
Uncovering Pharmacological
Opportunities for Cancer Stem Cells—
A Systems Biology View
Cristina Correia1, Taylor M Weiskittel 1, Choong Yong Ung1, Jose C Villasboas Bisneto2,
Daniel D Billadeau3,4, Scott H Kaufmann1,2,4 and Hu Li1*

1Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, United States, 2Division of
Hematology, Department of Medicine, Mayo Clinic, Rochester, MN, United States, 3Department of Immunology, Mayo Clinic,
Rochester, MN, United States, 4Division of Oncology Research, Mayo Clinic, Rochester, MN, United States

Cancer stem cells (CSCs) represent a small fraction of the total cancer cell population, yet
they are thought to drive disease propagation, therapy resistance and relapse. Like healthy
stem cells, CSCs possess the ability to self-renew and differentiate. These stemness
phenotypes of CSCs rely on multiple molecular cues, including signaling pathways (for
example, WNT, Notch and Hedgehog), cell surface molecules that interact with cellular
niche components, and microenvironmental interactions with immune cells. Despite the
importance of understanding CSC biology, our knowledge of how neighboring immune
and tumor cell populations collectively shape CSC stemness is incomplete. Here, we
provide a systems biology perspective on the crucial roles of cellular population
identification and dissection of cell regulatory states. By reviewing state-of-the-art
single-cell technologies, we show how innovative systems-based analysis enables a
deeper understanding of the stemness of the tumor niche and the influence of
intratumoral cancer cell and immune cell compositions. We also summarize strategies
for refining CSC systems biology, and the potential role of this approach in the
development of improved anticancer treatments. Because CSCs are amenable to
cellular transitions, we envision how systems pharmacology can become a major
engine for discovery of novel targets and drug candidates that can modulate state
transitions for tumor cell reprogramming. Our aim is to provide deeper insights into
cancer stemness from a systems perspective. We believe this approach has great
potential to guide the development of more effective personalized cancer therapies
that can prevent CSC-mediated relapse.
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INTRODUCTION

In cancer, a gain of stemness can have profound implications on tumor aggressiveness, drug response
and clinical outcome (Figure 1A). Here, we provide a systems biology overview of how the immune
cell niche, cellular contexts, and molecular or genetic perturbations contribute to stem cell-like
properties of malignant cells. We start by describing the sources of tumor heterogeneity and defining
the cellular niche as a dynamic spatial domain harboring cancer stem cells (CSCs). We then elaborate
on how this cellular niche is critical for communication between cell populations and move through
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the biological pathways endowing these stemness properties. We
outline how systems biology approaches present an important
strategy for identifying the crosstalk between immune cells, the
bulk cancer, and CSCs. Finally, we discuss how these systems
biology approaches open new avenues to dissect and manipulate
cellular states and niches to impact cancer progression.

SOURCES OF TUMOR HETEROGENEITY

Tumor complexity not only arises from the intrinsic diversity of
the tumor cells themselves, but also from their interactions with
other non-tumor cell types. The intratumoral heterogeneity of the
cancer cells arises through mechanisms such as genomic
instability, clonal evolution, cellular differentiation, and
reversible plasticity. These contributions have been well
studied, but most analyses fail to systematically characterize
the contributions of other cells to cancer cell heterogeneity.
Immune cells, which are also part of the tumor niche, present
over 350 CD (cluster of differentiation) antigens, secrete close to
100 cytokines and chemokines, and belong to subtypes that
express thousands of unique gene signatures (Davis et al.,
2017). These immune cells, as well as other non-malignant
stromal cells, co-exist with cancer cells, thus creating complex
biological entities. Moreover, these stromal cells interact with and
shape the evolution of the cancer cell populations (Figure 1B).

From a systems biology perspective, the contribution of each
source of heterogeneity can be understood by dissecting cell

populations, cellular niches, niche dynamics and the crosstalk
between them. This will ultimately help devise disease spatial
resolution maps that shed light on mechanisms of cancer
progression and drug resistance. Such complex systems
exhibit emergent properties that are not just the aggregation
of unconnected individual behaviors, but are instead unique
phenomena that reflect synergy in interactions between cells.
The scientific discipline of systems biology aims to provide a
quantitative and dynamic framework that leverages
mathematical and computational techniques to unravel the
complexity of cellular processes. This approach is applied
with the view that a holistic view of systems will not only
inform how a gene connects to a protein and an activity, but
also help elucidate how a cellular phenotype is contingent on the
biological context (where and when) (Kirschner, 2005). As such,
systems biology approaches have the power to dissect the
interplay between tumor and immune cells to characterize
higher order properties and systems interconnectivity. For
example, interrelationships between ligands and receptors
have been an active area of research where a variety of
system methodologies have been applied to define ligand/
receptor co-expression, formation of multimeric complexes
and cellular activity (see section entitled Probing the cellular
niche: Technological advances). The large breadth of ‘omics
data now available is enabling systems approaches to give new
insights. Here, we will highlight the potential of systems biology
to dissect the determinants of cancer stemness present in the
cellular niche.

FIGURE 1 | The cellular niche sustains the phenotypically diversity of cancer stem cells. (A) CSCs play fundamental roles in cancer, including contributing to tumor
heterogeneity, and immune evasion, promoting migration and recurrence, and driving chemoresistance. (B) The CSC niche is supported by the tumor components,
stroma, immune infiltrate, and tumor microenvironment. (C) Cell-cell interactions define spatial cancer niches and contribute to the phenotypically diversity of CSCs and
cellular heterogeneity. (D) CSC phenotypic states are modulated by an array of factors, including intrinsic factors like WNT and TGFB pathway activation, cell-cell
interactions, cellular plasticity, and the cellular niche. Figure created with BioRender.com.

Frontiers in Cell and Developmental Biology | www.frontiersin.org March 2022 | Volume 10 | Article 7523262

Correia et al. Cancer Stem Cell Systems Biology

mailto:BioRender.com
https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


STEMNESS OF CANCER CELLS

Stemness, defined as the potential for self-renewal and
differentiation from the cell of origin, was originally attributed
to normal embryonic stem cells that give rise to all cells in adult
organisms. However, it has long been known that cancer cells
show markers and properties of embryonic stem cells
(Friedmann-Morvinski and Verma, 2014). Cancer progression
often involves the gradual loss of a differentiated phenotype and
acquisition of progenitor or stem cell-like features.
Undifferentiated primary tumors are more likely to result in
metastasis to distant organs, causing disease progression and poor
prognosis, as well as resistance to available therapies. Within a
tumor, phenotypic diversity and spatial cellular variation may
also impact expression of key embryonic stem cell regulators,
resulting in distinct paths to cancer stemness (Figure 1C).

SYSTEMS BIOLOGY AND CANCER STEM
CELL STATES

Dedifferentiation of Cancer Cells
Although CSCs exhibit the stem cell-like properties of self-renewal
and differentiation, they do not necessarily originate from the
transformation of normal tissue adult stem cells (Friedmann-
Morvinski and Verma, 2014). Oncogenic hits initiating malignant
transformation may over time lead to a more dedifferentiated state
and contribute to tumor cell heterogeneity. For instance, reverse
engineered gene regulatory networks (GRNs) reconstructed by
methods such as mode-of-action by network identification (MNI)
approach, were used in our earlier studies and allowed the
identification of HOXA1 as a key modulator capable of reversal
phenotypes in breast cancer (Brock et al., 2014). Such inducibility of
tumor plasticity suggests that CSCs do not necessarily originate from
normal stem cells. Instead, under certain circumstances, cancer cells
can dedifferentiate and acquire cancer stem cell (CSC)-like properties

(Lyssiotis and Kimmelman, 2017). Here, the microenvironment of a
tumor provides ample molecular cues and opportunities for cell-to-
cell signaling to modulate the epigenome and phenotypic stem cell-
like programs in cancer cells, frequently independent of their genetic
backgrounds (Figures 1C,D) (Gingold et al., 2016). A variety of
systems biology approaches, which are able to dissect transcriptional
programs in various cellular states (Huggins et al., 2017; Luke et al.,
2019), can also be used to understand CSCs (Figure 2). For instance,
CellNet (Cahan et al., 2014) can reverse engineer GRNs to find
transcription factors that are crucial in cell state maintenance. Others,
like ARACNe (Basso et al., 2005) and VIPER (Alvarez et al., 2016),
utilize GRN reverse engineering approaches to enrich for cellular
regulons and identify regulatory genes that determine specific
biological conditions. As an example, a set of systems biology
tools developed in our lab have the potential to provide deeper
look into CSC biology. For example, NetDecoder (da Rocha et al.,
2016) builds a context specific network based on prior biological
knowledge and enables genome-wide modeling of signal flows to
extract genes that are critical under a specific biological context.
Alternatively, Machine Learning Assisted Network Inference
(MALANI) (Ghanat Bari et al., 2017), a machine learning-based
method, creates de novo biological networks and has the ability to
extract “dark genes” that are neither differentially expressed nor
mutated but can play important roles in CSCs’ stemness. Moreover,
Regulostat Inferelator (RSI) (Ung et al., 2019) searches for gene pairs
that act like biological rheostats and can modulate phenotypic
transitions in cancer cells, for example, the acquisition of stemness
properties.

WNT-β-Catenin Signaling and Stem
Cell-like Phenotype in CSCs
CanonicalWNT is a major pathway that regulates CSCs and induces
stemness in several cancers (Vermeulen et al., 2010; Nguyen et al.,
2019). The hallmark of this pathway is the activation of β-catenin-
mediated transcriptional activity. WNT canonical pathway signaling

FIGURE 2 | Cancer stem cell systems biology—Novel insights gained by integrated analyses. Overview of breadth of high-throughput technologies and tools
to characterize the cross talk between CSCs, immune and tumor cells in a cellular niche. The niche cell subsets can be probed, for example, using bulk and single cell
RNA-seq or cytometry by time-of-flight (CyTOF). CITE-Seq, STARmap and IMC (imaging cytometry) can spatially probe the cellular niche. A variety of systems tools
provide a framework to interrogate signaling pathways, derive regulatory TF networks and understand the diversity of CSC phenotypes and their niches. Figure
created with BioRender.com.

Frontiers in Cell and Developmental Biology | www.frontiersin.org March 2022 | Volume 10 | Article 7523263

Correia et al. Cancer Stem Cell Systems Biology

mailto:BioRender.com
https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


is initiated by the binding of a WNT family protein to cell surface
receptors to activate signal transduction (Kalbasi and Ribas, 2020;
Yang et al., 2016). In the presence of WNT ligand, β-catenin evades
proteasomal degradation, translocates to nuclei and activates
transcription. This has several consequences for the CSC niche: 1)
Increased phenotypic heterogeneity, 2) spatial diversity, and 3)
impact on de novo immune response (Holtzhausen et al., 2015;
Spranger et al., 2015; Luke et al., 2019) [for review see (Galluzzi et al.,
2019)]. In particular, heterogenous activity of WNT has been
observed in colon cancer, with high activity seen in regions close
to stromal components (Vermeulen et al., 2010) (Figure 1D).
Moreover, WNT-β-catenin pathway activation has been associated
with immune exclusion of dendritic cells (DC) and T-cells from
melanomas (Spranger et al., 2015; Spranger and Gajewski, 2015) and
other cancers (Luke et al., 2019). With a reduction of CXCL9/10,
CCL4 and other chemokines, recruitment of DCs and cross-priming
of effector T cells in tumors is limited (Spranger et al., 2017). Further,
DCs are re-wired to a regulatory state that is immune tolerant (Hall
et al., 2011).

While WNT signaling in tumor cells is associated with a worse
outcome, WNT signaling in the lymphoid compartment appears to
modulate anti-tumor responses. In particular the WNT-β-catenin
pathway regulates TCF1, a transcriptional factor that plays a critical
role in T cell differentiation. TCF1 acts by biasing the differentiation
of naïve T cell to CD4+ T helper subsets (Th1, Th2, and Th17).
Moreover, WNT-β-catenin signaling promotes the generation of
memory T cells, whereas the expansion of naïve CD8+ T cells and
differentiation of effector T cells are inhibited (van deWetering et al.,
1991; Bienz and Clevers, 2003; Luke et al., 2019) [See review (Wang B
et al., 2018) for in depth description]. This and additional
observations support the pursuit of WNT inhibitors and
combinatorial targeting of the WNT-β-catenin pathway to
improve clinical outcomes of patients to overcome primary,
adaptive, and acquired resistance to immunotherapy (Wang B
et al., 2018; Zhang et al., 2020). However, as suggested by Wang
B et al. (2018), it remains to be determined whether this strategy can
be translated into the clinical practice to ultimately help devise better
individualized immunotherapy treatments for cancer patients.

Systems biology approaches are also used to interrogate
signaling and phenotypical programs that sustain cancer
stemness (Figure 2). For instance, Pinto et al. (2015) collected
132 stemness signatures using publicly available gene expression
datasets, RNAi screen results, and Transcription Factor (TF)
binding site data to generate an interactive web-based server
(StemChecker) that reports the overlap of input genes with stem
cell signatures and the targets of transcription factors. Conversely,
Malta el al. used a variety of normal stem cells with one-class
regression machine learning to extract stem signatures, which
they then used to infer a stemness score in many cancers (Malta
et al., 2018). These studies showed thatWNT and TGFB signaling
pathways act in a different range in CSCs compared to non-
neoplastic stem cells.

In poorly differentiated tumors, overexpression of key
embryonic stem cell regulators (e.g., NANOG, OCT4, SOX2,
c-MYC) (Malta et al., 2018) was observed to correlate with poorer
outcomes. Further analysis also indicated that dedifferentiation
features are associated with 1) mutations in genes that encode

oncogenes and epigenetic modifiers, 2) perturbations in specific
mRNA/miRNA transcriptional networks, and 3) deregulation of
signaling pathways (Malta et al., 2018). Overall, these
observations highlight the need to consider the CSC niche as
distinct from normal stem cell niches. For this reason, future
analysis must take into account the co-existence of diverse cell
states and embrace dedifferentiation as a path to cancer stemness.

PROMISE OF PROBING THE CELLULAR
NICHE

Tumor Microenvironment
The tumor microenvironment is the ecosystem that surrounds
tumor cells inside the body. It includes a variety of cell types,
including immune cells, stromal cells, adipocytes, fibroblasts, and
vascular cells, as well as extracellular vesicles (EVs), extracellular
matrix and molecules produced and released by all of these cell
types. These TME components are not just bystanders in the
tumorigenic process, but instead play a decisive role in tumor
differentiation, epigenetics, dissemination, immune evasion, and
drug resistance (Labani-Motlagh et al., 2020). In particular, the
cross-talk between tumor cells and cells in the TME fuels and
shapes tumor progression, giving rise to dynamic and complex
ecosystems in both primary and metastatic sites.

Because most cancer deaths result from the development of
distant metastasis, it is important to decode the dynamic
interactions between cancer cells and the TME in individual
sites during tumor development, progression, and response to
therapy. For example, metastatic cells can differ from neoplastic
cells at the primary site in key ways as they adapt to the unique
metabolic conditions in the metastatic site (e.g., Ferraro et al.,
2021), acquire mutations, evolve independently, and persist
despite exposure to therapy. However, our ability to infer the
cell-cell communications and investigate cellular plasticity in
metastases is limited by the often simplistic models or is built
on knowledge gained from the primary tumor. Therefore,
developing models that focus on investigating the immune and
transcriptional landscapes as well as cellular cross-talk by
screening distant metastasis will help to better characterize
dormant micro-metastases and identify new therapies to target
metastatic tumors.

In current studies designed to understand the role of TME in
the transition of ductal carcinoma in situ (DCIS) to invasive
breast cancer (IBC) and progressive disease, Risom et al. used a
multicompartmental analysis to compare functional biological
states during tumor progression. Tumor invasiveness was
correlated with a higher number of cancer associated
fibroblasts (CAFs) and density of fibrillar collagen, a shift
from monocytes to antigen presenting cells (APCs) and
intraductal macrophages, and increased density of T and
B cells in stromal compartments. These findings highlight a
model in breast cancer (BC) where invasiveness occurs
through the dynamic interactions with surrounding stroma
and immune cells with the epithelial compartment of the
tumor (Risom et al., 2022). Further, in a recent clinical trial
(Hurvitz et al., 2020), BC patients were randomized to receive
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three distinct anti-HER2 treatments (trastuzumab, lapatinib,
trastuzumab + lapatinib) followed by six cycles of standard
combination chemotherapy along with the same anti-HER2
therapy. Serial analysis of the pre- and post- treatment
demonstrated an increase of immune and stromal signatures
after HER2 targeted-therapy alone but decreasing strengths of
these signatures after addition of chemotherapy to the
HER2 targeted-therapy. In particular, there was a reduction of
M1 macrophages and increase in CD8+ T cells (Hurvitz et al.,
2020). Collectively, these findings support the view that the TME
changes over time, highlighting the possibility that factors
converge to select the most adaptable tumorigenic cells and
ecological environments for the tumor to thrive and reach its
metastatic potential.

As a result of metabolic differences from site to site (Ferraro
et al., 2021), as well as likely differences in cell types and cellular
products, the TME is increasingly viewed as a highly
heterogenous milieu that varies across tumor sites or so-called
niches (spatial heterogeneity). This complexity needs to be
considered at a systems level to design better therapeutic
options for cancer patients. For example, the identification of
the tumor dominant immune evasion mechanism within the
TME can inform on the best patient therapeutic approach
(Sanmamed and Chen, 2018). On the other hand, tumor
stiffness can dictate a drug’s ability to reach the tumor (Olive
et al., 2009). Clinically, a major challenge to understanding the
TME is the limited ability to capture sequential tissue samples
from cancer patients. However, recent advances in three-
dimensional (3D) platforms like organ on a chip and
microfluidic devices, as well as the development of humanized
mouse models or explant 3D cultures model (patient- or mouse-
derived tumor spheroids) (Sanmamed and Chen, 2014; Zitvogel
et al., 2016; Jenkins et al., 2018; Vunjak-Novakovic et al., 2021),
can provide an excellent opportunity to bridge this gap.
Collectively, these tools have been developed with the view
that a better understanding of the interplay of bi-directional
communication between the tumor and TME, and CSCs will
help identify improved cancer therapies.

The Cellular Niche and Tumor
Microenvironment
The term “niche” is commonly used to describe an anatomically
distinct regions within a tissue (or tumor). This description,
however, fails to capture the interactions with surrounding cell
populations andmicroenvironmental cues. Instead, a nichemight
be more properly viewed as a spatiotemporal dynamic state that is
modulated by external perturbations to induce a permissive
tumorigenic environment. Because tumor cells, stroma and
immune cells are crucial determinants of malignant growth
(Visvader, 2011; Plaks et al., 2015), understanding how a
cellular niche responds to each cell type in the TME is crucial
for successful therapeutic targeting. In particular, cell-cell
communication mediated by surface receptor-ligand
interactions is an attractive process for pharmacological
intervention. Accordingly, more needs to be known about this
cell-cell communication. Moreover, immune cells are known to

rewire in response to external stimuli arising from physical
interactions with neighboring cells and secreted ligands. The
resulting communication between tumor and immune cells
impacts tissue homeostasis and disease progression. For
example, in high-grade serous ovarian cancer (HGSOC),
cancer cell progenitors have been found to migrate from the
fallopian tube to more distal locations where the cellular niche
allows for phenotypic shifting and propagation (Ng and Barker,
2015). In this way the cellular niche is intimately tied to cancer
stemness and vice versa (Figure 1B–D).

Highly Dynamic Cellular States and CSCs
During tumor evolution, it appears that tumor cell-extrinsic
factors (the TME) as well as tumor cell-intrinsic factors (e.g.,
epigenomic changes) influence cellular states. Recently,
Marjanovic et al. (2020) and LaFave et al. (2020) showed that
a diverse and continuous range of states exist in a model of lung
cancer progression. These co-existing states, which captured
lineage infidelity and cellular plasticity, exhibited features of
drastically different cell types, suggesting the ability of cancers
to explore a broad phenotypic space. Although some of the cells
in these lung cancers resemble stem cells and CSCs in their ability
for robust growth and differentiation potential, their phenotypic
programs are distinct (LaFave et al., 2020). Thus, a key step to
better understanding CSCs is to thoroughly characterize their
transcriptional states and ability to switch between CSC and non-
CSC states.

PROBING THE CELLULAR NICHE:
TECHNOLOGICAL ADVANCES

A challenge with CSCs is that only a small number of stem cell
markers have been identified. This limited set of markers reflects
the small proportion of CSCs generally present in tumors and the
poor conservation of CSC surface markers across cancers.
Therefore, from a systems perspective, an ab initio approach is
best for the identification of CSCs.

A diverse array of high-throughput technologies has been used
to zoom in on CSCs and their niches within cancer patients. The
oldest and most common modality is RNAseq. A limitation of
traditional bulk RNAseq, however, is that it averages expression
across thousands of cells within a sample. Because of this
limitation, understanding and constructing regulatory
networks for distinct types such as CSCs has been difficult
with bulk RNAseq alone.

There is, however, precedent for studying distinct tumor
components using bulk RNAseq. CIBERSORT (Newman et al.,
2015) has been used extensively to computationally dissect
immune cell populations from these bulk samples; and several
methods exist for constructing tissue level networks.
CIBERSORT uses a knowledge-based signature matrix that
encapsulates major 22 functionally defined human
hematopoietic subsets to deconvolute and infer cell
composition from gene expression profile data, utilizing
support vector machine (SVM) regression methods. This
approach has played a key role in decoding immune cell

Frontiers in Cell and Developmental Biology | www.frontiersin.org March 2022 | Volume 10 | Article 7523265

Correia et al. Cancer Stem Cell Systems Biology

https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


population, particularly in bulk solid tumors where tissue
dissociation protocols and cellular enrichment techniques limit
the efficacy of single-cell methods and provide only a partial view
of the wider cell heterogeneity. Extending this approach in a new
direction, a groundbreaking study by Thorsson et al. used TCGA
RNAseq data across 33 cancer types and more then 10,000
patients to identify signatures for six TME subtypes and
demonstrate that these TME subtypes can be associated with
prognosis as well as genetic and immune modulatory alterations
(Thorsson et al., 2018). Reflecting the importance of the TME to
tumor behavior, the TME subtypes identified by Thorsson et al.
were reportedly able to predict disease outcomes and help guide
novel treatments. More recently, Bagaev et al. derived 29
expression signatures to establish four TME subtypes (immune
enriched fibrotic, immune enriched non-fibrotic, fibrotic and
depleted) that correlate with immunotherapy efficacy in
melanoma (Bagaev et al., 2021). As demonstrated by these
studies, it is possible to use RNAseq to study a subpopulation
of cells (e.g., immune cells or stromal cells) if the transcriptional
profile is detectable and distinctive. However, given the rarity of
CSCs, it has been difficult to study CSCs themselves using bulk
RNAseq. Moreover, while publicly available multi-omics
signatures from non-neoplastic stem cells were previously used
to derive a stemness score in tumors (Malta et al., 2018) that can
then be applied using deconvolutional methodologies to identify
CSCs in bulk RNAseq, a key caveat is that CSCs do not necessarily
share the same transcriptional programs as normal stem cells
counterparts. Taking a different approach, Aran et al. probed the
normal tissue adjacent to the tumor (NAT), which is
morphologically similar but phenotypically different from the
tumor and focused on stromal pathways to query the interaction
between adjacent tissues (Aran et al., 2017). These authors
uncovered NAT-specific characteristics, namely activation of
pro-inflammatory immediate-early response genes concordant
with endothelial cell stimulation. Furthermore, previous studies
on breast NAT suggested that the microenvironment
surrounding the tumor, not the epithelial cells, is essential for
understanding disease recurrence and developing surgical
strategies (Graham et al., 2011). These studies have shown
that by zooming into the tumor niche and its adjacent
boundaries we can acquire deeper understanding of cell-cell
interplay and dissect the phenotypic states that sustain stemness.

With the advent of single-cell RNAseq (scRNA-seq), new
avenues to investigate and quantify molecular features at
single-cell resolution have emerged. Single-cell technologies
have the ability to directly evaluate cell states, heterogeneity,
and lineages (Saelens et al., 2019). However, more effort is
required to provide understanding of cell-cell interactions as
well as their co-evolution and adaptation to perturbations in
the cellular milieu, which is needed for the construction of a
comprehensive cellular interaction map (Elmentaite et al., 2019).
Current efforts to build a human body atlas (Regev et al., 2017)
will provide important information on the baseline stromal,
tumor and immune tissue heterogeneity. Tissue specificity is
particularly important in immune cells because they both
circulate and remain tissue resident; profiling of both
populations can enhance understanding of which cells are

recruited to become part of the TME. Despite the promise of
scRNA-seq, it also has a key limitation: Enrichment and
dissociation strategies that are used to separate single cells for
profiling and capture cells of interest disrupt tissue organization
and result in loss of spatial information (Elmentaite et al., 2019).

Single-cell computational frameworks have thus far focused in
dissecting the ligand-receptor interactome based on expression of
ligands and receptors across cell populations. The various
computational frameworks take different approaches (Zhou
et al., 2017; Cohen et al., 2018; Kumar et al., 2018).
CellPhoneDB (Efremova et al., 2020) uses scRNA-seq to
decode intercellular communication networks by inferring
multimeric ligand-receptor interactions between cell states
based on expression of a receptor by one cell state and a
ligand by another cell state. By assessing which structural
complexes are ubiquitously expressed in a tissue and not
varied between cellular states, ligand-receptor cell specificity is
assured. Because multi-subunit heteromeric complexes often
swap subunits to ensure ligand specificity, expression of all
subunits of a functional complex is required for downstream
signaling. Vento-Tormo first applied CellPhoneDB to the study
of early human pregnancy and interaction between fetal and
maternal cells with a focus on trophoblast-decidua interactions
that underlie common diseases of pregnancy such as pre-
eclampsia and still births (Vento-Tormo et al., 2018). The
authors uncovered receptor-ligand complexes that can
modulate trophoblast differentiation. Moreover, they identified
an association between three major decidual natural killer (NK)
cell populations, their cell markers, and their expression of
cytokines, chemokines and receptors, with different
reproductive outcomes, providing a cell atlas to understand
normal and pathological pregnancies (Vento-Tormo et al.,
2018). In the context of CSCs, such a strategy could
potentially be applied to dissect receptor-ligand interactions
that help sustain stemness if achievable scRNA-seq resolution
allows for the reliable identification of CSCs.

Using RNA velocity measurements that predict the fate of cell
populations (splicing and non-splicing ratio) and provide a
measure of stemness, we can potentially identify CSCs in a
non-biased manner. Such strategy is particularly attractive
when we consider the potential heterogeneity of the CSC
compartment. This strategy was employed by Gautam et al.
(2021) to generate a multispecies cell roadmap for human and
porcupine ocular compartments. The ability to use organoids and
enrich for stem cell like progenitors offers new possibilities to
further decode CSCs.

Boisset et al. have manually microdissected 727 mouse
interacting cellular structures and used scRNA-seq to create an
interacting cellular network (Boisset et al., 2018). Using
permutations, they have created a null distribution of random
interactions between cell populations that permits identification
of enriched or depleted interactions as compared to the
background model. More recently, the authors of NicheNet
have assembled prior knowledge on ligand-receptors and their
signaling pathways using public resources and used expression
datasets to generate weighted networks with regulatory scores
that infer activity (Browaeys et al., 2020). Overall, these studies
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provide immense insight into the cell-cell interactome, but these
studies all make several key assumptions: 1) That transcripts
encoding receptors are translated into proteins that are
translocated to the membrane, 2) that ligands are successfully
transported out of the cells, and 3) that cells are in proximity with
interacting partners in tissue space (Elmentaite et al., 2019). These
approaches are now starting to be applied to extremely rare
populations such as CSCs and yield great promise to depict
their secretome.

Mass cytometry (cytometry by time-of-flight, CyTOF) has
revolutionized human immune cell profiling by allowing the
simultaneous measurement of >40 surface markers on a single-
cell basis (Bracci et al., 2020). CyTOF is particularly valuable
when analyzing samples with a limited number of cells such as
tumor biopsies, longitudinal studies or response to therapy, e.g., in
clinical trials (Gadalla et al., 2019). The high degree of multiplexing in
the CyTOF is possible because antibodies are coupled to rare metal
isotopes that provide a unique mass tag to each marker to overcome
spectral overlap commonly observed in multiparameter flow
cytometry. Recently, Gallad et al. validated CyTOF panel data
against flow cytometry and demonstrated equivalent ability to
identify cell subsets or perform phenotyping, but with smaller cell
numbers (Gadalla et al., 2019). CyTOF barcoding strategies enable
the marking cells from separate samples, which allows for the
simultaneous measurement of multiple samples, thus eliminating
multiple sources of sample-to-sample variability (Behbehani et al.,
2014). CyTOF has been applied to characterize CSCs specifically in
leukemias and lymphomas; however, this requires a priori knowledge
of the proteins at the cell surface and available antibodies amenable to
conjugation. More recent studies have used CyTOF in combination
with CITE-Seq (cellular indexing of transcriptomes and epitopes by
sequencing), thus creating amultimodal approach with simultaneous
quantification of single-cell transcriptomes and surface proteins. For
example, Yao et al. have demonstrated that B cell, monocyte/
macrophage, and plasmacytoid dendritic cell abundance across
three methods (scRNA-seq, CyTOF and CITE-Seq) is consistent,
but T cell measurements have greater variability. Additionally, this
trimodal analysis indicates that there is a good correlation across
scRNA-seq and protein expression for highly expressed cell type
markers (Yao et al., 2020). Because these three single-cell approaches
enable the simultaneous identification of cell types, cell states and
characterization of cellular heterogeneity at transcriptomic and/or
protein levels, understanding the concordance of the measurements
among these three modalities is of great interest. Collectively, these
observations suggest that the of use multimodal omic datasets can
open new avenues to dissect CSC-immune cell interactions.

A major limitation of these single-cell techniques is the lack of
spatial transcriptomic information that is key for understanding the
CSC niche. 3D intact-tissue RNA sequencingmethods exemplified by
STARmap allow for mapping of more than 1,000 genes in sections of
mouse brain to define cell types and establish a roadmap for cell
organization principles (Wang X et al., 2018). Alternatively, imaging
cytometry (IMC) is emerging as a transformative technique that
allows for multiparametric analysis of >40 protein markers in frozen
and FFPE (formalin-fixed, paraffin-embedded) tissue samples (Chang
et al., 2017; Bouzekri et al., 2019). IMCprovides a unique window into
structural features of the tissue under investigation, validates spatial

ligand-receptor interactions and identifies the distribution of cell types
within the tissue to build a spatial map (Bodenmiller, 2016). In breast
cancer, for example, clear differences have been noted in markers like
cytokeratin, HER2, E-cadherin and c-MYC within single tumors,
highlighting the intra- and interpatient heterogeneity that can be
captured with IMC (Giesen et al., 2014; Wagner et al., 2019). As a
result, IMC has the ability identify each cell type in its environmental
cellular context, thereby providing a unique spatially resolved view of
the tissue and allowing more accurate inference of cellular functional
states. The downside is that this approach is not yet suitable for high-
throughput screening of ligand-receptor interactions due the limited
scanned tissue area (1 μm), high sample cost, and paucity of
computational platforms available for data analyses. Bodenmiller
et al. have developed multivariate computational tools to visualize
and analyzemultiplexed images of human tissue sections generated by
IMC (Schapiro et al., 2017). Another platform recently proposed by
Greenald et al. utilizes a library containing a large collection of
manually curated cells, TissueNet (one million cells from six
organs and different imaging platforms) and a deep learning
model to achieve human-like cell and nuclear segmentation
(Greenwald et al., 2021).

Future IMC studies focusing on a well-defined tissue sections that
can be layered with ‘omic information will be of great interest for
dissecting the interplay of between cell populations (Bodenmiller,
2016). Whether IMC layered with ‘omic data can also inform studies
of rare cells such as CSCs remains to be seen.

FUTURE DIRECTIONS IN MANIPULATING
THE CANCER STEM CELL NICHE
Biological Perturbations to Modulate the
Cellular Niche
A systems biology strategy to decode mechanisms underlying
CSC cell fate decisions involves challenging stemness regulatory
networks with external experimental perturbations. Upon
acquisition of unimodal and bimodal single cell omics or
matched multi-omics, cell fate control decisions can be
inspected to define robust cell states and novel regulators that
control stemness transitions. Experimentally, this can be achieved
using RNAi knockdown and CRISPR-based knockout
experiments. High throughput methods that generate large
perturbation datasets like the Connectivity Map (CMAP) are
limited in their biological contexts (Lamb et al., 2006; Bush et al.,
2017; Ye et al., 2018). Conversely, Perturb-Seq combines pooled
perturbation screens with scRNA-seq and cellular readouts to
assay many cells within a mixed culture (Dixit et al., 2016). MIX-
Seq, a more recent approach, provides the ability to pool
hundreds of cancer cell lines and co-treat them with one or
more perturbations, simultaneously profile the cells’ readout
using scRNAseq, and resolve the identity of each cell based on
single-nucleotide polymorphism (SNP) profiles (McFarland et al.,
2020). Application of these exciting new approaches will
undoubtedly expand current understanding of how genetic
and phenotypic perturbations impact cells in different
contexts, providing new tools that can potentially be applied
to CSCs and their cellular niche.
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SYSTEMS ‘OMICS INTEGRATION

With the sea of available ‘omic data, there is an urgent need formulti-
omic data integration to provide systems-level information.
Clustering of multi-omics has been implemented at various steps
in the data analysis pipeline (e.g., early vs. late integration) [see
reviews (Ramazzotti et al., 2018; Rappoport and Shamir, 2018)]. A
drawback to all these strategies is that all data are treated equally,
which may not reflect the biology of a disease (Ramazzotti et al.,
2018). Recently, Stuart el al. suggested harmonizing single cell data
across distinct modalities by selecting anchors (a common set of
features) between datasets to recovermatching cell states (Stuart et al.,
2019; Stuart and Satija, 2019). A second key challenge is that some
methods implicitly assume that data heterogeneity arises mostly from
technical variation and is of no biological importance. To overcome
this limitation, LIGER (linked inference of genomic experimental
relationships) uses integrative non-negative matrix factorization
(iNMF) for data reduction combined with joint clustering to
define a cell label and assemble a neighborhood graph (Welch
et al., 2019). Gao et al. have subsequently expanded LIGER
capabilities to iteratively incorporate multiple data modalities and
massive datasets (Gao et al., 2021). Overall, these strategies recover
cell states but do not zoom in deep enough to capture the interplay
between cells or levels of ‘omic data.

To dissect the cellular niches, future strategies will need to
integrate ‘omic data in a way that achieves a better understanding
of cellular states and their contributions to the diversity of CSC
phenotypes. Such innovations will be key if we are to design novel
therapeutic strategies that can disrupt key cell-cell
communications and lead to the demise of CSC populations.

POPULATION DYNAMICS

Single cell experiments allow the study of tumors and their
heterogenous cell populations that often coexist in an evolutionary
continuum. Pseudotime trajectorymethods (also known as trajectory
inferencemethods) (Trapnell et al., 2014; Haghverdi et al., 2016; Setty
et al., 2016; Saelens et al., 2019; Wolf et al., 2019) allow for the
placement of cell populations within a trajectory based on their
expression profiles. Because most single cell datasets are static and
represent a unique snapshot in time, these cellular trajectories
represent more a cellular states axis rather than real time, while
encapsulating information from past and present. A challenge with
the current pseudotime methodologies is that multiple dynamics can
lead to the same cellular “state.” For example, cellular fate decisions
such as cell death, proliferation, or differentiation can result from
multiple causes. In order to understand the origin of these fates, we
need to know the directionality of the biological process. Our ability
to merge several biological snapshots in time, for example, from time
series data, can help to decode the range of “real” existing states.
Otherwise, the exploration of cellular states is currently being
addressed in the field using dynamic inference methods. For
example, Weinreb et al. used a dynamic inference framework
named population balance analysis (Weinreb et al., 2018) that
aims to limit the state search space by introducing biophysical
constrains (cell density) to define cellular states. Conversely,

Fischer et al. (2019) used RNA velocity information (spliced to
unspliced ratio) as a mean to provide directionality to cellular
trajectories. RNA velocity provides a measure of a cell’s internal
compass (La Manno et al., 2018; Bergen et al., 2021) by quantifying
nascent and mature messenger RNA. Here, we can also use matched
multi-omic data integration (scRNA-seq and scATAC-seq) to
identify key biological entities in each cell population and
constrain the range of truly available cellular states to infer cell
population dynamics. Future integration of multi-modal omics with
spatial information derived from IMC will help to increase our
spaciotemporal resolution, infer more accurate cell relatedness
measures, and tackle key questions such as the extent of diversity
of the CSCniche andwhich candidate targets are promising to reduce
or re-wire CSC populations.

CANCER STEM CELL SYSTEMS
BIOLOGY—EMERGING INSIGHTS INTO
CSC STEMNESS
Figure 2 summarizes representative systems biology approaches
that can decipher stemness of CSCs. Current and new technological
advances are essential to probe different layers of CSC regulation.
Moreover, there is an urgent need for deep cell phenotyping using
insights gained from integration of available systems approaches. Cell
subsets can be investigated for in silico isolation of CSCs and used to
explore the degrees of stemness defined by the combined actions of
signaling pathway activities, cell-cell interactions, and TF regulatory
networks to formulate phenotypic recipes that drive cellular states. To
mirror the fact that CSCs are exposed to a myriad of cellular
environmental stimuli, perturbation experiments open the possibly
to study the impact of genetic changes, zoom into cellular rewiring,
and identify cellular vulnerabilities. A combination of these
approaches may overcome current limitations in targeting CSCs
and allow the identification of novel targetable genes.

FUTURE IMPACT ON INDIVIDUALIZED
MEDICINE

In summary, CSCs reside in tumor ecosystems composed of a
plethora of cell types communicating in ways that drive
cellular phenotypes. Therapeutics that target cell-cell
interactions have become a useful tool in clinical practice
and can be considered for CSC targeting (He and Xu, 2020).
Key examples include ipilimumab, which targets the CD28/
cytotoxic T lymphocyte antigen 4 (CTLA4) interaction, as
well as pembrolizumab and nivolumab, which both target the
programmed cell death 1 (PD1)/PD1 ligand 1 (PD-L1)
interaction (Topalian et al., 2012). In addition to these
FDA-approved immune checkpoint inhibitors, other
inhibitory immunoreceptors that are being evaluated as
potential targets for clinical intervention include LAG3,
TIM3, TIGIT, B7H3, CD93, CD73, adenosine A2A receptor
and BTLA (He and Xu, 2020). Despite the clear success of
immune checkpoint inhibitors in several tumor types,
response rates are limited (10–30%), especially in solid
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tumors (Hamanishi et al., 2015; Sarkar et al., 2016; Dempke
et al., 2017; Disis et al., 2019; Palaia et al., 2020). The limited
response rates seen with these agents are likely due to the
complex network of interactions involving multiple cell types
present in the TME, including CSCs, which leads to
phenotypic heterogeneity we do not yet adequately
understand (Sarkar et al., 2016). CSCs themselves exhibit
immunosuppressive properties such as expression of
inhibitory checkpoint ligands, low expression of MHC-I
molecules and natural killer cell (NK cell) receptors, and
low or absent expression of innate immune receptors,
which renders the CSCs resistant to killing by a variety of
immune cells (Bayik and Lathia, 2021). Inhibitory activity of
immune checkpoints are determined by the cell surface levels
of inhibitory receptors, ligand interactions with those
receptors, turnover processes, and posttranslational
modifications that regulate signal transduction (He and Xu,
2020). Therefore, most recently, CSC targeting has been
carried out with combinations of dendritic cell-based
vaccines, oncolytic viruses, and immune checkpoint
blockades (for review see (Badrinath and Yoo, 2019)).
Better understanding of potentially targetable ligand-
receptor interactions involving CSCs has the potential to
tailor these strategies. Furthermore, such understanding has
the potential to expand the targetable interactions beyond
tumor-immune cell interactions to include tumor-
nonimmune stroma interactions as well.

Successful application of singe cell technologies and the
integration of different modalities are paramount for better
understanding of the factors that determine whether CSCs
will respond to various therapies or not. Improved ability to
quantify ligand-receptor interactions, dissect their spatial
relationship (co-localization) and assess their association
with outcome appear to be needed if we are to devise
individualized CSC targeting. Indeed, current analyses
suggest that for tumor-immune targeting there may not be
a single predictor of clinical response. Instead, it is possible
that the strengths of multiple ligand-receptor interactions will
need to be assessed in addition to immune checkpoint
components in order to predict response to immune
checkpoint blockade (Ribas and Wolchok, 2018). Systems
biology techniques are capable of extracting this biological
information from ‘omic data and helping derive a
systems view.

In contrast to CSC cell surface markers that are expressed
on stem cells, intracellular stem cell markers such as aldehyde
dehydrogenase (ALDH) enzymes are an intracellular target
amenable of intervention that can also enable some level of
treatment individualization. ALDH activity identifies CSCs in
numerous cancers (Deng et al., 2010; Landen et al., 2010; Silva
et al., 2011). Recently, Raghavan et al. demonstrated that
ovarian cancer spheroids derived from cells that survived
chemotherapy (cisplatin) displayed lower ALDH
expression, complete loss of CD133 expression, and
resistance to cisplatin/ALDH inhibitor combination
treatment while spheroids that were resistant to cisplatin/
JAK2 inhibitor combinations contained an increased number

of ALDH+ cells (Raghavan et al., 2017; Chefetz et al., 2019).
Thus, stratification of patients according to their CSC type
(i.e., CSC markers and expression levels) pre- and post-
therapy can potentially lead to more personalized
treatment approaches (Patsalias and Kozovska, 2021).
Ultimately this approach will not only allow us to better
stratify patients for targeted and combinatorial therapies,
but also potentially identify novel targets in CSCs.

CONCLUSION

Targeting CSCs, as well as the phenotypic and functional
heterogeneity of the bulk tumor cells derived from them, remains
an unsolved clinical challenge. Phenotypic plasticity of CSCs fuels
adaptive phenotypes that contribute to tumor chemoresistance and
poor clinical outcomes. A second layer of complexity arises from
spatially distinct CSC niches. In this review we focused on
interrogating the tumor niche to zoom in on the resident CSCs
and provide insights on potential pharmacological approaches. To
date no scholarly review covers this specific topic under a unified
systems biology framework and new insights on targeting CSCs and
strategies to engineer TME are still limited. The use of ‘omics
technologies as well as systems biology and computational
methodologies has the potential to revolutionize the process of
identifying and studying the CSC niche. While a wide array of
methods have been developed to interrogate tumor heterogeneity,
available methods still do not fully characterize the phenotypic states
of CSCs or asses their plasticity and its impact on drug sensitivity.
Therefore, there is an urgent need to develop tools that better
integrate multimodal datasets to capture these cellular
complexities. A crucial next step in the study of CSCs is to
characterize their contributions to intratumoral heterogeneity, at
various regulatory levels, from genotype to phenotype. If we are
successful, the development of models to spatially localize CSC
populations within tumors and dissect their contributions to
tumor initiation, progression, and drug resistance will ultimately
allow us to devise innovative strategies that target CSCs and improve
cancer therapy.
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