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Abstract
Purpose of the Review Compare pathophysiology for infectious and noninfectious demineralization disease relative to mineral
maintenance, physiologic fluoride levels, and mechanical degradation.
Recent Findings Environmental acidity, biomechanics, and intercrystalline percolation of endemic fluoride regulate resistance to
demineralization relative to osteopenia, noncarious cervical lesions, and dental caries.
Summary Demineralization is the most prevalent chronic disease in the world: osteoporosis (OP) >10%, dental caries ~100%.
OP is severely debilitating while caries is potentially fatal. Mineralized tissues have a common physiology: cell-mediated
apposition, protein matrix, fluid logistics (blood, saliva), intercrystalline ion percolation, cyclic demineralization/remineraliza-
tion, and acid-based degradation (microbes, clastic cells). Etiology of demineralization involves fluid percolation, metabolism,
homeostasis, biomechanics, mechanical wear (attrition or abrasion), and biofilm-related infections. Bone mineral density mea-
surement assesses skeletal mass. Attrition, abrasion, erosion, and abfraction are diagnosed visually, but invisible subsurface
caries <400μm cannot be detected. Controlling demineralization at all levels is an important horizon for cost-effective wellness
worldwide.

Keywords Fluoride . Biomechanics . Percolation .Remineralization .Hydroxyapatitie . Enamel

Introduction

Demineralization of mineralized tissues has a common path-
ophysiology which may be infectious or noninfectious (Fig.
1). Part I of this review introduces integrated concepts for

noninfectious demineralization with an emphasis on common
clinical disorders. Part II discusses the superimposed variable
of infection. Teeth and jaws have long been appreciated as the
most heavily loaded mineralized tissues in the body [1]. The
mandible is a cantilever exposed to high levels of bending and
torsion [2, 3], so the remodeling (turnover) rate to repair
microdamage is ~44%/year which is three times higher than
for the femur [4••]. Demineralization is a disorder of structure
and function [5] that is common to all mineralized tissues. The
etiology involves intercrystalline fluid flow [6], metabolism
[7], homeostasis [8], biomechanics [9], mechanical wear (at-
trition or abrasion) [10, 11], and/or biofilm-related infections
[12]. Hydroxyapatite (HA) of nonliving enamel as well as the
living mineralized tissues (dentin, cementum, bone) is main-
tained by ion exchange via percolation. Dental modeling and
remodeling can occur to a limited degree, but only bone is
continuously turned over with apposition and resorption
[13–17]. The mineral component of all mineralized tissues
evolves over time by ion exchange via fluids percolating
through the microporosity of hard tissue [6, 18, 19]. An inter-
nal decrease in the mass of mineralized tissue may be revers-
ible, but external degradation of teeth is irreversible [19].
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Osteopenia and osteoporosis (OP) have a prevalence of ~55%
and >10% respectively so low skeletal mass is the most com-
mon form of bone demineralization [20, 21]. Dental deminer-
alization disorders have a much higher prevalence: 85–100%
worldwide, and almost everyone (~100%) is affected over a
lifetime (Fig. 1) [22–27]. Loss of mineralized tissue has pro-
found clinical manifestations such as relatively atraumatic
fractures and pain [21, 28], as well as compromises in
dentofacial esthetics, function, and well-being [22–26].

Dentistry and medicine are closely related disciplines; reg-
ular dental care is directly related to overall health and well-
ness [29]. Demineralization disorders affect all mineralized
tissues. The pathogenesis is variable but typically involves
some form of acidic demineralization: environment, clastic
cells or microbes [12, 14–16]. Biomechanics is essential phys-
iology for mineralized tissue, but excessive or inadequate
loading may be pathologic. OP is a metabolic problem often
associated with insufficient weight-bearing exercise [30].
Occlusal wear facets are manifestations ofmechanical attrition
associated with a gritty and/or acidic diet as well as
parafunctional habits (chronic clenching or bruxism) [31].
Bruxism (grinding) results in severe attrition of teeth, but
chronic clenching (static loading) is associated with tooth frac-
tures as well as temporomandibular joint (TMJ) degeneration
[32]. Dental erosion, abrasion, and abfraction often have a
dual etiology involving acidic demineralization and mechan-
ical flexure [25–27].

Caries is a chronic bacterial infection due primarily to
Streptococcus mutans [33–36]. It is communicable; the
sterile mouth of a newborn child is inoculated with the
virulent cariogenic bacteria. Dental caries is by far the most
prevalent human disease in the world resulting in an annual
loss of worldwide productivity of more than USD$27 bil-
lion [23], and the overall burden is increasingly among
adults [22, 24]. In addition, caries is a major detriment to

military readiness [34] that may be most efficiently man-
aged with remineralization procedures prior and during de-
ployment [35]. Because it is primarily an infectious demin-
eralization disorder, the pathogenesis of caries is discussed
in detail in part II of this review. However, the interactive
pathophysiology of carious and noncarious lesions is rele-
vant for part I.

Mineralized tissues are relatively rigid elements capable of
resisting environmental challenges. Health and disease in the
oral cavity are related to the specific development and mor-
phology of craniofacial hard structures. Oral demineralization
may result in substantial health problems. Emphasis on pre-
vention and early treatment is the most expedient approach
[36]. Enlightened management of dental disease requires a
careful consideration of the similarities and differences be-
tween the dentition and the skeleton [37]. A tooth is a hybrid
structure, septic crown with a sterile root, that is designed for
heavy function. Enamel is a nonvital mineralized tissue with
optimal properties to withstand the challenging oral environ-
ment [38]. In contrast, bones, dentin, and cementum are vital
biologic tissues formed by osteoblasts, odontoblasts, and
cementoblasts, respectively. These anabolic cells extend liv-
ing processes into adjacent mineralized tissues composed of
collagen matrices [18, 19, 39]. Noncollagenous proteins such
as osteopontin [40] and extracellular matrix proteins [41] reg-
ulate mineralization. HA is a crystalline form of calcium
(CA++), hydroxyl (OH−), and phosphate ions (PO4

−3). It is
the biologic mineral configuration for bones, teeth, and skin,
but it is rarely encountered in geologic structures (natural
rocks) [42]. Organic matrices for teeth and bones are specifi-
cally cross-liked and configured to accommodate the nucle-
ation and crystal growth of HA crystals. Examination of the
metabolism and pathophysiology of mineralized structures
reveals similarities relative to acid resistance, mechanical
loading, and susceptibility to infection [19, 25, 26, 43, 44].

Fig. 1 The upper aspect of the
flow chart defines the etiology of
demineralization as a
combination of acid,
biomechanics, and percolation of
intercrystalline fluid.
Demineralization is defined as a
unique disease process. There are
differential effects on the sterile
bone and septic dentition
compartments. Loss of
mineralized tissue (osteopenia,
noncarious cervical lesions, and
caries) is collectively the most
pandemic disease in the world
(prevalence ~100%). See text for
details
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Developmental Morphology

Collectively, the stomatognathic system supports three
principal life support functions: breathing, mastication,
and mating success [45, 46]. The maxilla and mandible
are secondary bones that evolve following the embryonic
patterning of the skeleton. After development of the gut,
neural crest cells differentiate and migrate to the ventral
surface of the embryo. They induce pharyngeal and facial
mesoderm to form the specialized musculoskeletal struc-
tures of the head, pharynx, and neck [46]. Teeth develop
within the jaws, erupt into the oral cavity, but remain an-
chored in bone. The vital root of a tooth is connected to the
supporting alveolar process by a periodontal ligament
(PDL), a stress-bearing, connective tissue interface that
has bone modeling capability similar to periosteum [14,
37, 47]. Biomechanics, T-lymphocytes, and RANK-L con-
trol the site-specific osteoclastic resorption in the PDL
similar to other osseous tissues [37, 47, 48]. Modeling is
defined as a change in size or form of a bone [14] and
remodeling is turnover: resorption of an internal cavity
that is refilled with new bone [16, 17]. Both cell-
mediated processes help adapt the functioning dentition
to its supporting bone. Bone size and morphology are con-
trolled by biomechanics: physiologic loads delivered by
muscles, soft tissue posture, or applied mechanics [14,
37, 47]. Teeth can demonstrate anabolic modeling in the
pulp chamber by forming reactionary or reparative dentin
in response to varying forms of inflammatory stimuli,
most notably dental caries [49, 50]. In addition, there are
two types of catabolic modeling that involve clastic cells:
cervical [27] and mechanically-mediated root resorption
(Fig. 2) [51]. Both of these resorption disorders are similar
to the catabolic bone modeling of osteoclasts [14]. The
only cell-mediated structural turnover for teeth is second-
ary cementum formation to refill a root resorption cavity
[37, 52]. Similar to bone, the dentition develops under
sterile conditions within the maxilla and mandible. Teeth
erupt through osseous tissue and mucosa resulting in the
crown emerging into the septic environment of the oral
cavity. In addition to dental-related support for mastication
and respiration, the oral cavity participates in a complex
physiology that affects systemic health at multiple levels
[52].

All mineralized tissues are patterned by a unilateral genetic
process, so, one side of the body is the mirror image of the
other [39]. Long bones are patterned as primary events during
passive embryonic development, i.e., prior to muscle devel-
opment. However, the maxilla and mandible evolve as sec-
ondary structures in a dynamic environment after the muscles
of mastication are formed and functioning [45, 46]. The teeth
are subsequently patterned within the jaws by the dental lam-
ina. There is little environmental influence on tooth size and

shape, e.g., antimeres are nearly identical bilaterally. On the
other hand, bone form, size, and density are strongly affected
by biomechanics [53]. For instance, sidedness of the limbs can
vary considerably according to differential loading [54]. In
effect, teeth are genetic constants, but mature bones are envi-
ronmental variables.

Dental Components

The articulating crowns of teeth require a strong, dense, and
stable material that is resistant to acidic attack and heavy load-
ing. As the hardest substance in the body, enamel is a genet-
ically distinct mineralized tissue that achieves its high density
by a catabolic macromolecular mechanism [55] rather than
mineralization of a collagen matrix [14, 37]. Forming dense
enamel involves a unique genetic process. HA-like crystals
(nanoribbons) form a matrix-like structure for initial mineral-
ization that resorbs during maturation to enhance the density
of an HA rod (prism) within its less mineralized sheath
[55–57]. However, the initiation of enamel mineralization is
like osteogenesis. Nucleation of the initial HA crystals form
an individual prism via mineralized collagen fibers from the
dentin that extend into the developing enamel [56]. Enamel
formation involves unique matrix proteins: amelogenin,
ameloblastin, and enamelin. In addition, proteases MMP-20
and KLK4 function during the secretory and maturation
phases, respectively [57]. Amelogenins act as nanospheres
(spacers) for the growth of enamel crystals (rods). To achieve
maximum tissue hardness and density, the organic matrix for
the developing enamel is digested and removed during the
maturation process as the rods are mineralized [55–59].
Thus, enamel evolves as a living tissue that becomes nonvital
with maturity.

It is a noncellular, avascular tissue that protects underly-
ing vital tissues (dentin and pulp). Enamel is a rigid tissue
that is susceptible to traumatic fracture, crack propagation,
and acidic demineralization. Contamination with ions like
carbonate can render it more soluble [35, 36]. If the enamel
is breached or malformed, the long-term prognosis for the
affected tooth is questionable [60]. Enamel surfaces are
composed of dense HA rods arranged in a configuration
that is a similar for all primates [61]. The hybrid nonvital
and vital morphology of teeth permits function as mastica-
tory “battering rams” that transfer heavy loads to sterile
supporting bone [4, 37, 62]. Dentin is a vital tissue
sandwiched between a vascularized dental pulp and
nonvital enamel (Fig. 2). The dentino-enamel junction
(DEJ) is the vital frontier at the terminal ends of the dentinal
tubules which are extensions of the odontoblasts that line
the pulp. The DEJ is a critical patterning structure that is
formed early in tooth development [63, 64]. Dentin forms
first and then it induces enamel at the DEJ interface. Once
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the enamel of the crown is patterned, dentin continues to
grow in an apical direction to form the root. The mechanism
involves β-catenin induction of Hertwig’s epithelial sheath
to form root dentin which is subsequently covered with
vital cementum [65]. The interface of enamel and root ce-
mentum at the cervical margin of the crown is the
cementoenamel junction (CEJ). Enamel is well designed
to resist heavy loads, thermal gradients, chemical attacks,
and sustained masticatory function [56]. Heavy impact
loads are subsequently transferred to supporting bone [62,
66]. Under physiologic conditions, fatigue failure (sponta-
neous fracture) of teeth is controlled by: (1) PDL sensitivity
to limit loading, and (2) physiochemical mineral turnover
(demineralization, remineralization) to maintain material
integrity [19, 48, 66].

Teeth form in protected tooth buds within the jaw bones.
After emerging into the oral cavity, a tooth has a limited ca-
pacity for growth as evidenced by completion of root and apex
formation. Crown trauma and malformation are not physio-
logically repairable because enamel is a nonvital tissue. On the
other hand, dentin and cementum are vital tissues, so a frac-
tured root that is reduced and well-stabilized in an alveolus
can heal much like a fractured bone via resorption of trauma-
tized tissue, and formation of new cementum as well as dentin
[49, 50, 67]. Furthermore, the pulp of traumatized tooth can
revascularize to restore tooth vitality [68]. The closest parallel
in bone physiology is when dead cortical bone (a sequestrum)
remodels with vascularized cutting/filling cones to form vital
secondary osteons [13, 16, 17].

Comparative Physiology

In contrast to the limited growth and healing capacity of teeth
[49, 50], bone is a highly adaptive mineralized tissue that
grows, resorbs, remodels, adapts, and heals in a dynamic en-
vironment over a lifetime [13–17]. Osseous modeling, remod-
eling, and bone mass are controlled by hypothalamic, genetic,
mechanical, endocrine, and inflammatory signals [37, 69–71].
Lamellar bone achieves toughness to resist fracture via a
cross-lined collagen matrix that is progressively mineralized
[37]. Osteoblasts produce new bone matrix that must mature
for 7–10 days prior to primary mineralization which is the
active deposition of about 70% of the total bone mineral.
The partially mineralized new osseous tissue undergoes a
physiochemical secondary mineralization for the following
6–12 months to complete the bone formation process [14,
37, 66]. Secondary mineralization increases the hardness and
stiffness of bone tissue [72] via a crystal growth process that is
like the internal remineralization of enamel [19, 33, 35].

Metabolic activity of the dentition pales in comparison to
the skeleton. Teeth play no direct role in Ca++ hemostasis, but
all mineralized tissues probably participate at least indirectly.
Osteocytes and their canalicular processes transport Ca++ be-
tween the bone fluid compartment and bone lining cells.
Vitamin D–dependent cell membrane transport pumps Ca++

out of bone lining cells into the extracellular fluid (ECF) [37,
66, 73], which supports serum Ca++ levels [73, 74]. Cyclic
demineralization and remineralization in concert with remod-
eling (turnover) repair microdamage and support calcium

Fig. 2 Labial (left) and cross-
sectional (right) planes of a
maxillary premolar show dental
structures: enamel (E), dentin (D),
pulp, cementum (C), dentino-
enamel junction (DEJ), and
cementoenamel junction (CEJ). A
noncarious cervical lesion
(NCCL) is depicted in both
planes. The multifactorial
etiology for a NCCL is (1)
toothbrush abrasion, (2) dietary
acid, and (3) functional flexure.
The line of force for non-axial and
lateral loads (dotted lines)
produce surface flexure in tension
and compression that results in
mechanical damage at the stress
riser (star) along an enamel
surface or within the maximum
depth of a NCCL. See text for
details
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homeostasis (Fig. 1) [73–77]. In addition, osteocytic
osteolysis [75] supports serum Ca++ levels in both health
and disease by promoting resorption around lacunae and can-
aliculi. Teeth are susceptible to age-related fatigue failure that
may require clinical extraction or restoration [78]. On the oth-
er hand, bone has the potential to avoid spontaneous fracture
by repairing microdamage accumulation with ongoing remod-
eling (turnover) [13, 16, 17, 37, 76]. Bone remodeling not
only repairs microdamage but also helps to support serum
Ca++ levels [14, 73–75]. It bears repeating that the body of
the mandible has the highest cortical bone remodeling rate in
the body [4••] because of extensive linear and torsional flexure
[2, 3]. In addition, the mineral fraction of bone is continuously
modified with cell-mediated homeostasis as well as physio-
chemical ion exchange [73, 74]. Ultimately, osteopenia is a
metabolic bone disorder reflecting long-term negative calcium
balance. However, to a certain extent low bone mass is phys-
iologically reversible [70, 71, 73, 74]. Decreased muscle mass
and grip strength (sarcopenia) are reliable indicators for re-
vealing prevalence of osteopenia (47.8%) and osteoporosis
(20.7%) in women aged 60–79years (Fig. 1) [79]. Internal
demineralization of enamel is best managed by prevention
and remineralization strategies [35, 80–82]. However, loss
hard tissue on the surface of teeth by attrition or erosion is
irreversible [83–85]. Extensive wear of the dentition is an
indication for surgical and restorative procedures [62, 78].

Percolation of Mineralized Tissue

Enamel rods are organized as linear prisms oriented perpen-
dicular to the DEJ. In a cross-sectional view, rods are shaped
like keyholes [85] and separated by the peripheral inter-rod
substance that originally guided the mineralization of each
prism [38]. Since enamel functions under challenging septic
conditions, it must be resistant to mechanical, chemical, and
microbial attack [83–87]. As a nonvital tissue, the stability of
enamel depends on its dense HA structure, low solubility po-
tential, and continuous mineral maintenance by demineraliza-
tion and remineralization [19, 80–82]. Microporosity within
dense enamel is permeable to water and ions but not to larger
structures such as microbes, biofilm, and food. In addition,
enamel is resistant to demineralization because of a high sol-
ubility product that renders it less susceptible to acidic attack
[87–89].

Clinically, sound enamel appears to be a solid prism, but
the HA crystals are actually separated by small intercrystalline
spaces that are more prominent in the rod sheaths [81, 89–93].
Hypomineralization creates a slightly porous structure that
contains increased water and organic material [89–91]. This
pattern of differential mineralization is associated with chang-
es in modulation of the enamel-forming cells (ameloblasts)
during the maturation stage [59, 92]. The rod sheath mineral

(inter-rod substance) is not as tightly packed so it can serve as
a path for acidic demineralization [93]. This problem is best
controlled by percolation of optimal levels of fluoride ions
(F−) to form a gradient of fluorapatite (FA) that is most con-
centrated at the enamel surface. Fluoride-rich apatite is
deemed FA.Micropores connecting the intercrystalline spaces
allow enamel to function as a semi-permeable material [55,
80, 81] that restricts bacteria and large molecules, but allow
the passage of water and ions, particularly Ca++, PO4

3−, OH−,
and F−. Enamel like all other mineralized tissues is exposed to
continuous cycles of mineralization and demineralization [19,
33, 89]. The continuous percolation of ionic fluid through the
mineral fraction provides deep remineralization of HA which
may involve substitution of F− for OH− to produce FA− [89].
This mechanism is more efficient for inter-rod substance
(enamel sheath) because it has greater intercrystalline porosity
[93]. Mineralized tissue fluids contain Ca++, PO4

3−, and OH−

ions that are released from or deposited into the HA fraction.
Like bone [6, 94], there is a constant percolation of fluids and
ions through enamel and dentin into the vascularized pulp.
The flow of water and ions, particularly optimal levels of F−,
through the dental mineralized tissues plays an important role
for maintaining and adapting the mineral fraction (Fig. 1) [56,
80–82]. There are no reports that fluid flow through dental
tissues supports systemic metabolism, but all mineralized tis-
sues probably contribute to mineral homeostasis directly or
indirectly.

There is a posterior flow of saliva from the minor, sublin-
gual, and parotid salivary glands through the mouth and down
the pharynx into the esophagus [95]. Saliva contains buffers
such as bicarbonate to help control acidity in the diet and that
produced by oral bacteria [96]. Similar to the extracellular and
bone fluids of osseous tissue, water, and ions from the saliva
flow into and through exposed oral hard tissues. Enamel is
typically the oral interface for mineralized tissue with saliva,
but cementum and even dentin may be exposed in the oral
cavity if there is soft tissue recession and abrasion. As teeth
erupt, saliva forms a thin coating of acquired pellicle on enam-
el surfaces. Pellicle is a protein layer rendering enamel less
susceptible to demineralization [96–98]; however, it also
serves as the base for plaque which may contribute to both
caries and acidic erosion in a septic environment [98]. The
closest parallel in bone physiology for dental pellicle is the
thin layer of unmineralized osteoid which protects new bone
from surface resorption.37

Fluorine

Fluorine in its ionic form F− is an important physiologic var-
iable for mineralized tissue structure and function [94, 99,
100]. Sodium fluoride (NaF) via the diet, oral administration,
and/or drinking water [99] is very effective for preventing
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demineralization particularly when optimal levels of the ion
are present in ECF at the time the outer layers of enamel are
formed (say age 2–10years) [101–103]. Despite broad-based
opposition to fluoridation for many years, there are no sci-
entific risks with F− use as promoted in dentistry [104, 105].
However, the accumulative dose of F− including absorption
spikes in ECF should not exceed 1part per million (ppm) to
avoid fluorosis [106]. With respect to noncavitated white
spot lesions (WSLs), F− is a double-edged sword. F−, Ca++,
and PO4

3− are relatively small ions that readily penetrate the
intercrystalline spaces of enamel to achieve remineraliza-
tion [80–82, 101–103]. A high dose of topical F− may be
counterproductive because it contributes to a dense
(hypermineralized) surface veneer of FA that inhibits the
flow of the Ca++ and PO4

3− through enamel [80–82]. The
physiologic demineralization and remineralization cycle is
an effective mechanism for introducing optimal doses of F−

deep into the mineral component of all mineralized tissues
[80, 89, 94]. Bone achieves demineralization of fully min-
eralized tissue with osteocytic osteolysis [75] or subsurface
channeling via osteoclasts [15]. Enamel mineral can turn-
over via percolation through intercrystalline micropores
[97, 98] or subsurface demineralization and remineraliza-
tion [19, 33]. Internal demineralization contributes to po-
rosity of bone [20, 21] and enamel [80–82, 101–103].
Metabolism of the osseous fluid compartment is mediated
by calcitropic hormones [107]. Endocrine factors are
known to contribute to ameloblast function [108],
osteolysis [75], and bone fluid metabolism [37, 66, 107],
but there is no evidence for hormonal control of fluid per-
fusion through teeth.

Incorporation of F- into HA is a substitution for OH−

[109••]. HA is a sparingly soluble material with the chemical
formula Ca10(PO4)6(OH)

2, but spaces in the crystal matrix
render it susceptible to acidic attack. The relatively rigid crys-
tal structure is bound together with electrostatic forces that
increase exponentially as the distance between positive and
negative ions decreases (Coulomb’s law). Since F− is smaller
and more electronegative than OH−, substituting F− for OH−

results in tighter packing of the ions into an apatite crystal
lattice. This configuration stabilizes the matrix by increasing
the attraction forces between the cations and anion [109••].
Fluoride-rich apatite is deemed FA. FA is a tightly packed
apatite crystal that is less susceptible to acidic attack, so it is
a very important factor in prevention, pathogenesis, and treat-
ment of dental demineralization [110–116].

The problemwith optimal fluoridation of teeth and bones is
the precise control of F− levels in saliva and ECF. If they are
too low, inadequate FA is formed, but excessive F− levels,
even if only transient, are toxic to mineralized tissue forming
cells: osteoblasts (bone), ameloblasts (enamel), odontoblasts
(dentin) [99, 106]. Optimal F− in the public water supply is
more effective than oral administration for an optimal F−

effect in all age groups [89, 99, 100]. For young children still
forming teeth, fluoridated tooth paste must be carefully ad-
ministered to avoid fluorosis particularly if the water supply
is also fluoridated [103–106]. Adolescents and adults achieve
FA protection on the outer surface and within the enamel rods
via cyclic remineralization of enamel. Since everyone is ex-
posed to some degree of natural F− in the diet and water
supply, it is hypothesized that FA formation via percolation
is more common in the enamel sheath compared to the rod
because of its naturally more porous mineral structure [93].
Optimal levels of F− in saliva increases demineralization re-
sistance of the inter-rod substance by forming a gradient of FA
that progressively decreases from the enamel surface. This is
an important factor in caries pathogenesis (part II), but it is
also a consideration in noncarious dental erosion (Fig. 2).

Hardening of dental enamel surfaces with variations of F−

treatment is effective for deceasing most forms of chemical
and mechanical destruction of the dentition [24, 25, 27]. In
addition, aminomethacrylate copolymer has the potential to
enhance the anti-erosive effect of F− solutions [115].
Stannous chloride enhances the protective effect of NaF.
When dentin is exposed in cervical lesions, silver-diammine-
floride (SDF) and potassium-iodide (KI) harden the exposed
surface and have an antibacterial effect [115, 116].

Based on excellent caries control in dentistry, F− was eval-
uated for the treatment and prevention of OP [117–122].
Clinical trials of orally administered F− increased bone min-
eral density in the spine, but typical OP fractures were elevat-
ed because of the decreased mechanical strength of fluorotic
bone [117, 118]. It was hypothesized that oral administration
of F− resulted in transient peaks that produced osseous fluo-
rosis. Devices for slow release of NaF validated the efficacy
and safety of F− treatment for OP when optimal levels were
maintained [119]. Re-evaluation of the original negative data
for F− treatment is indicated [120]. The previous conclusion
that F- was not effective for treatment for OP [117, 118] was
based on two experimental problems: (1) inconsistent defini-
tion for the level of osteopenia and (2) inadequate control of
F− levels [119]. Subsequent studies that combined oral NaF
and estrogen demonstrated that mineral density is more read-
ily controlled than the incidence of vertebral fractures [121].
Fluoride at about 1ppm in the water supply has a protective
effect against OP fractures, but the fracture rate increases at
levels >4ppm [122].

Overall, medicine experienced the same problems as den-
tistry in the use of F− to prevent and treat disease. It is very
difficult to control spikes in the F− level from oral doses.
Fluorotic bone formed under ideal conditions (<1ppm F−) is
more resistant to bone resorption much like FA incorporation
into enamel. However, even a slight increase or transient
spikes in F− levels may result in enamel fluorosis and weak
fluorotic bone [117, 118]. Fluoride supplements mediate their
actions through specific genetic signaling pathways, so a level
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that results in fluorotic enamel and bone in one individual may
not in another [123]. All considered, the US Public Health
Service decreased the recommended F− concentration in water
to 0.7 mg/L (or 0.7 ppm) to balance the prevention of demin-
eralization against the risk of dental fluorosis [99].

Biomechanics

Function, locomotion, and flexure of teeth and bones is
thought to enhance fluid percolation through bones and teeth.
However, exposure to repetitive mechanical loads results in
accumulation of fatigue damage [76]. Mineral crystals have a
limited capacity to maintain material integrity in a functional
environment via fluid percolation, but the sensing mecha-
nisms if any for mineral adaptation are unclear. Fluid perco-
lates through enamel and optimizes physical properties by
maintaining crystalline integrity of HA [124]. Formation of
FA further stabilizes the mineral component and inhibits de-
mineralization. However, the demineralization protection is
probably a gradient favoring the enamel surface because for-
mation of FA results in denser mineral that inhibits fluid flow.
Dental loading induces a transient flux in the microporosity
fluid which may produce mechanical signals at the dentinal
interface (Fig. 2) [124]. The DEJ is a very sensitive area well
known to restorative dentists because a patient must be well
anesthetized to achieve pain-free operative dentistry when the
DEJ is surgically penetrated. The physiologic biomechanics
of enamel and DEJ function are difficult to study [125], but
the mechanism can be indirectly evaluated following radiation
therapy. Conventional wisdom (Frost) [16] holds that
radiation-induced caries is due to decreased saliva production.
However, a high level of therapeutic radiation directly dam-
ages enamel by decreasing its crystallinity and disrupting DEJ
function. This compromise in normal enamel physiology con-
tributes to radiation-induced caries [125].

Pathologic Perspectives

Mineralized tissues are affected by a broad array of biologic,
chemical, and mechanical signals (Fig. 1) [33, 102]. It is clear
that teeth can be severely damaged by noncarious demineral-
ization, but most of the fundamental research on deminerali-
zation has focused on infectious caries [104, 126••, 127••].
Progress in understanding the pathophysiology of demineral-
ization requires removing the variable of infection. However,
caries must be integrated into the discussion because it is the
most common clinical disorder. For example, acidic erosion
of enamel (demineralization) is a complex process involving
subsurface porosity (white spots) covered with a thin residual
layer of intact enamel (3–9μm thick) [127••]. These important
studies indicate that demineralization is not just a progressive

surface erosion, but also involves remineralization of previ-
ously decalcified matrix much like initial enamel rod forma-
tion [38]. These data document how rapidly enamel can dete-
riorate when coated with plaque, but also show the potential
for remineralization of residual matrix when a progressive
lesion is arrested. The specific pathogenesis for dental caries
is outside the scope of this report, but it will be discussed in
detail in part II. However, a review of caries research is pivotal
for defining the mechanism of demineralization, particularly
via acidic erosion.

Loading is directly related to increased bone mass, en-
hanced repair of microdamage, and demineralization in a
sterile environment (Fig. 1); however, inadequate loading
(disuse atrophy) results in a loss of bone mass by osteoclas-
tic resorption [4, 14, 37, 39]. Since teeth do not have the
turnover capability of osseous tissue [16, 17], they are sus-
ceptible to fatigue damage, i.e., cracks and fractures due to
the mechanical loading of occlusion and parafunction.
Flexural loading of teeth may create surface cracks that
enhance demineralization particularly in stress risers at the
base of cervical lesions (Fig. 2). Acidic demineralization is
the mediator of mineralized tissue loss by either erosion or
cell-mediated resorption [13, 16, 17, 24, 25]. Cellular
(clastic) resorption within the oral cavity is rare, but it does
occur with trauma-related cervical resorption near the gin-
gival margin [112]. These often extensive lesions may be
mistaken for root caries in a clinical or radiographic evalu-
ation [112, 128]. The etiology of cervical resorption is
probably an immunologic response to injury [129] rather
than erosion, abfraction, or caries [35, 36, 104, 127••].
Teeth may appear discolored for many reasons including
white spot formation, yellowing of enamel, root caries, cer-
vical erosion, pulp necrosis, and/or the extensive secondary
dentin formation with aging [104, 111, 128, 130].

A unique developmental process for enamel produces the
most dense calcified tissue in the body: ~96% inorganic mate-
rial (HA) and 4% organic material and water by weight
[55–58]. In comparison, osseous tissue with the greatest min-
eral density is a nonvital sequestrum [131] and the abnormal
bone of osteogenesis imperfecta (OI), i.e., brittle bone disease
[132]. Medication-related oral necrosis of the jaw (MRONJ)
results in exposed oral bone sequestra [131]. Under the influ-
ence of resorption-suppressing medications, e.g.,
bisphosphonates and denosumab, large sections of oral bone
may die and hypermineralize to form a sequestrum particularly
in areas of osseous infection [128]. Subsequently, compro-
mised mucosa covering the nonvital sequestrum atrophies be-
cause there is no vascular supply traversing the dead bone,
thereby exposing an MRONJ lesion in the oral cavity.
Accelerated mineral deposition to form enamel, bone seques-
trum, and OI bone may involve substantial incorporation of
trace elements (Sr, Zn, and Cu) which affects mechanical prop-
erties [133]. However, hypermineralized sequestra [131] and
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OI bone [132, 134] are still at least 50% mineralized collagen
so they are not nearly as hard or resorption resistant as enamel.
Indeed, enamel is a unique genetic tissue that has no peer
among other mineralized tissues relative to density, strength,
rigidity, and hardness [38, 55–58].

Demineralization

The term is defined as leaching of Ca++ and PO4
−3 ions from

the investing or supporting matrix of a mineralized tissue.
Plaque often collects near gingival margins, so the cervical
region of a crown is threatened by acid related demineraliza-
tion as well as noncarious ablation effects due to lateral or
non-axial dental loading (Fig. 2). The rod sheath, or inter-
rod substance that connects each rod to adjacent prisms, plays
an important role in enamel formation, maintenance, and re-
mineralization [38, 127••]. The interprismatic substance also
mineralizes, but not as densely as the adjacent enamel rods.
Although an enamel surface appears to be a solid structure,
there is microporosity particularly in the inter-rod substance
which is susceptible to preferential FA remineralization and
yellow staining [130].

All dental mineralized tissues exposed in the oral cavity
are susceptible to demineralization. Loss of mass is due to
attrition, abfraction, erosion, or abrasion and/or caries [22,
25, 135, 136]. Under either sterile or septic conditions, the
disease process involves both chemical and mechanical fac-
tors (Figs. 1 and 2). Bones respond to mechanical loading
and metabolic factors in a sterile environment. Acidosis
and/or inadequate loading contributes to osteopenia [137]
particularly in estrogen-deficient females [138]. On the oth-
er hand, mechanical loading enhances osseous mass but it
contributes to loss of dental mineralized tissue (Fig. 1) [16,
17, 25, 76, 87, 135]. Among the mineralized tissues, enam-
el is most resistant to net deterioration reflecting an imbal-
ance favoring demineralization over remineralization [33,
39, 102]. However, even enamel is susceptible to an inter-
action to an array of detrimental factors such as dietary acid,
gastric reflux, mastication, parafunction, or bacterial infec-
tion [33, 39, 101, 104, 135].

Mechanical Lesions

In contrast to bone surfaces controlled with cellular activity,
attrition, abrasion, and abfraction affect the surfaces of teeth.
Abrasion is tooth wear in a septic (oral) environment.
Degeneration is a pathophysiologic feature that elicits varying
signs and symptoms. Bone attrition in the knee is usually quite
painful as evidenced by the clinical course for osteoarthritis
(OI) [11]. On the other hand, dental attrition and TMJ degen-
eration may be debilitating, but the loss of mineralized tissue

in the jaws rarely results in physical pain [32, 45].
Parafunction (clenching and/or bruxism) is often a clinical
feature of TMJ dysfunction. Physiologic stress, anxiety, and
depression are common factors in the clinical course of tem-
poromandibular disorder (TMD) [32, 45, 139]. Excessive
functional activity may result in tired or sore facial muscles,
but the marked facial pain attributed to TMD is usually
myofascial in origin (muscle spasms) [139, 140]. Wear of
enamel per se does not result in pain because it is a nonvital
tissue; however, tooth fracture or erosion extending to the vital
DEJ and dentin may elicit sensitivity and pain [67, 68, 141].
Severe dental wear and fractured teeth are more common with
parafunction of neurologic origin particularly when medica-
tion is required [142, 143]. Thus, restoration of a worn or
damaged dentition due to parafunction requires strong, wear-
resistant materials [78]. However, TMD management focuses
on the etiology: stress, anxiety, and depression [32, 45, 139].

Mechanical wear of the dental mineralized tissues is
deemed attrition or abrasion. Attrition refers to functional oc-
clusal surfaces while abrasion is hard tissue loss on other oral
surfaces (buccal or lingual). Enamel may be worn away by a
gritty diet, functional occlusion, or parafunction [139–146].
On the other hand, cervical (class V) lesions are surface de-
fects near the gingival margin. They are rarely in occlusal
contact but may be sensitive lesions (Fig. 2). Cervical lesions
are immediately coronal to the gingival margin and have a
common prevalence of 85% with incidence of 18% [27].
They are classified according to etiology as erosion, abrasion,
or abfraction [25–27]. An acidic diet particularly with low pH
beverages like carbonated soda and wine demineralize enamel
surfaces. Most foods including phytoliths (minute mineral
particles) in plants are known to be abrasive. Superimposing
mechanical factors such as toothbrush abrasion, coarse diet,
and compressive flexure (abfraction) increases the prevalence
of cervical lesions. The defects are usually on buccal surfaces
of the dentition and are particularly common for teeth exposed
to crown flexure due to heavy mastication or parafunction
[25–27].

Mineral loss within enamel may be reversible, but surface
attrition of teeth is a permanent loss of mineralized tissue [10,
85]. The wear of enamel is minimal with normal mastication,
but bruxism and/or clenching are damaging long term
[143–145]. Conventional wisdom (Frost) [16] holds that brux-
ism is a nocturnal habit, but that concept was not confirmed in
a well-controlled sleep study [144]. Managing diurnal
(daytime) parafunction requires a revision in clinical strategy
[146]. Daytime clenching is also associated with clear aligner
therapy [147].

Habitual, stress-related nocturnal clenching subjects the
dental tissues to fatigue failure which may be manifest as split
teeth, cusp fractures, and TMJ degeneration [32, 45, 148].
Bruxism results in excessive wear and it is particularly prev-
alent in stressed females [145]. Cracks in the outer enamel
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layer are common, but propagation is constrained by the radi-
ating pattern of the rod structure [149, 150]. With normal
saliva output, cracks rarely become carious. However, crack-
related caries is common in patients with decreased salivary
flow due to head and neck radiation [151], or methamphet-
amine abuse [152]. On the other hand, sustained loss of inter-
nal mineral from deep cervical lesions (Fig. 2) may result in
tooth fracture, pulp inflammation, and devitalization, as well
as periapical bone infection [27].

Treatment of dental attrition, abrasion, and TMJ degenera-
tion is controversial. In the absence of profound structural
damage, dental abrasion is relatively innocuous, and its man-
agement is often a patient-driven process based on self-
perceived esthetics [153]. However, attrition (wear facets)
and myofascial pain associated with TMD are typically man-
aged with hard methyl methacrylate or soft ethylene-vinyl
acetate orthotics. These are occlusal coverage devices com-
monly referred to in dentistry as “splints” but the preferred
term in medicine is an orthotic (device to control movable
parts). An occlusal coverage orthotic distributes the functional
loads over the entire arch. The device physically protects teeth
from bruxism, the most common form of dental attrition
[154], but no effectiveness in managing mechanical overloads
(abfraction) has been demonstrated. However, dental flexure
can be controlled with a neurologic orthotic to control biting
strength [59] as will be described below. Prevention and
interceptive care to control the progression of cervical defects
is preferred because restoration of the lesion(s) is challenging.
Cervical defects affect most of the population say 60%, but the
prevalence can be as high as 85% over a lifetime. Teeth dem-
onstrating mechanical lesions should be carefully monitored
to confirm the lesions are not progressing prior to restorative
procedures (Fig. 2) [155, 156].

Erosion

Erosion can potentiate the demineralization of mechanical le-
sions, so cervical defects are classified according to etiology
[27]. Acidic foods and beverages may demineralize exposed
enamel, cementum, and dentin (Fig. 2); remineralization can
be accomplished with HA and F- gels [157]. The acidic foods
commonly associated with erosion are citrus fruits, pickles,
and vinegar [158]. They may be consumed directly or as in-
gredients in recipes. There is a preference for acidic beverages
in the western diet because they are refreshing particularly
after physical exertion and they “clear the palate” for better
appreciation of food. Beverages with high acid content in-
clude carbonated soda, citrus-based drinks, and wine.
Natural fruit tannins are prevalent in higher quality wine
which may have a pH 3.5 or less. The European culture of
wine and cheese consumed together is a wise social strategy.
The cheese buffers the acidity of the wine, tends to adhere to

enamel surfaces, and supplies both calcium and phosphate
ions for remineralization.

Overall, the dental erosive potential of the diet depends on
the frequency, acidic strength, and the buffering capacity of all
foods or ingredients consumed during the samemeal or snack.
Gastric regurgitation when associated with the frequent purg-
ing or other eating disorders may result in severe erosion par-
ticularly along the palatal surfaces of the maxillary dentition.
Monitoring and treating this disorder [159–161] requires the
support of psychology services. Salivary proteins and partic-
ularly hemoglobin protect against dental erosion related to
gastric esophageal reflux disease (GERD) [159]. Assessing
GERD damage on a regular basis is good clinical practice.
Bioluminescence is a novel method for assessing patterns of
demineralization on tooth surfaces exposed to erosion [161].
Stannous ions (Sn++) in mouth wash at 200 ppm or more help
protect teeth from erosion [160].

Combined Etiology

Mechanical flexure producing surface tension or compression
may produce surface micro-cracks in the cervical region that
facilitate demineralization particularly in an acidic environment
[25, 135, 136]. Lateral or non-axial loads on the crown of a
tooth result in flexure in the cervical area near the CEJ and soft
tissue margin. This is the critical section: plane of maximal
flexure in a restrained body such as a tooth firmly anchored
in bone. A stress riser on a tooth produced by lateral or non-
axial loads is an area where the stress is significantly greater
than the surrounding region. The length of the crown relative to
supporting bone usually indicates the stress riser is located on
the buccal or lingual surface in the cervical area (Fig. 2).
Demineralization in the cervical area is potentiated by exposure
to dietary acidity. The combination of environmental acidity
and moderate flexural loading produces cervical erosion that
tends to be broad with relatively smooth surfaces [24, 135].

Abfraction in the cervical area of the crown occurs when
occlusal forces elicit pronounced flexure in the buccal or lin-
gual plane that is perpendicular to the long axis of the tooth
(Fig. 2). From a mechanical perspective, this is the critical
section (greatest cross-sectional stress) for a restrained body
[162]. Mineralized tissue (enamel, dentin, cementum) at the
location of the stress riser occlusal to the CEJ are exposed to
compressive and tensile stresses which cause microfracture and
sluffing of mineralized tissue particles. This mechanically in-
duced demineralization process is enhanced by an acidic envi-
ronment or toothbrush abrasion (Fig. 2). When abfraction is the
predominate etiology, cervical ditching is V-shaped and pro-
gressive because the deepest part of the lesion continues to be
the stress riser (Fig. 2). Cervical lesions are hygiene problems
that may retain plaque, support caries, elicit a hypersensitivity
reaction, and result in loss of pulp vitality [27, 163].
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It is unknown if orthodontics contributes to cervical lesions
associated with abfraction and abrasion, but the potential is
certainly a concern. There is some indirect evidence for cra-
niofacial anomaly patients that tooth movement contributes to
tooth sensitivity and cervical lesions in some patients [164]. It
is unlikely the relatively low static force (<3N) for orthodontic
tooth movement is a direct risk because functional occlusal
loads are hundreds of times greater. However, moving teeth
does create transient occlusal interferences that may result in
damaging tooth flexure that contributes to cervical abfraction.
This mechanism of dental flexure has been described for the
initiation of root resorption in genetically predisposed patients
[165]. In addition, fixed appliance patients may tend to brush
in a horizontal plane that produces abrasion in the cervical
region (Fig. 2). Furthermore, enamel surfaces are altered when
fixed appliances or aligner attachments are removed [166,
167]. It is unknown if altered enamel surfaces are predisposed
to abfraction, but roughened enamel surfaces may retain
plaque and facilitate caries [88]. Careful study to determine
the incidence and nature of cervical lesions in orthodontic
patients is indicated.

Effective management for mechanical destruction of teeth
requires a thorough diagnosis and comprehensive treatment plan.
Nocturnal and/or diurnal parafunction may contribute to
abfraction. This problem is best controlled with a neurologic
orthotic, i.e., a Hawley bite plate that opens the posterior bite
slightly. It should not be worn at mealtimes to avoid extruding
molars. Night wear is prescribed for nocturnal parafunction [59].
Daytime wear other than mealtime is indicated for diurnal
parafunction [146]. Slight opening of posterior occlusion inhibits
the polysynaptic reflex [168], thereby blocking the maximal con-
traction of mandibular elevator muscles. Suppressing nocturnal
clenching and bruxism by inhibiting this reflex arc is effective for
managingmechanical overload of the dentitionmanifest as TMD
[169], and TMJ degeneration [32, 45]. Attrition, erosion, abra-
sion, abfraction are controlled by correcting the diet, use of oc-
clusal orthotics, careful hygiene procedures, and avoiding heavy
loading of the dentition [163, 168, 169].

Noncarious Cervical Lesions

A common clinical manifestation of cervical erosion, abra-
sion, and/or abfraction is deemed noncarious cervical lesions
(NCCLs). These unique problems in dentistry are quite prev-
alent (~50%) overall, but they are most common in adults
(>60%) [84–87]. NCCLs are manifest as a loss of mineralized
tissue along the tooth surface near the gingival margin inde-
pendent of caries (Fig. 2). The etiology is abrasion, erosion,
and occlusal trauma (wear facets) [86]. The etiology is vari-
able, but flexure of teeth due to mechanical loading is a com-
mon feature of the disease process. Non-axial (lateral) loads
associated with habitual clenching (parafunction) produce a

surface flexure in the cervical area that exceeds the known
failure stresses for enamel [87]. The maximum depth of a
NCCL is a stress riser when the tooth is flexed, so abfraction
tends to form and deepen a V-shaped lesion (Fig. 2). The focus
on treatment should be controlling the etiology (parafunction)
rather than restoration of the NCCLs. As previously men-
tioned, a neurologic orthotic (Hawley biteplate with slight
posterior open bite) is effective for controlling parafunction
between meals [32, 45, 168, 169].

NCCLs are a perplexing problem because a cervical lesion
extending into dentin may result in tooth sensitivity [164] and
pain which is difficult to differentiate from root sensitivity in
adults with soft tissue recession. Furthermore, the presence of
plaque in a previous NCCL may facilitate caries that infects
the pulp [33, 36]. In addition, acidic lozenges, tablets, and
mouth rinses may potentiate demineralization [170, 171].
Caries is a serious complication for previous NCCLs in cer-
vical and root areas because the width of dentin is relatively
thin near the cementoenamel junction (Fig. 2). An active le-
sion can rapidly invade the pulp, devitalize the tooth, and
infect its supporting bone. Biofilm studies in bone suggest a
virulence to destroy osteogenic cells and degrade osseous tis-
sue that is independent of host immunity and osteoclastogen-
esis [172–175]. Thus, dental biofilm infections of periapical
bone may be an increasingly serious problem.

Conclusion

Demineralization of hard tissue involves biomechanics, me-
tabolism, immune signaling, diet, and unhealthy lifestyle.
Detrimental habits, psychologic stress, and infection can also
play a role. Inadequate osseous structure is defined as
osteopenia, but if it is severe and/or symptomatic, the diagno-
sis is OP. The etiology is typically an excessive resorption due
to biomechanics (disuse atrophy) and metabolism (negative
calcium balance). In the absence of dental caries, loss of tooth
structure is usually attrition, abrasion, erosion, and abfraction.
To effectively manage dental demineralization, diet, hygiene,
and stressful lifestyle must be controlled. If the differential
diagnosis indicates that parafunction is a contributing factor,
a neurologic orthotic may be indicated indefinitely. Incidence
and prevalence of NCCLs is a particular concern for elective
dental treatment such as orthodontics.
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