which
pattern growth of frequent edge was employed to substitute the
original pruning process on the frequent subgraph. The specific
idea and process used by the algorithm was as follows.

We assumed that the given uncertain graph dataset
∼

D = {
∼

G 1,
∼

G 2, ...,
∼

G n}contained n uncertain graphs and

that
∼

G i represents the ith uncertain graph in
∼

D. Then,
y = [y1, y2, ..., yn]

Tdenotes the class labels vector and the
class labels are given by yi ∈ {−1,+1}. From this, the graph
for the depression group in this study can be represented as
∼

D MDD = {
∼

G i|
∼

G i ∈
∼

D∧yi ∈ +1} while that for the normal

group is represented as
∼

D NC = {
∼

G i|
∼

G i ∈
∼

D∧yi ∈ − 1} .
The main concept behind the unFEPG algorithm is to

construct a multi-layer sub-search space and select frequent
subgraphs from all subgraphs contained in each layer of the sub-
search space in all sub-search space. The frequent subgraphs
in all sub-search spaces constituted the frequent subgraphs in
the MDD group and the NC group. Of these, all subgraphs in
each layer sub-search space were obtained using the unFEPG
method. The unFEPG algorithm mainly consists of the following
steps. Firstly, we took the edges in uncertain brain networks
as the subgraphs of the 1-layer search space, calculated the
expected support degree (Eq. 7) corresponding to each edge
and compared this with the threshold minsup. Finally, the edge
whose expected support degree was greater than or equal to
minsup was regarded as a frequent edge and added to the 1-
subgraph pattern set in corresponding sub-search space (notably,
the frequent edges here were also frequent subgraphs), and
the number of frequent edges k was set as the number of
subgraph search spaces. Secondly, based on the 1-subgraph
pattern set, we used the pattern growth of frequent edge method
to construct the i-layer (i = 2,3,. . .,k) sub-search space. Next,
we judged all subgraphs in the i-layer sub-search space to assess
whether they were frequent according to the rules of frequent
subgraphs. If the conditions were met, then we defined this as
a frequent subgraph and added it to the i-subgraph pattern set
in corresponding sub-search space. Finally, if the i-subgraph
pattern set was null or i ≥ k, then ended the search of sub-search
space process and search the next sub-search space. Otherwise,
set i = i+1, iterate (2)-(3). In the next section, each step was
described in detail.

The specific steps required to obtain the 1-subgraph pattern

set are as follows. Given the input uncertain graph dataset
∼

D =

{
∼

G 1,
∼

G 2, ...,
∼

G n} and the threshold minsup; then all the subgraph
patterns in D̃ constitute the whole search space. First, the edges in
the uncertain brain networks were regarded as subgraphs of the
1-layer search space. Then, the expected support degree (Eq. 7)
of each edge in the MDD group and the NC group was calculated
and compared with the threshold minsup. If the expected support
degree of the edge was greater than minsup, then the edge was
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denoted as a frequent edge and added to the 1-subgraph pattern
set. Note, the frequent edges observed during this step were
frequent subgraphs. If the 1-subgraph pattern set contains the
edges m1, m2, ..., mk, then the whole search space can be divided
into k sub-search spaces that do not intersect each other, where
the i-subgraph pattern set was distributed in the i-layer of the
search space. In addition, to reduce the comparison of repeated
graphs, we did not include edges with subscripts less than i in the
i-th sub-search space.

The specific steps used to acquire the i-subgraph pattern in
corresponding sub-search space were as follows. (1) based on
the 1-subgraph pattern set, the pattern growth of frequent edge
method was adopted to construct the i-layer (i = 2,3,. . .,k) sub-
search space. (2) The pattern growth of frequent edge method is
based on the frequent edges in the 1-subgraph pattern set, each
frequent edge is selected to be added to the i-1 subgraph pattern
set in a retrospective manner. Here, to reduce the comparison of
repeated graphs and computation cost, frequent edges were only
selected if their subscripts were less than i in the 1-layer subgraph
pattern set. (3) according to the rules of frequent subgraphs,
all subgraphs in the i-layer sub-search space were only judged
if they are frequent subgraphs. When a subgraph satisfied the
conditions required by frequent subgraphs, then it was regarded
as a frequent subgraph and added to the i-subgraph pattern set in
the sub-search space. The specific condition for a subgraph to be
a frequent subgraph was that the subgraph must be connected,
and its expected support was greater than or equal to minsup.
(4) the process was terminated if the i-subgraph pattern set was
null or i ≥ k and search the next sub-search space. Otherwise, set
i = i+1, iterate (2)-(3). The detailed algorithm for this process is
shown in Tables 2, 3. Supplementary Text S4 shows an example
to illustrate the unFEPG algorithm. Note that in the i-subgraph
pattern set, the frequent subgraphs are all i edges.

Based on the uncertain brain networks in the MDD group and
NC group, we were able to obtain each layer subgraph pattern
set (that is, frequent subgraphs in each layer search space). These
frequent subgraphs constituted the final frequent subgraphs of
the two groups of subjects.

Discriminative Subgraph Feature
Selection for Uncertain Brain Networks
The number of frequent subgraphs extracted by uncertain
brain networks was very large. If all frequent subgraphs
participated in the classification, then this would reduce the
classification performance. Not all frequent subgraphs had
discriminative ability; in fact, only a few subgraphs are known
to possess discriminative ability (Guo et al., 2017). Thus, it
was necessary to select discriminative subgraphs as classification
features. In previous studies, researches usually measured the
discrimination score for each subgraph to select discriminative
subgraphs (Guo et al., 2017, 2018; Cui et al., 2018). The larger the
discriminative score, the stronger the discriminative ability of the
subgraph. In conventional certain networks, the discrimination
scores of the subgraph features were applied into discriminative
subgraph mining, in which the edge of each network was
certain. On this basis, there is clear certainty relating to the

number of times the subgraph feature appears in the network.
Accordingly, a discriminative subgraph can be selected according
to the discrimination scores (for example, the difference in
frequency for which a subgraph features in two groups of
subjects) (Guo et al., 2017). However, when the uncertainty
of the edges was presented in the form of a graphs (i.e., an
uncertain network), a subgraph feature only existed in a graph
with a specific probability. Thus, the discrimination scores
for a subgraph feature were no longer certain values; rather,
they were random variables with probability distributions (Gao
and Wang, 2010). Therefore, due to the uncertainty of the
edges being taken into account, the selection of discriminative
subgraphs in the uncertain brain network was every different
from that of a conventional certain network (Kong et al., 2013).
Supplementary Figure S1 shows an example to illustrate the
differences of discriminative capabilities between subgraphs from
uncertain and certain networks.

Considering the problem of low classification accuracy of
discriminative subgraphs in existing uncertain brain network
research, we combined the calculation method used to define
the discriminative score in certain and uncertain networks and
proposed a novel discriminative feature selection method based

TABLE 2 | Algorithm for frequent subgraph mining based on frequent edges.

Input: The uncertain graph dataset
∼

D and minimum expected support degree
minsup

Recursive subgraphs mining:

(1) Traverse
∼

D to acquire all 1-layer sub-search space in
∼

D, and calculate the

expected support degree Esup(g,
∼

D) according to formular 7.

(2) If Esup(g,
∼

D) ≥ minsup of the subgraph (frequent edge) in the 1-layer search
space, then add it to the 1-subgraph pattern set M and the frequent subgraph
pattern dataset R.
(3) Set the number of subgraph sub-search spaces as k according to the number of
subgraphs in M.
(4) For each subgraph in M, employ the algorithm for pattern growth given in Table
3 to acquire the i-layer (i = 2,3,. . .,k) corresponding sub-search space N.
(5) For the subgraph in i-layer (i = 2,3,. . .,k) search space N, use formular 7 to
calculate the expected support Esup; similarly, if Esup≥minsup in the i-layer
(i = 2,3,. . .,k) sub-search space, then add it the i-subgraph pattern set in i-layer
(i = 2,3,. . .,k) sub-search space and the frequent subgraph pattern dataset R.
(6) i = i+1, repeat steps 4 and 5 until i-subgraph pattern set was null or i ≥ k and
search the next sub-search space.
Output:

The frequent subgraph pattern dataset R from
∼

D.

TABLE 3 | Algorithm for pattern growth.

Input: The (i-1)-subgraph pattern set in (i-1)-layer (i = 2,3,. . .,k) sub-search space
and the 1-subgraph pattern set M.

Pattern growth:
(1) Label the sub-search space where the (i-1)-subgraph pattern is defined as i-1.
(2) For each subgraph pattern (frequent edge) in M, if it has a label > i-1, then add it
to the (i-1)-subgraph pattern set to acquire the new subgraph s (the number of
edge in the subgraph is i).
(3) If subgraph s is connected, then add it to the i-layer (i = 2,3,. . .,k) sub-search
space N.
Output:
The i-layer (i = 2,3,. . .,k) sub-search space N.
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on statistical index (dfsSI) to select discriminative subgraph
features from an uncertain brain network.

First, the selection method used for a discriminative subgraph
in a certain network was referenced. In a certain network, a
discriminative subgraph was obtained by counting the number
of times a subgraph appeared in positive and negative samples
and then applying this to the discriminative score function to
calculate the discriminative score. The higher the discriminative
score, the stronger the discriminative ability of the subgraph.
As mentioned earlier, a certain network can be regarded as a
special uncertain network with a probability of 1 on each edge.
On this basis, the number of times a subgraph appears can be
regarded as the sum of the probabilities in a positive and negative
sample. This was the methodology applied in the current study.
In addition, considering the balance between sample sizes, we
further introduced the statistical index method for uncertain
networks. In other words, the statistical index was introduced to
calculate the probability distribution of a subgraph appearing in
the two groups of subjects respectively. Then, we applied this into
the discriminative score function to calculate a discriminative
score for each subgraph.

Many statistical indicators have been used in existing studies,
including mean, median, and range (Chen, 2014; Franceschelli
et al., 2017; Ben-Aharon et al., 2019). In this study, we adopted the
mean index as a statistical index as this has been widely applied
to discriminative subgraph mining in uncertain networks (Zou
et al., 2009, 2010; Kong et al., 2013). The mathematical definition
of the mean values for this study were given as shown in Eqs 7, 8.

Mean(g,
∼

D
MDD

) =
1
M

M∑
i=1

Pr[g ⊆
∼

Gi] (7)

Mean(g,
∼

D
NC

) =
1
N

N∑
i=1

Pr[g ⊆
∼

Gi] (8)

In Eqs 7, 8,
∼

D
MDD

represents the set of uncertain networks

for the depression group;
∼

D
NC

represents the set of uncertain

networks for the normal group;
∼

Gi represents the uncertain brain
network for the ith subject; g represents a frequent subgraph;∑N

i=1 Pr[g ⊆
∼

Gi] represents the corresponding probability values

for subgraph g contained in
∼

Gi; M refers to the number
of subjects in the depression group; and N refers to the
number of subjects in the normal group. After calculating the
mean value for frequent subgraphs, we then carried out the
discriminative score function to obtain discriminative scores for
frequent subgraphs. In uncertain graph theory, the common
discriminative score functions contain confidence (Jin and
Wang, 2011), frequency ratio (Yan et al., 2008), G-test score
(Gao and Wang, 2010), and Hillbert Schmidt independence
criterion (HSIC) (Kong et al., 2011). The confidence method
possesses good subgraph discrimination ability and a strong
generalization ability, which has been widely applied in
previous researches (Jackson and Read, 2010a,b). Therefore,
in the present study, we used the confidence method as the

discriminative score function to select discriminative subgraphs.
We measured the confidence values of the frequent subgraphs
respectively for the MDD group and the NC group. Then
we arranged the two group values in reverse order, and
selected the top-k values in the two groups as discriminative
subgraph features. Finally, we acquired 2k discriminative
subgraphs. The specific definition was expressed by Eqs 9, 10.

Confidence(ng
MDD, ng

NC) =
ng

MDD

ng
MDD + ng

NC
(9)

Confidence(ng
MDD, ng

NC) =
ng

NC

ng
MDD + ng

NC
(10)

In Eqs 10, 11, ng
MDD refers to Mean(g,

∼

D
MDD

); ng
NC refers to

Mean(g,
∼

D
NC

).

Classification
The discriminative subgraph was selected using the dfsSI
method (that is, the mean value was used as the statistical
index value and applied to the discriminative score
function to select the discriminative subgraph). Then,
the classification model was constructed according to the
discriminative subgraph feature. In this study, we adopted
a SVM classifier based on the RBF kernel for classification.
Here, we used the LIBSVM toolkit in MATLAB to classify
our data4.

We adopted the 10-fold cross validation to evaluate
classification performance. The samples were randomly
divided into 10 parts, with one part regarded as the test set
and the other nine as the training set. Finally, the average of 10
results was measured to assess the performance of the classifier.
In addition, to increase the accuracy of our results, the 10-fold
cross-validation was repeated 100 experiments in the experiment,
and the average value of the 100 experiments was considered as
the final result.

RESULTS

Intrinsic Connectivity Network
In this study, we chose 22 ICs using GICA. Supplementary
Figure S2 shows the spatial maps of these 22 ICs. In terms
of the spatial maps of each IC, the inherently connected
network to which they belong was determined, as shown in
Supplementary Figure S2.

These 22 ICs were similar to those identified in previous
work (Beckmann et al., 2005; Calhoun et al., 2008; Smith
et al., 2009; Allen et al., 2011). Here, we described these
22 ICs in detail. Resting-state networks are grouped by their
anatomical and functional properties. IC 15 forms a rather
prototypical representation of the large parts of the auditory
system (AUD), mainly including bilateral activation of the

4http://www.csie.ntu.edu.tw/~cjlin/libsvm/
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superior temporal gyrus (Seifritz et al., 2002; Specht and Reul,
2006). The Sensorimotor networks (SM) were captured by five
components (ICs 4, 8,11, 22, and 36) situated in the vicinity
of the central sulcus, mainly including activation of the left
precentral gyrus, right postcentral gyrus, bilateral activation of
the paracentral lobule, supramarginal gyrus and supplementary
motor area (Krienen and Buckner, 2009; Abouelseoud et al.,
2010). The visual system (VIS) is also represented by six
components (ICs 10, 19, 32, 34, and 38) in good agreement with
the anatomical and functional delineations of occipital cortex.
The main active regions were the lingual gyrus, cuneiform lobe,
suboccipital gyrus, talus gyrus and middle temporal gyrus (Grill-
Spector and Malach, 2004). The DMN was captured by three
independent components (ICs 16, 18, and 31); the main active
regions were located in the precuneus lobe, lingual gyrus and
temporal lobe etc. The attention network (ATTN) was captured
by six independent components (ICs 24, 25, 30, 35 39, and 40); the
main active regions were located in the frontal lobe, parietal lobe,
precuneus lobe, temporal lobe and angular gyrus (Corbetta and
Shulman, 2002; Vincent et al., 2008). Finally, frontal networks
(FRONT; ICs 33 and 43) known to mediate executive as
well as memory and language functions was observed, whose
active regions were located in the medial prefrontal cortex and
parietal lobe (Koechlin et al., 2003; Koechlin and Summerfield,
2007).

Frequent Subgraph Patterns and
Discriminative Subgraph Patterns
After constructing the uncertain brain network, the unFEPG
algorithm was separately used to mine the frequent subgraphs
from the NC and MDD groups. When the minsup parameter
was set to 0.25, 289 frequent subgraphs were mined from
the NC group and 192 from the MDD group. Specific
information relating to the frequent subgraphs is given in
Supplementary Table S2.

According to the frequent subgraphs, the dfsSI algorithm was
used to calculate discriminative scores for the frequent subgraphs.
Then, discriminative subgraphs from the NC group and MDD
group were selected based on discriminative scores. To ensure a
balanced number of subgraph features, we respectively selected
the top 15 frequent subgraphs with the highest discriminative
scores from the two groups of subjects as the discriminative
subgraph features to perform classification, as shown in Figure 3
(see Section “The Influence of the Number of Features” for
a discussion of the number of subgraph features). To analyze
the difference of the discriminative subgraphs between the
two groups, we combined 15 discriminative subgraphs from
each group, as shown in Figure 4A. Results showed that the
abnormal components obtained by the two sets of discriminative
subgraphs were almost identical, and included IC16, IC32,
IC34, IC4, IC8, IC15, IC24, IC25, IC33, IC18, IC38, and
IC35. On this basis, we counted the number of times each
IC appeared in all discriminative subgraphs to select the most
discriminative components for MDD, as shown in Figure 4B.
The results showed that the top 3 abnormal components
were IC16, IC32, and IC34. Of these, IC16 occurred the

most frequently in the abnormal components (seven times).
This was followed by IC32 and IC34 respectively (occurring
six times each).

Classification Results
Based on the discriminative subgraph features, we next assessed
classification performance by calculating classification accuracy,
sensitivity, and specificity, and the area under the curve (ROC).

We evaluated classification performance based on probability
values representing functional connections (PV-FC), the unFEPG
method and by combining the unFEPG method with the
dfsSI method; then, we compared these two outcomes with
the traditional DUG method. First, the DUG method applied
Pearson’s correlation method to construct an uncertain brain
network. Secondly, the probability distribution for each current
subgraph was calculated based on dynamic programming, in
which a current subgraph was selected based on a DFS-code
tree in gSpan. Then, based on the probability distribution and
the values obtained by discriminant score function (confidence)
for each current subgraph, statistical indicator (discriminative
scores) was acquired. Furthermore, we set the minimum
expected frequency (min_sup) and the minimum discriminative
score (θ), and then compared the expected frequency and
discriminative scores for each current subgraph with min_sup
(min_sup was set as 0.25) and θ. If these values were greater
than min_sup and θ, then the current subgraph was added
to the discriminative subgraph set. Otherwise, the sub-tree of
the current subgraph was pruned by the branch-and-bound
algorithm. Next, a recursion process based on a depth-first
search was carried out to identify other discriminative subgraphs.
Finally, the top 15 discriminative subgraphs were selected as
subgraph features for classification. The classification results
for these methods are summarized in Table 4. We found
that the accuracy of the unFEPG method, when combined
with the dfsSI method, reached 92.9%; this was higher than
other three methods (PV-FC, the unFEPG method and the
traditional DUG method).

COMPARISON OF UNCERTAIN AND
CERTAIN BRAIN NETWORKS

Considering inconsistency between uncertain and certain
graphs with regards to subgraph features, and their
different forms of feature characteristics, we used consistent
discriminative subgraph patterns to bidirectionally compare
the classification performance of uncertain networks and
certain networks.

Thresholding Discriminative Subgraphs
in Uncertain Brain Networks
To assure that the subgraph patterns were consistent when
comparing the classification performance of uncertain and
certain networks, we first carried the discriminative subgraph
acquired from uncertain brain networks as subgraph features,
and then utilized the thresholding method to map them to
the certain network. The specific thresholding method process
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FIGURE 3 | Frequent subgraphs of MDD and NC group. (A) Represent top 15 discriminative subgraphs in MDD group. Edge refers to the edges are assigned with a
probability of existence in MDD group. (B) Represent top 15 discriminative subgraphs in NC group. Edge refers to the edges are assigned with a probability of
existence in NC group.

is as follows. First, the probability values for all edges in the
uncertain brain network were ordered in reverse order. Then,
based on the selected sparsity, the minimum weight at which
an edge can exist was regarded as min_weight. When the value
of an edge of a subgraph in the uncertain network was larger
than min_weight, then the edge existed in a certain network,
and vice versa. Accordingly, we acquired the discriminative
subgraph patters for the corresponding certain network. Here,

note that we obtained distinct subgraph features for a certain
network if the sparsity was set distinctly, and the mapped
subgraph pattern for a certain network was not necessarily
exited. When the mapped subgraph feature was exitent in the
certain network, this was represented as 1 (and 0 it not exitent).
Using this method, we were able to construct a classification
feature matrix for a certain graph. Figure 5 shows an example
of thresholding.
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FIGURE 4 | The abnormal independent components of subgraph feature. (A) Represents all discriminative subgraphs were combined in each group. AUD, auditory
network; SM, sensorimotor network; VIS, visual network; DMN, default mode network; ATTN, attentional network; FRONT, frontal network. Edge refers to the edges
are assigned with a probability of existence. (B) Represents a statistical chart about the occurrences of these independent components in (A).

The detailed steps taken to perform thresholding for
discriminative subgraphs in an uncertain brain network
were as follows. First, after construction of the uncertain
brain network, we separately used the unFEPG algorithm
to the NC group and then to the MDD group to obtain
corresponding frequent subgraphs. Next, we used the dfsSI
method to measure discriminative scores and extracted the

top k subgraph features from the NC group and the MDD
group as discriminative subgraph features; ranging features
were set to 10–130 with a step size of 10. Then, based on the
specific sparsity in a certain brain network, and by applying the
thresholding method, the discriminative subgraph features in
the uncertain network were changed into the corresponding
discriminative subgraph in the certain network. Accordingly,
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TABLE 4 | Comparison of classification performance for different researches.

Method Research Disease Accuracy Sensitivity Specificity

Frequent subgraph mining of uncertain graphs PV-FC MDD 77.85% 81.18% 72.43%

unFEPG method MDD 79.15% 86.58% 65.29%

unFEPG and dfsSI method MDD 92.90% 93.40% 85.83%

DUG method (Kong et al., 2013) ADNI 71.70% – –

MDD 81.04% 88.50% 68.26%

The PV-FC method represents probability values representing functional connections. The unFEPG method represents frequent subgraph pattern mining algorithm based
on pattern growth of frequent edge. The unFEPG and dfsSI method represents combining frequent subgraph pattern mining algorithm based on pattern growth of
frequent edge and discriminative feature selection method based on statistical index. The DUG method represents the traditional discriminative feature selection for
uncertain graph classification algorithm. MDD, major depressive disorder; ADNI, Alzheimer’s disease.

we were able to construct a corresponding classification
feature matrix for the certain brain network. Finally, SVMs
were adopted to carry out classification and the 10-fold
cross-validation was repeated 100 experiments to validate the
classification performance.

Weighting of Discriminative Subgraphs
in the Certain Brain Network
In this part of the study, we used the well-known gSpan
algorithm (Yan, 2002) to extract frequent subgraphs from the
certain network. Due its high efficiency for graph traversal
and subgraph mining, the gSpan algorithm has been widely
employed in neuroimaging (Du et al., 2016; see Supplementary
Text S5). To ensure the consistency of this experiment, the
maximum total number of discrimination subgraphs for the
certain network was set at 130.

Next, we first took the discriminative subgraph patterns
obtained from certain networks as subgraph features, and
then proposed the weighting method to map them to the
uncertain network. The specific weighting method process
was as follows. The weight of each edge in the certain
network was separated into two values: 0 and 1; in other
words, the edge of certain network includes two states,
existent and non-existent. During the procedure of subgraph
conversion, each edge weight in the certain network was
regarded as the probability of the edge in the uncertain
network. Here, it should be noted that according to the
specific sparsity, the discriminative subgraph features of each
certain network must include a corresponding uncertain
discriminative subgraph. An example of weighting is shown in
Figure 5.

The detailed steps used to weight discriminative subgraphs
in the certain brain network were as follows. First, a
corresponding certain network was constructed by ranging
different sparsity from 0.05 to 0.4, with a step size of 0.05.
Second, based on each brain network being constructed
with a specific sparsity, the gSpan algorithm was used to
mine frequent subgraphs. Third, the discriminative score
was calculated using the frequency differences for the NC
group and MDD group. The top k subgraph features for
the NC group and the MDD group were then extracted
as discriminative subgraph features for the certain brain
network; ranging features were set to 10–130 with a step

size of 10. Then, for each specific sparsity, based on the
weighting method, the discriminative subgraph features in
the certain brain network constructed by the specific sparsity
were mapped into the corresponding discriminative subgraph
in the uncertain network. On this basis, we were able to
construct a corresponding classification feature matrix for
the uncertain brain network, based on the certain brain
network constructed by each specific sparsity. Finally,
SVMs were adopted to carry out classification and 10-fold
cross-validation was repeated 100 experiments to validate
classification performance.

Comparison of Classification Results
Thresholding Discriminative Subgraphs in the
Uncertain Brain Network
Based on the sparsity in the certain brain network, we
used the thresholding method to map discriminative subgraph
features of the uncertain brain network to the certain network.
Then, under these consistent discriminative subgraph patterns,
classification performance was compared between the uncertain
network and the certain brain network. Classification results are
shown in Figure 6; following the thresholding of discriminative
subgraphs for the uncertain network and when considering
all discriminative subgraph features, the classification accuracy
for the uncertain brain network was better than that of
the certain brain network with a sparsity of 0.05–0.25 and
was lower than that of the certain brain network with a
sparsity of 0.3–0.4.

Weighting Subgraphs in the Certain Brain Network
Based on the weighting method, the discriminative
subgraphs obtained from the certain brain network
constructed by each specific sparsity were matched to the
uncertain brain network. Then, under these consistent
and discriminative subgraph patterns, we compared the
classification performance between the certain network
and the uncertain brain network. The classification
results are shown in Figure 7. With increasing sparsity,
the classification accuracy of the uncertain network was
consistently higher than that of the certain network.
The classification accuracy of the uncertain network was
consistently lower than that of the certain network until the
sparsity reached 0.35.
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FIGURE 5 | The process of thresholding and weighting between uncertain networks and certain brain networks. Specific clarification is that (A) Illustrates the
thresholding of discriminant subgraphs in the uncertain network. (B) Illustrates the weighting of discriminant subgraphs in the certain network.

DISCUSSION

Considering the inability to provide effective classification
information in the existing subgraph mining and selection
methods of uncertain brain network (Papapetrou et al., 2011;
Kong et al., 2013), we proposed unFEPG and dfsSI algorithm
for subgraph mining and selection in uncertain network. First,
we constructed an uncertain brain network to represent the
uncertain information with regards to functional connection.
Then, the unFEPG algorithm was used to mine frequent
subgraphs. Next, dfsSI algorithm was used to select the
discriminant subgraph. Finally, SVM was used for classification.

The results show that compared with the conventional methods,
our uncertain brain network classification method greatly
improved the diagnostic accuracy for depression’s disease.

Abnormal Components
The best classification performance was obtained when 30
frequent subgraph patterns were selected as discriminative
subgraph patterns (NC: 15; MDD: 15). Therefore, we analyzed
the most discriminative abnormal components obtained by 30
discriminative subgraphs. First, the number of times each IC
appeared in all discriminative subgraphs was determined. Then,
the top three components were considered to be the most
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FIGURE 6 | Classification performance using the thresholding method to map
discriminative subgraph features of the uncertain brain network to the certain
network. The ordinate denotes the accuracy, and the abscissa indicates
different feature numbers.

discriminative components (IC16, IC32, and IC34). Of these,
IC16 was contained in the DMN. The DMN can be regarded
as a high-level cognitive network system; the main function of
this network is self-reference. In previous studies, researchers
confirmed that the default network was significantly associated
with depression (Chen et al., 2015; Zhou H.-X. et al., 2020). In
addition, the remaining two discriminative components, IC32
and IC34, were contained in the visual network. The visual
network is mainly responsible for the preliminary information
processing of stimuli and is regulated by specific regions, such
as attention. Existing studies have shown that the pathological
mechanisms underlying MDD are related to the visual network;
when the visual processing time was significantly increased, the
connection pattern was abnormal (Wang et al., 2019). These
abnormalities may relate to the selective attention and working
memory disorders that occur in depressive patients (Moreno-
Ortega et al., 2019). Therefore, the abnormal component results
obtained in this experiment are consistent with those in the
literature. In addition, we further discussed the pathological
mechanism of depression from the brain regions to which
the discriminative ICs belong (see Supplementary Text S6).
According to brain regions, it could also be concluded that the
markers of depression in current study were the same as the
existing research.

Classification Results
The PV-FC, the unFEPG method, the combined unFEPG and
dfsSI method, and the traditional DUG method, were respectively
applied to the MDD and NC groups for classification purposes,
as shown in Table 4. The classification results of the method
proposed in this paper (a combination of the unFEPG and
dfsSI methods) were higher than those of the PV-FC, the

FIGURE 7 | Classification performance using the weighting method to map
discriminative subgraph features of the certain brain network to the uncertain
network. The ordinate denotes the accuracy, and the abscissa indicates
different feature numbers.

unFEPG and traditional DUG methods. Among the other three
methods, PV-FC has the lowest accuracy. This suggested that
the classification performance can be improved after using graph
theory to measure and characterize the uncertain brain network.
Conversely, the classification results obtained by the unFEPG
and dfsSI method were higher than those obtained from the
unFEPG method. This may be due to the selection of the
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most discriminative subgraph features on the basis of frequent
subgraphs. However, the unFEPG method only utilized frequent
subgraph feature mining and did not select discriminative
subgraphs. This made led to the inclusion of more features
with too much redundant information, fewer features related
to class labels, and significant information loss. Accordingly,
the generalization ability of the model was reduced (Nouinou
et al., 2018). This result was also confirmed by the classification
results relating to the selection of the number of discriminative
subgraph features (see section “Classification Results”). In the
current study, we considered the influence of the number of
discriminative subgraph features to evaluate the classification
model; the number of discriminative subgraph features ranged
from 10 to 100, with a step size of 10. We found that when
the number of discriminative subgraph features exceeded 30 and
gradually increased, the classification results gradually decreased.
This result suggests that some frequent subgraph features were
not strongly correlated with brain diseases and could not
effectively classify brain diseases (i.e., MDD). Therefore, it is
necessary to select more discriminative subgraph features to
perform classification when using frequent subgraphs.

The classification results obtained by the unFEPG and dfsSI
method was higher than the traditional DUG method. This
may be because the unFEPG and dfsSI method fully considered
uncertain information in the uncertain brain network. The DUG
method was predominantly based on the number of occurrences
for each subgraph feature and then used dynamic programming
to calculate the probability distribution of all possible occurrences
for each subgraph in all samples. For example, for a selected
subgraph, the number of possible occurrences of the subgraph
in all uncertain brain networks was set as 0-n (n is the number
of subjects). Next, the dynamic programming method was used
to calculate the probability distribution of the subgraph in which
the number of occurrences of the subgraph was i (i = 0,...,n).
Furthermore, the score of the subgraph for when the number of
occurrences of the subgraph was i was calculated based on the
discriminant score function theory in the certain brain network.
Finally, based on the probability distribution of all possible
occurrences and the corresponding scores, the discriminant score
of the subgraph was calculated by using statistical indicators.

However, the unFEPG and dfsSI method did not consider
the number of possible occurrences of the subgraph feature
in all sample sets, calculate the probability distribution for all
possible occurrences, and then determine the discriminant score
of a subgraph by measuring statistical indicators. Instead, our
method was inspired by a certain brain network that can be
regarded as a special uncertain brain network with a probability
of 1 for each edge. From the perspective of probability, that
is, starting from the uncertain information contained in the
uncertain brain network, the number of occurrences of the
subgraphs in the discriminant score function was regarded
as the sum of the probabilities in all samples. Furthermore,
considering the balance between sample sizes, the sum of
the probabilities of a subgraph was transformed into a mean
probability which was then applied to the discriminant score
function to calculate the discriminant score of a subgraph.
That is, the uncertain information contained in the uncertain

brain network was fully considered. Moreover, compared with
the DUG method, the time consumption associated with our
combined method was greatly reduced. This result implies
that more effective discriminative subgraph features in the
uncertain brain network would be selected, the ability to
distinguish differences between the MDD and NC groups would
be improved, and more accurate biological markers of depression
would be obtained when the uncertain information of the
uncertain brain network was considered.

Furthermore, we used thresholding and weighting methods
to generate consistent discriminative subgraph patterns for
uncertain networks and certain networks, and bidirectionally
compared the classification performance of these network
models. We found that the classification performance of
the uncertain network was superior to that of the certain
network within a defined sparsity range (Figures 6, 7),
regardless of the thresholding method (discriminative subgraphs
from the uncertain brain network were converted to the
certain brain network) or weighting method (discriminative
subgraphs of the certain brain network were converted to
the uncertain brain network). The underlying reason is
that the number of edges, and the information contained
in the certain network, also increased when the sparsity
gradually increased. The frequent subgraph pattern of the
certain network might be superior to the subgraph pattern of
the corresponding uncertain network; thus, the classification
accuracy of the certain network was greater than that of the
uncertain network.

These results show that the classification accuracy for brain
diseases was related to the effective information contained
within its subgraph features. To achieve a better classification
performance, it is necessary to select a certain brain network
with a higher threshold or an uncertain brain network model.
Moreover, if an uncertain brain network model is selected, then it
is necessary to make full use of the uncertain information related
to its functional connections.

The Discussion of Time Complexity
Between This Algorithm and Mining
Uncertain Subgraph Patterns Algorithm
Previous studies mainly used three methods for the data-driven
analysis of uncertain graphs, including frequent subgraph pattern
mining, clustering algorithm calculation for uncertain graphs,
and shortest and minimum generation based trees (Potamias
et al., 2010; Khan et al., 2018b). The frequent subgraph pattern
mining has been used in the field of neuroimaging. Therefore,
we proposed to use this novel approximate frequent subgraph
algorithm in the current study based on the fact that it has
been widely used to apply the frequent subgraph algorithm
(the MUSE algorithm; Zou et al., 2009; Kong et al., 2013) on
uncertain graphs.

Although the traditional MUSE algorithm adopts the
approximation algorithm, alongside expected support and spatial
clipping technology, to reduce temporal and space complexity,
the computational consumption incurred by this technique is still
large (Papapetrou et al., 2011). Therefore, we improved upon
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this algorithm and proposed an approximation algorithm to
generate the unFEPG algorithm, in which the pattern growth
of frequent edge was applied to replace the original pruning
process on frequent subgraphs. This technique reduced the time
complexity associated with the algorithm, thus improving upon
the traditional method which takes too long because it considers
too many subgraph patterns during frequent subgraph mining.
Specifically, the traditional algorithm uses the APRIOR property
to crop the entire search space. In contrast, in our research, we
adopted the pattern growth method; that is, we replaced the
traditional pruning process with the growth of frequent edges
on the frequent subgraph, thus reducing time consumption. In
addition, the traditional algorithm incorporated the subgraph
isomorphism algorithm when calculating the expected support,
although the judgment required by subgraph isomorphism is
still time-consuming (Huan et al., 2003). However, the unFEPG
algorithm proposed in this study encoded edges and applied the
depth-first search method, so that we were able to prune the
search space within the database. This allowed for additional
optimization due to early termination and efficient scheduling to
avert expensive subgraph isomorphism tests.

In conclusion, this proposed algorithm was superior to
the traditional MUSE algorithm in terms of computational
consumption. The computational cost for the two algorithms was
investigated in each minimum support threshold (minsup) using
the same dataset. Same as this article, minsup was selected from
0.15 to 0.35, with a step size of 0.05; results are shown in Figure 8.

The Validation of Generalization
Performance for the Classification
Results
We verified the generalization performance of the proposed
method from two aspects. On the one hand, we divided our
datasets into a training set and a validation set (they are
the same site), where the validation set did not participate
in the construction of the classification model at all and did
not participate in the process of subgraph feature extraction
and selection, but was used directly to validate classification
model. On the other hand, we introduced independent validation
datasets from other sites and used them to evaluate the
generalization performance of classification models.

We randomly divided our dataset into training set and
validation set with a ratio of 7:3. As for the training set, after
these processes of network construction, subgraph mining, and
the selection of discriminative subgraphs, we used the 10-fold
cross-validation method to obtain multiple SVM classification
models. The generalization performance of the classification
model was then evaluated using the validation set. Specifically,
the training set data was randomly divided into 10 equal parts,
one of which was used as the validation set (Sn) and the
remainder as the training set (S-n). S-n was then divided into
two parts (training set TR and test set TE). Since different SVM
parameter settings led to different results, based on training set
TR, classifiers were constructed by choosing different parameters
(c, g) values, and the (c, g) value that gave the highest classification
accuracy regarding training set TR was determined to be the best

parameter. Here, similar to manuscript (c, g) value was set in
the [−5, 5] range with a step size of 1. In this way, ten different
classification models were built. Then, we used each classification
models to predict validation dataset. Finally, the accuracy of
each model was averaged as final classification accuracy in this
cross-validation. Furthermore, to increase the robustness of our
results, dataset partitioning was repeated 20 times and the 10-fold
cross-validation in training dataset was repeated 100 times in the
experiment, and the mean of the 20∗100 results was taken as the
final test result. The results are shown in Supplementary Text
S7, indicating that under each method, the difference between the
test accuracy and the classification results obtained in Table 4 of
this paper, about 2–5%, except the subgraph feature with sparsity
0.5. The method proposed in this paper differed by 3%, and finally
achieved a test accuracy of 89.56%, which shows that the method
proposed in this paper could obtain a satisfactory generalization
performance in our dataset.

In addition, we used all site and each site dataset as
independent validation datasets to verify the generalization
performance of the classifier constructed in this paper. The
dataset is obtained from DecNef Project Brain Data Repository5.
See Tanaka et al. (2021) for the specific demographic information
of the subjects. Similar to the validation of above generalization
performance. We mainly applied separately the datasets of each
site and all site into each of classifiers to perform prediction.
The classification results are shown in Supplementary Text
S7. The results show that the classifier constructed in this
paper has reached more than 70% on all independent data
sets, and the accuracy in the HUH dataset was the highest,
reaching 75%, which is higher than the results in the existing
research (Yamashita et al., 2020). This also indicated that
the features obtained by the proposed method can construct
an effective MDD classifier. For a detailed discussion, see
Supplementary Text S7.

METHODOLOGY

Many parameters were considered in this study. We found
that the final classification performance was different when
the parameter selection was different. These parameters mainly
referred to the feature number, the support degree minsup for
frequent subgraph mining, the penalty factor c in the SVM model,
and the kernel parameter g in the kernel function. In the next
section, we discuss each of these parameters individually.

The Influence of the Number of Features
In this paper, the unFEPG method was used to obtain the
frequent subgraphs of the uncertain brain network, and the
dfsSI method was used to calculate the discriminant scores and
sort them to select the frequent subgraphs corresponding to
the top-k discriminant scores as the discriminant subgraphs for
classification. Here, the selection of the k value will affect the
classification, that is, the number of discriminative subgraph
features was different, and the classification was different.

5https://bicr-resource.atr.jp/decnefpro/
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FIGURE 8 | Time complexity under each minsup in two groups of subjects. (A) Refers to the execution time mining frequent subgraph under each minsup in MDD
group. (B) Refers to the execution time mining frequent subgraph under each minsup in NC group. MUSE represents traditional the mining uncertain subgraph
patterns algorithm. The proposed method represents unFEPG and dfsSI methods. “msec” refers to millisecond.

Therefore, in present study, the number of features was set to
10–130 with a step size of 10. The classification model was
respectively constructed and the effect of the number of features
on the classification performance was analyzed. It should be
noted that when the number of features was larger than 130,
the discriminant score value was almost similar or even smaller.
This illustrated that the discriminative ability of these subgraphs
was not too great. Thus, in present study, the maximum feature
number of the discriminative subgraph was set at 130. As is
shown in Figure 9, the results show that as the number of features
increased, the classification performance gradually decrease after
the initial increase. When the number of features was 30, the
highest classification accuracy is achieved. The potential reason
is that if the feature number is too small, the difference between
the MDD group and the NC group is not well expressed; on the
contrary, if the number of features is too large, the redundant
features would be included, so that affect the construction
of the classifier.

The Influence of the min_sup of unFEPG
Method
Based on fMRI data, mining frequent subgraphs from uncertain
networks includes the minimum expected support degree
(min_sup), which affects the number of frequent subgraphs
mined from the uncertain network. In present study, the
min_sup was set to 0.05–0.35 with a step size of 0.05.
These min_sup was chosen to analyze the classification
performance and the other parameters being fixed. Figure 10
show that the classification result was the highest when
the min_sup was set to 0.25. The potential reason is when
the min_sup selected is too large, many effective frequent
subgraph features may be missed at the mining stage, which
caused the classification performance is lower. When the
min_sup selected is too small, the sizes of the frequent
subgraphs will be too large, which caused the redundancy

FIGURE 9 | Classification performance based on different feature numbers in
the uncertain brain network. Yellow denotes the sensitivity in different feature
numbers. Green denotes the specificity in different feature numbers. Red
denotes the accuracy in different feature numbers.

of discriminative subgraph features. This also affected the
classification performance. The result indicated that if we want
to obtain effective frequent subgraphs, the min_sup setting
should be moderate.

The Influence of Support Vector Machine
Classification Parameters c and g
In the classification process, the two parameters of the SVM
model, the penalty factor c and the kernel parameter g, strongly
effect the classification, and thus it is important to finding the
optimal values (Chapelle et al., 2002). The penalty factor c
is applied to adjust the range of confidence intervals in data
subspace. The kernel parameter g of the RBF is involved to decide
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FIGURE 10 | Effect of the minimum support degree (minsup) of unFEPG
method on the classification performance. Green denotes the sensitivity in
different feature numbers. Blue denotes the specificity in different feature
numbers. Red denotes the accuracy in different feature numbers.

the function for mapping data to a high-dimensional feature
space. Selecting the optimal (c, g) can improve the construction
of classification model. For given values of (c, g), we utilized
the K-fold cross-validation method to obtain the training set

validation accuracy. The values of (c, g) that generated the highest
validation classification accuracy were selected as the optimum
parameters. The ranges of parameter settings applied for c and
g were [2−5, 25] and [2−8, 22], with a step of 1. Figure 11
displays the results of parameter optimization of (c, g) when using
classification features as training sets. The results show that when
c = 0.25 and g = 0.5, the classification accuracy of the training sets
was the highest, reaching 93.85%.

Limitation
We must also note some limitations of our new method in
that the frequent subgraph mining proposed in this paper
was a simplified approximate algorithm. This greatly reduced
the running time of the algorithm but may have led to
the omission of some frequent subgraphs. Therefore, future
research should focus on how to further optimize the frequent
subgraph mining algorithm for uncertain networks without
increasing its computation time. In addition, at the network
construction level, we constructed a resting state uncertain
brain network in a static form. However, increasing evidence
suggests that even in the resting state, the neural activity in
the brain still exhibits transient and subtle dynamics. Moreover,
these dynamic changes are essential for understanding the
basic characteristics relating to brain organization and may
be significantly correlated with the pathological mechanisms
underlying brain diseases; consequently, these changes may

FIGURE 11 | Training classification accuracy of different SVM parameters (c, g).

Frontiers in Neuroscience | www.frontiersin.org 19 April 2022 | Volume 16 | Article 889105

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-16-889105 April 28, 2022 Time: 18:46 # 20

Li et al. Classification Method for Brain Network

provide useful information for disease classification (Kudela et al.,
2017; Zhao et al., 2020). Therefore, dynamic uncertain brain
networks could be introduced for the diagnosis of brain diseases
and the exploration of pathological mechanisms in future
studies. At the feature extraction level, we adopted subgraph
features to represent the topology information of uncertain
brain networks, which ignore the local topological property
information of uncertain brain networks. In future studies,
researchers can combine the local properties of uncertain brain
networks [e.g., betweenness centrality and shortest paths (Saha
et al., 2021)] to comprehensively characterize the topological
information of uncertain brain networks, thus fuse multi-feature
to further improve classification validity of the model. At
the subgraph selection level, we calculated the discriminative
score of frequent subgraphs through the statistical index (i.e.,
mean) value. However, study has shown that the mean index
may not be robust to extreme values (Kong et al., 2013).
Therefore, in future research, index such as extreme index
(Chen, 2014) can be introduced to satisfy the sensitivity
of extreme values between subgraph patterns in uncertain
brain networks. At the classification model level, we used
traditional machine learning——SVM to classify and diagnose
depression. In future research, based on the uncertain brain
network model, we can introduce deep learning models such
as graph neural network (Zhao et al., 2021) to improve brain
psychiatric diseases.

CONCLUSION

Studies have shown that certain brain networks inevitably
lead to the loss of uncertain information with regards to
functional connections. Therefore, uncertain brain networks are
proposed to represent uncertain information with regards to
functional connections. The frequent subgraph mining (MUSE)
method and the discriminative subgraph method (DUG) cannot
effectively extract sufficient subgraph features, thus leading
to low classification accuracy in the existing uncertain brain
network studies. Therefore, in the present study, we used the
unFEPG method to mine frequent subgraphs and used the dfsSI
method to select discriminative subgraphs from the perspective
of probability, in which uncertain information in the uncertain
brain network was fully used to improve the ability to identify
differences between the MDD and NC groups. The result
showed that the unFEPG and dfsSI method obtained a higher
classification accuracy. In addition, to further verify the efficacy
of the method proposed in this study, we adopted weighting and
thresholding methods to unify the subgraph pattern between the
uncertain network and the certain network. The classification
performance of the uncertain network was superior to that
of the certain network within a defined sparsity range. This
meant that a satisfactory effect can be obtained from a certain
brain network irrespective of whether a higher threshold or
an uncertain brain network model was selected. Moreover, if
the uncertain brain network model was selected, it is necessary
to make full use of the uncertain information held by its
functional connections.
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