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Abstract Ninety percent of clinical drug development fails despite implementation of many successful

strategies, which raised the question whether certain aspects in target validation and drug optimization are

overlooked? Current drug optimization overly emphasizes potency/specificity using structure‒activity-

relationship (SAR) but overlooks tissue exposure/selectivity in disease/normal tissues using structure‒tis-

sue exposure/selectivityerelationship (STR), which may mislead the drug candidate selection and impact

the balance of clinical dose/efficacy/toxicity. We propose structure‒tissue exposure/selectivityeactivity

relationship (STAR) to improve drug optimization, which classifies drug candidates based on drug’s po-

tency/selectivity, tissue exposure/selectivity, and required dose for balancing clinical efficacy/toxicity.

Class I drugs have high specificity/potency and high tissue exposure/selectivity, which needs low dose

to achieve superior clinical efficacy/safety with high success rate. Class II drugs have high specificity/po-

tency and low tissue exposure/selectivity, which requires high dose to achieve clinical efficacy with high

toxicity and needs to be cautiously evaluated. Class III drugs have relatively low (adequate) specificity/

potency but high tissue exposure/selectivity, which requires low dose to achieve clinical efficacy with

manageable toxicity but are often overlooked. Class IV drugs have low specificity/potency and low tissue

exposure/selectivity, which achieves inadequate efficacy/safety, and should be terminated early. STAR

may improve drug optimization and clinical studies for the success of clinical drug development.
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1. Why 90% of clinical drug development fails?
Drug discovery and development is a long, costly, and high-risk
process that takes over 10e15 years with an average cost of over
$1e2 billion for each new drug to be approved for clinical use1.
For any pharmaceutical company or academic institution, it is a
big achievement to advance a drug candidate to phase I clinical
trial after drug candidates are rigorously optimized at preclinical
stage. However, nine out of ten drug candidates after they have
entered clinical studies would fail during phase I, II, III clinical
trials and drug approval2,3. It is also worth noting that the 90%
failure rate is for the drug candidates that are already advanced to
phase I clinical trial, which does not include the drug candidates in
the preclinical stages. If drug candidates in the preclinical stage
are also counted, the failure rate of drug discovery/development is
even higher than 90%.

Analyses of clinical trial data from 2010 to 2017 show four
possible reasons attributed to the 90% clinical failures of drug
development: lack of clinical efficacy (40%e50%), unmanageable
toxicity (30%), poor drug-like properties (10%e15%), and lack of
commercial needs and poor strategic planning (10%)2,4. Gener-
ally, drug development follows a classical process (Fig. 1), which
includes vigorous genetic and genomic target validation, high-
throughput screening (HTS) of drug candidate molecules, rigor-
ously drug optimization for activity and drug-like properties,
preclinical efficacy and toxicity testing, and biomarker-guided
selection of patients and optimal clinical trial designs. In the
past few decades, each step of the above drug development has
been rigorously optimized and validated, while many successful
strategies have been rightfully implemented in the drug develop-
ment process to select the best drug candidates for clinical studies.
Despite this validated effort, the overall success rate of clinical
drug development remains low at 10%e15%5e7. Such persistent
high failure rate raises several questions: Why 90% of clinical
Figure 1 The process of drug discovery and d
drug development fails despite implementation of many success-
ful strategies in the past several decades? Did we overlook certain
aspects of drug development process leading to high failure? How
can we improve the success rate of clinical drug development?
2. What are the successful strategies to improve each aspect
of drug development process in the past decades?

2.1. Select best lead drug candidate to achieve adequate
clinical efficacy

Since 40%e50% of clinical failure of drug development is due to
lack of clinical efficacy, tremendous effort has been devoted to
improving drug efficacy in preclinical and clinical studies. In the
target validation process, the disease targets have been rigorously
confirmed using genetic, genomic, and proteomic studies in cell
lines, tissues, preclinical models, and human disease models5,7e12.
However, true validation of any a new molecular target in human
disease is challenging before a drug can be successfully developed
since biological discrepancy among in vitro, in disease animal
model, and human disease may hinder the true validation of the
molecular target’s function8e12. This discrepancy makes the
development of the first-in-class drugs difficult. In the drug
screening process, both virtual computation screening and HTS of
chemical libraries have often been conducted to select the best
scaffold and eliminate non-specific binding to the targets6,7,12,13.
The artificial intelligence (AI) and machine learning computa-
tional tools further improve the computation-aided drug design
process14,15. HTS using protein-based biochemical assays, cell-
based phenotypical assays, or organism-based assays improve
the efficiency and specificity of the hits6,7. During drug optimi-
zation process, the lead compounds are extensively optimized
through structureeactivity relationship (SAR) to achieve high
evelopment, and the failure rate at each step.
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affinity and specificity to their molecular targets (with Ki or IC50 at
low nmol/L or pmol/L range) and to limit off-target effect16e20.
However, the validation of the pharmacological effect of a drug
molecule is a result of drug’s inhibition of its intended molecular
target may also be challenging since the pharmacological effect
(efficacy and toxicity) of the molecule may be due to the inhibi-
tion of some unknow molecular targets12. Interestingly, some
drugs have been successfully developed even though their targets
are different from their intended targets as reported previously12.
In such case, however, the drug optimization using SAR to an
intended target may mislead the optimization effort. During pre-
clinical testing, the compounds are usually tested and optimized to
show excellent efficacy in preclinical animal disease models.
Many animal models have been established to mimic human
disease conditions, although finding best animal models to fully
recapitulate the disease phenotype or pathophysiology of human
disease remains a challenge5. During clinical study process,
clinical trial design and dose regimen selections from phase I to
phase III have been rigorously optimized. In addition, genomics
and genetic biomarkers have also been extensively used to select
patients for clinical trials to improve the success rate of drug
development21. It worth noting that most of drug discovery effort
(before clinical studies) have been rightly devoted in these studies
to select the best lead drug candidates with validated molecular
targets related to human diseases. However, high proportion of
many “perfect” drug candidates still failed during clinical phase I,
II, and III studies. Although those above drug discovery efforts are
well justified, overemphasis of these above effort, which is the
current practice in drug discovery, may be helpful, but may not
solve the persist high failure rate of clinical drug development.

2.2. Select best lead drug candidate to minimize clinical toxicity

Various strategies have been used in toxicology studies to mini-
mize drug development failure due to unmanageable clinical
toxicity22,23. Drug’s toxicity could be resulted from either off-
target or on-target inhibition of the molecular targets. In order
to reduce off-target toxicity, drug screening against other targets is
usually performed24,25. For instance, development any kinase in-
hibitor often needs to be screened against other several hundred
kinases. The selectivity of disease related kinase target vs. other
kinase targets are often calculated by the ratios of their IC50, in
which at least 10-fold selectivity is preferred. On the other hand, if
a drug candidate has on-target toxicity, which is caused by the
inhibition of the disease related target, the solution is limited
where titration of dose regimen may be helpful. Further, drug
candidates are often evaluated if they would inhibit several known
toxicity targets in the major vital organs. For instance, in vitro and
in vivo hERG assays are usually performed as a predictive marker
of cardiotoxicity (lethal torsade de pointe arrhythmia) of the lead
compounds26. Finally, drug candidates may also cause chemical-
induced toxicity without clear known targets. Toxicogenomics is
often used for early assessment of potential toxicity14,27. Structure
of drug candidates may need to be further modified for mini-
mizing drug‒protein adducts or drug‒DNA adducts for reducing
potential organ toxicity28. In vitro/in vivo animal studies are al-
ways conducted for potential genotoxicity and carcinogenicity22.
In practice, acute and chronic toxicity of the drug candidates,
which mimics clinical dose regimen, are always examined in three
species of animals23. Since there may be difference between an-
imal models and humans, during clinical trials, the dose regimen
is often optimized using various approaches to maintain the
therapeutic windows with adequate efficacy and manageable
toxicity23. However, regardless drug candidates have off-target or
on-target toxicity to a molecular target, the accumulation of drug
candidates in the vital organs or blood cells is one of the major
factors for toxicity. Unfortunately, there is no well-developed
strategy to optimize drug candidates to reduce tissue accumula-
tion in the major vital organs to minimize the potential toxicity.

2.3. Select best lead drug candidate with optimal drug-like
properties

Poor drug-like properties contributed to the 30%e40% drug
development failures in the 1990s; but they only account for
10%e15% of drug development failures today29. This improve-
ment benefits from rigorous selection criteria for drug-like prop-
erties during drug optimization, including solubility, permeability,
protein binding, metabolic stability, and in vivo pharmacokinetics,
such as bioavailability (F ), drug exposure (AUC), Cmax, t1/2,
clearance CL, and volume distribution V30. Certain cut-off values
of these drug-like properties have been used as criteria to select
the best lead compounds. The “rule of 5” have been considered in
chemical structure design: (1) less than 5 H-bond donors; (2)
molecular weight less than 500; (3) cLogP less than 5; (4) less
than 10 H-bond acceptors31. A polar surface area of less than 140
A2 is also desired32. In vitro permeability of more than
2 � 10�6e3 � 10�6 cm/s is preferred for better oral absorption33.
Pre-formulation and formulation studies are conducted to increase
drug solubility and improve oral bioavailability based on the
biopharmaceutical classification system34,35. In vitro microsomal
stability t1/2 > 45e60 min is preferred. Meanwhile, preclinical
pharmacokinetics are rigorously performed to select lead com-
pounds with suitable drug-like properties with bioavailability F >
30%, half-life t1/2 > 4e6 h, and clearance CL < 25% hepatic
blood flow Q36,37.

It is important to note that clinical drug development failure
due to poor drug-like properties has been significantly improved in
the past 20 years29, which suggests the right strategy in drug-like
property optimization. However, overall success rate of clinical
drug development has not been significantly improved and
remained at low of 10%e15%. However, although all in vitro and
in vivo assessment of drug-like properties are well developed and
well justified, the current selection criteria using plasma phar-
macokinetics, which may or may not guide the correct selection of
lead drug candidates to be advanced to clinical trials. Drug can-
didates with better plasma exposure are often selected to advance
to clinical studies, while drug candidates with low exposure in the
plasma are often eliminated without further development38,39.
However, the clinical dose/efficacy/toxicity of drug candidates is
determined by the effective drug exposure/selectivity in the
disease-targeted organs vs. normal organs, but current drug opti-
mization process in drug candidate selection has not fully utilized
a criteria to assess drug exposure/selectivity in the disease-
targeted organs vs. normal organs, which may have misled drug
candidate selection40. The assumption, which the drug plasma
exposure may be used as an indicator of therapeutic exposure in
disease-targeted tissue, is based on the “free drug hypothesis” to
select lead drug candidate. This hypothesis believes that only free
unbound drug from plasma (not plasma protein bound drug) can
distribute to disease-targeted tissues to interact with its molecular
target; while free drug exposure in the plasma would be similar to
the disease-targeted tissues at steady state41,42; and thus drug
exposure in the plasma can be used to predict the
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pharmacodynamic effect of the drug candidate. However, this
“free drug” hypothesis may only apply to a limited class of drug
candidates but not applicable to many other compounds since
many factors can cause an asymmetric free drug distribution be-
tween plasma and tissue42e64. Therefore, drug exposure in the
plasma, without knowing the exposure in disease-targeted tissue/
normal tissues, may mislead the selection of drug candidate to
clinical trials51e53,65.

2.4. Optimize strategic planning in drug development

Poor strategic planning, which may include change in therapeutic
focus, company mergers, or poor clinical study conduct, accounts
for 10% of drug development failures2. The merging of pharma-
ceutical companies may increase the number of duplications of
drugs that is forced to terminate2,4. All pharmaceutical companies
have developed meticulous development plan with a detailed
roadmap and milestones to advance new compounds from the lab
through each stage of development. A multidisciplinary project
team of experienced experts often work together in strategic
planning with the help of various business models and analytic
tools66. Artificial Intelligence (AI) has brought state-of-the-art
analytical tools that enable pharmaceutical companies to predict
patients’ needs and market trends in a more efficient and cost-
effective way14.

3. What are the overlooked aspects in drug discovery/
optimization leading to high failure rate of clinical drug
development?

3.1. True target validation, which confirms the molecular target
is the cause of human disease and drug’s intended target, is still
challenging for the success of clinical drug development

Two types of target validations need to be rigorously investigated
for any drug discovery and development program8,9,16e20. One
type of target validation is to confirm a molecular target is indeed
a cause for human disease. Although this type of target validation
is extensively studied using various genetic or genomic method-
ology in in vitro cell lines, in animal disease models, and in human
disease models, the biological discrepancy of a molecular target
remains between in vitro and in vivo or between disease in animal
and human10. In reality, a molecular target would not be fully
validated until a successful drug is developed, which poses the
challenges for first-in-class drug discovery and development.
Another type of target validation is to confirm if a molecular target
is the intended target of the drug molecules, which is usually
confirmed by the specificity/affinity to bind the molecular target
through SAR studies16e20. The pharmacological effect of the drug
molecules can be compared to the effect of genetic alteration of
the target using siRNA knockdown or CRISPR gene editing11,12.
However, validation of drug target is still challenging since drug’s
pharmacological effect (efficacy and toxicity) may be resulted
from inhibition of unknown molecular targets that may be
different from their intended targets12, which subsequently impact
the drug optimization process as described below. Interestingly,
some drugs have been successfully developed even though their
targets are different from their intended targets as reported pre-
viously12. Indeed, many challenges still remain for these two types
of target validation, which may cause high failure rate of clinical
drug development as discussed previously8,9. However, even if the
targets are truly validated, many drug candidates still have high
failure rate in clinical phase I, II, and III trials, which highlight the
importance of drug candidate optimization process as described
below.

3.2. Current drug optimization may have overemphasized one
aspect but overlooked others that may mislead drug candidate
selection and impact the balance of clinical dose/efficacy/toxicity

3.2.1. Optimization of two aspects of lead drug candidates is
required in the current drug optimization process
During drug optimization, two major aspects of the compounds
are rigorously optimized: (1) the potency and specificity of the
lead compounds to inhibit the molecular target are rigorously
optimized through SAR, where low Ki or IC50 at low nmol/L or
even pmol/L range is desired to achieve better efficacy and
decrease off-target effect; and (2) drug-like properties of the lead
compounds are also extensively optimized using certain cut-off
values as acceptable criteria for drug solubility, permeability,
stability, protein binding, and plasma PK parameters. Despite
significant efforts to improve each aspect of the drug development
process in the past few decades, the success rate of drug devel-
opment remains at 10%e15%5e7. The persistent high failure rate
raises questions as to whether some aspects of drug optimization
are overlooked despite the validated molecular targets.

3.2.2. The balance of drug exposure/selectivity in disease-
targeted tissues vs. healthy tissues is overlooked in drug
optimization that may mislead drug candidate selection and tip the
balance of clinical dose/efficacy/toxicity
In clinical drug development, a delicate balance needs to be
achieved among clinical dose, efficacy, and toxicity to optimize
the benefit/risk ratios in patients. An ideal drug candidate would
have high potency and specificity to inhibit its molecular target
without off-target effect, high drug exposure in disease-targeted
tissues to achieve adequate efficacy at an optimal dose (ideally at
low doses), and minimal drug exposure in healthy tissues to avoid
toxicity at optimal doses (even at high doses). However, the cur-
rent drug optimization process may have overly emphasized the
potency/specific using SAR studies but overlooked the balance of
drug exposure/selectivity in disease-targeted tissues vs. healthy
tissues, which may have misled the drug candidate selection,
tipped the balance among clinical dose/efficacy/toxicity, and
caused high clinical failure rate.

The drug candidates, which are selected using current drug
optimization criteria, usually show good efficacy in vitro and in
animal models if an adequate dose is given. However, once a drug
candidate is selected and advanced to clinical trials, one of the
most important questions is whether patient could tolerate the
toxicity when the adequate efficacy is achieved. The clinical drug
development failure due to the lack of efficacy often does not
mean the drug candidates do not work, but it is most likely
because these drugs could not show satisfactory efficacy in the
disease-targeted organs even at maximal tolerable dose (MTD)
that already showed toxicity in healthy organs. These drugs would
surely show efficacy at disease-targeted organs at a dose above
MTD, but patient cannot tolerate the higher dose in the healthy
organs. On other hand, the clinical drug development failure due
to the unmanageable toxicity is most likely due to the fact that it
showed toxicity at normal healthy organs even at low dose before
the drug can achieve any efficacy in disease-targeted organs.
Therefore, the success/failure of clinical drug development
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depends on a delicate balance among clinical dose, efficacy in
disease-targeted organs, and toxicity in normal healthy organs.
Therefore, it is important to test whether the drug candidates can
reach adequate exposure in disease-targeted organs without too
much drug exposure in healthy normal organs. However, these
aspects are not considered during drug optimization process,
which may mislead lead drug candidate selection and impact the
balance of clinical dose/efficacy/toxicity. This may be one of the
overlooked attributes in drug optimization process, which
contribute to the high failure rate of clinical drug development
despite validated molecular targets.

Fortunately, during the optimization of drugs targeting central
nerve system (CNS), the drug exposure in the brain or drug’s
ability to cross blood‒brain barrier (BBB) are always a selection
criteria for drug candidate selection52,54e57,67, in addition to the
optimization of SAR and drug-like properties. It is well accepted
that if a drug candidate has difficulty penetrating BBB to reach
brain tissue, it will not achieve adequate efficacy, which shall be
terminated early in drug development.

However, drug optimization in other therapeutic areas rarely
adapt a criterion to ensure drug exposure in the disease-targeted
organs vs. normal organs. For anticancer drug discovery, target
engagement is indeed often assessed in xenograft model, or oc-
casionally in human tumor resection58e62,68e71. However, how
structure modifications of the drug molecule may alter drug
exposure in the tumors vs. normal tissues is rarely assessed with
an assumption that high plasma drug exposure is adequate to
achieve high tumor exposure. In clinical trials of anticancer drugs,
the target engagement is often monitored in peripheral blood
mononuclear cells (PBMC) for clinical dose selection since
PBMC can be easily obtained in clinical studies. However, target
engagement in PBMC is known to be a poor surrogate biomarker
that is easily saturated at low doses while target engagement in
tumor tissues is barely adequate. It is widely accepted that dose
optimization based on plasma drug exposure for target engage-
ment in PBMC is only a reference and starting point for dose
optimization in solid tumors and eventual doses that achieve
maximal tumor inhibition or regression are much higher than the
dose that yields maximal target engagement in blood. Once dose
escalation is performed in clinical studies, the suboptimal balance
of clinical dose/efficacy/toxicity may lead to clinical development
failures.

For instance, analysis of U.S. Food and Drug Administration
(FDA)-approved EGFR inhibitors (gefinitib, lapatinib, erlotinib,
and vandetanib) showed that similar pharmacophore with certain
modifications have distinct indications to treat very different
cancer types with various anticancer efficacy72e75. However, their
SAR and drug-like properties of these EGFR inhibitors cannot
fully explain their distinct clinical anticancer efficacies and tox-
icities. The structure modifications may significantly impact their
drug exposure in different tumor types that may significantly
contribute to their anticancer efficacy (unpublished data), in
addition to SAR and drug-like properties. Similarly, several suc-
cessful BTK inhibitors, such as ibrutinib, acalabrutinib, and
zanubrutinib showed distinct efficacy/toxicity profiles76,77, while
spebrutinib failed at early clinical trial78. In addition to the drug
specificity/potency and drug-like properties, their tissue exposure
in the disease-targeted organs vs. normal organs may also
contribute their efficacy/toxicity, which needs further studies.

In addition, analysis of FDA-approved or clinical failed selective
estrogen receptor modulators (SERMs) also showed slight structure
modifications may alter the balance among clinical dose, clinical
efficacy and toxicity, which may impact its success in clinical
development79e83. For instance, more than 600 clinical trials have
been conducted for SERMs clinical development, where 11 SERMs
have been approved and many SERMs have been failed in clinical
studies81e83. Some of SERMs have very similar structureswith only
very slight modifications, yet they have shown distinct efficacy in
various indications to treat breast cancer, osteoporosis, and meno-
pausal symptoms. Their SAR and drug-like properties cannot fully
explain the difference among their clinical dose, efficacy, and
toxicity79e83. The previous study showed that slight structure
modifications may significantly alter drug exposure and drug
selectivity in different tissues (such as tumor, fat pad, and bone),
which impacts their clinical dose, efficacy and toxicity40.

Further, the most recent example of antiviral drug remdesivir
for treatment of COVID-19 also demonstrates the importance of
drug exposure in the disease-targeted tissue vs. normal tissues for
the delicate balance of dose/efficacy/toxicity. Remdesivir only
showed very limited clinical efficacy for treatment of COVID-19
despite good in vitro activity against severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2)84,85. At a dose of 100 mg,
the exposure/selectivity of remdesivir and its active metabolites
may be too low to achieve outstanding efficacy in the lung to kill
the SARS-CoV-2 virus, but too high in the kidney to cause
toxicity86. In addition, many methods have been used to estimate
drug concentrations of anti-infective agents in the lung for their
studying their efficacy on disease modulation37,53.

These examples clearly demonstrate that drug candidate se-
lection and the delicate balance for clinical dose/efficacy/toxicity
are not only determined by SAR and drug-like properties, but also
impacted by the balance of drug exposure in disease-targeted
tissues vs. normal healthy organs, which is often overlooked in
drug optimization and clinical studies.

4. How to improve drug optimization to select better drug
candidates, balance clinical dose/efficacy/toxicity, and improve
success rate of clinical drug development?

The success of clinical drug development will be determined by
best drug candidate selection and the delicate balance among
clinical dose/efficacy/toxicity, in addition to true target validation.
The balance of clinical dose/efficacy/toxicity of a drug candidate
in human trials is not only determined by its potency/specificity to
inhibit its molecular targets (through SAR studies), but also by its
exposure/selectivity in disease-targeted organs vs. normal organs
(through structure‒tissue exposure/selectivity relationship, STR).

We propose a structure‒tissue exposure/selectivityeactivity
relationship (STAR) system to improve drug optimization process.
STAR system classifies drug candidates into four different classes
(I‒IV) based on three aspects: drug potency/selectivity to inhibit
the molecular target using SAR studies with IC50 or Ki (high or
low); drug tissue exposure/selectivity using STR studies (high or
low); dose requirement for balancing clinical efficacy/toxicity
(high or low). The four different classes of drug candidates
(classes I‒IV) require different strategies to select lead drug
candidates, optimize clinical doses, and balance clinical efficacy/
toxicity. Successful application of STAR will improve the effi-
ciency of drug optimization and clinical studies for four different
classes of drug candidates to improve the success rate of clinical
drug development (Fig. 2).

In this STAR system, SAR explores structural modifications that
alter the compound’s binding affinity and specificity to the molecular
target. Drug potency and specificity can be optimized using SAR to



Figure 2 Structure‒tissue selectivity/exposureeactivity relationship (STAR) selects better drug candidates and balances clinical dose/efficacy/

toxicity to improve drug optimization for successful clinical drug development.
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obtain compoundswith lowKi or IC50 at low nmol/L or pmol/L range
for better efficacy and lower toxicity6,7,87. SAR studies have been
well established and validated in the current drug optimization pro-
cess. In addition, STR studies structural modifications that changes
drug exposure/selectivity in disease-targeted tissues vs. normal
healthy organs, which not only impacts lead compound selection
during drug optimization process, but also determines the balance
among clinical dose/efficacy/toxicity in human trials40,88. However,
STR studies have not been well established in drug optimization
process and clinical trial design. Further, the balance of clinical ef-
ficacy/toxicity is always dose-dependent. A delicate balance among
clinical dose/efficacy/toxicity always needs to be achieved for a
successful clinical drug development to optimize the benefit/risk
ratios in patients.
4.1. Class I

Class I drug candidates have high specificity/potency against their
molecular targets (Ki < several hundred nmol/L by SAR studies)
and high exposure/selectivity in disease-targeted tissue (by STR
studies). A lowdose is required for class I drug candidates to achieve
adequate efficacy. Toxicity is low in healthy organs, benefiting from
high disease tissue selectivity and low tissue exposure/selectivity in
normal organs. Class I drugs may have either high or low drug
exposure in the plasma. Class I drug candidates are most desirable
and will have the highest success rate in clinical trials with balanced
clinical dose/efficacy/toxicity. For instance, the following success-
ful approved drugs are likely to be the class I drugs, such as antiviral
drug sofosbuvir (NS5B polymerase inhibitor), cholesterol treatment
drug atorvastatin (HMG-CoA reductase inhibitor), and erectile
dysfunction treatment drug sildenafil (PDE5 inhibitor), and
anticancer agent acalabrutinib (BTK inhibitor). It is worth noting
that some of class I drugsmay also have high exposure/selectivity in
both disease-targeted tissues and some normal organs (related to
toxicity) compared to drug exposure in the plasma, which may have
both high efficacy and high incidence of adverse events. The
following drugs are likely to be these types of examples, such as
anticancer agents vandetanib (VEGFR/RET/EGFR inhibitor),
tamoxifen (SERM), pomalidomide (E3 ligase inhibitor), and
doxorubicin (TOPO I inhibitor).

4.2. Class II

Class II drug candidates have high specificity/potency against
their molecular targets (Ki < several hundred nmol/L by SAR
studies) and low tissue exposure/selectivity in disease-targeted
tissue (by STR studies). To achieve adequate efficacy in disease-
targeted tissues, high doses are often required for class II drug
candidates due to their low exposure/selectivity in disease-targeted
organs. However, toxicity may become unmanageable because of
the high dose and low tissue exposure/selectivity in diseased tis-
sues (but high tissue exposure/selectivity in normal organs).

Currently, most drug optimization efforts are focused on this
class II compounds to improve their specificity/potency (Ki). The
lead compounds are often optimized to have low nmol/L or even
pmol/L IC50 or Ki. During lead drug candidate selection, com-
pounds with high plasma exposure and better plasma PK param-
eters are often selected for clinical studies39,89. However, in vivo
drug concentration in the plasma often needs to be achieved at
mmol/L for adequate efficacy, especially for anticancer drugs. One
would wonder why there is a large discrepancy between in vitro
IC50 and in vivo EC50. One of the important factors may be due to
the low drug exposure/selectivity in the disease-targeted tissues. In
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such cases, high drug exposure in plasma may mislead drug
candidate selection and poor optimization of clinical dose/effi-
cacy/toxicity. Since drug exposure in the plasma is determined by
both elimination (clearance) and distribution (drug in different
organs) processes90, drug candidates with high plasma exposure
may be attributed either to low elimination or low tissue distri-
bution. A drug with high plasma exposure but low tissue exposure
in the disease-targeted tissues may not be preferred, because low
target tissue exposure may result in inadequate efficacy. In such
cases, a high dose is often used to achieve adequate efficacy, but
such a high dose may lead to high toxicity in other vital organs91.
If a drug candidate has lower tissue selectivity and exposure in the
disease-targeted organs but higher tissue selectivity and exposure
to other vital healthy organs, it may have a narrow therapeutic
window and may not be able to reach its therapeutic concentration
due to high toxicity. Further, if a drug candidate has low selec-
tivity and exposure in both disease-targeted and healthy vital or-
gans, it may not have safety concerns even with high drug plasma
exposure in phase I studies, but it may not reach the desired ef-
ficacy in phase II/III studies. Unfortunately, we often observed
such lead compounds, which have high potency/specificity, low
tissue exposure/selectivity, high plasma exposure, good safety
profile, advertised in phase I studies with high hope, but are failed
in later phase III studies due to lack of efficacy. Therefore, class II
drug candidates should be cautiously evaluated for their in-
dications, dose optimization, and balance of clinical efficacy and
toxicity. Several drugs are likely to be class II drugs, such as
anticancer agents ibrutinib (successful BTK inhibitor), spebrutinib
(failed BTK inhibitor), and fedritinib (successful JAK2 inhibitor).
Antiviral drug remdesivir (RdRp inhibitor) is also likely to be
class II drugs if its antiviral activity is considered to be high (IC50

at low nmol/L in Calu-3 cells). However, if remdesivir’s antiviral
activity is considered to be low (IC50 at mmol/L in Vera cells), it is
likely to be classified as the class IV drugs as described below.

4.3. Class III

Class III drug candidates have low but adequate specificity/potency
against their molecular targets (several hundred nmol/L
< Ki < 1 mmol/L by SAR studies) but have high tissue exposure/
selectivity in disease-targeted tissues (by STR studies). A low to
medium dose is required for class III drug candidates to achieve
adequate efficacy. Toxicity would be manageable because of low to
medium doses, high exposure/selectivity in disease-targeted orans
and low exposure/selectivity in normal organs. Currently, class III
compoundsmayhave lowexposure in the plasma and are likely to be
overlooked. They are often terminated at the early stage of the drug
optimization process because of low plasma drug exposure. How-
ever, low plasma exposure may also be due to high tissue distribu-
tion, especially when drug candidates have good in vivo stability and
relatively reasonable bioavailability. Such compounds may have
high target tissue exposure, which is beneficial for achieving better
efficacy at low doses, while low dosesmay alsominimize toxicity in
healthy organs. These class III drug candidates may balance clinical
dose/efficacy/toxicity, which may improve the success rate from
phase I to phase III clinical trials. However, a large proportion of
these types of compounds may have been mistakenly terminated
before they could be advanced to clinical trials. It is worth noting
that the specificity and potency of class III compounds still need
IC50< 1mmol/L, since compoundswith IC50> severalmmol/Lmay
not achieve adequate efficacy regardless of tissue exposure/selec-
tivity. There arevery fewdrugs on themarkets that belong to class III
drugs since many class III drug candidates may have been termi-
nated in the early drug discovery process. The anticancer drug
Thalidomide (an E3 ligase inhibitor) is likely to be class III drugs.

4.4. Class IV

Class IV drug candidates have low specificity/potency against
their molecular targets (Ki > 1 to several mmol/L by SAR studies)
and low exposure/selectivity in disease-target tissues (by STR
studies). High doses are often required for class IV drug candi-
dates to achieve some level of efficacy but still insufficient.
Toxicity would become unmanageable because of the high dose
and low tissue exposure/selectivity in disease-targeted organ but
high tissue exposure/selectivity in normal organs. Class IV drug
candidates are the most undesirable and should be terminated at an
early stage of the drug optimization process. It is worth noting that
drug candidates with low potency/specificity (Ki > one to several
mmol/L) should be evaluated with caution during the advancement
to clinical trials, regardless of tissue exposure/selectivity. Most of
class IV drug candidates are likely failed in the clinical devel-
opment with very limited successful examples.

It is worth noting that the drug examples in each classes (IeIV)
are estimation based on their plasm PK and clinical dose/efficacy/
toxicity without experimental data since STR is not currently used
as a drug optimization process. More detailed studies are required
to accurately assign these drugs into four different classes (I‒IV)
based on their tissue exposure/selectivity in the future as described
below.

It is important to note that the true target validation is equally
important for successful clinical drug development. In addition,
the current successful strategies are valid and well justified to
overcome the four possible reasons for 90% of clinical develop-
ment failure. The overlooked STAR is one of the major factors,
but not the only one, that needs to be considered for the 90%
failure rate of clinical drug development. Application of STAR
will improve the efficiency of drug optimization and clinical
studies for four different classes of drug candidates to improve the
success rate. However, application STAR alone would not guar-
antee 90%e100% success rate of clinical drug development, but it
may significantly improve the success rate. Improvement of suc-
cess rate from 10%‒15% to 30%e40% would have significant
impact in overall drug development.

5. How to implement STAR in drug optimization process
and future perspectives

5.1. Measurement of SAR and STR

SAR studies have been widely applied in drug optimization pro-
cesses using computation-aided drug design and in vitro screening
by measuring the IC50 or Ki (nmol/L) of the compound binding to
its molecular targets based-protein assays or cell-based assays.
This has been widely reviewed previously16e20 and is not included
in this commentary. Target validation has also been extensively
reviewed previously8e12 and is not included in this commentary.

However, STR studies are rarely used as a drug optimization
criterion in the current drug optimization to select the lead drug
candidates and to balance clinical dose/efficacy/toxicity. The cut-
off values to define high or low tissue exposure/selectivity have
not been defined that requires further research. Experimentally,
STR can be measured using drug tissue exposure (AUC), partition
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coefficient Kp, tissue selectivity over all organs (%), and AUC
ratio of disease-targeted tissues vs. normal vital organs related to
toxicity. It is important to note that tissue exposure/selectivity
concept is different from volume of distribution (V) in traditional
pharmacokinetics. Tissue exposure/selectivity of a drug in each
organ will be determined by absorption/bioavailability, distribu-
tion, protein/tissue binding, metabolism of the drugs in each
organ. The tissue exposure/selectivity of each organ will be
different from another organ. Traditional volume of distribution is
a mathematical term to describe how easy a drug molecule can
distribute into tissues in general, but it cannot distinguish which
tissue is high or low.

5.2. Tissue exposure/selectivity measurement for STR

Drug tissue exposure (AUC) describes the amount of total drug
(bound and free) accumulated in certain tissues which is deter-
mined by drug exposure (AUC ) in the plasma and tissue using the
partition coefficient (Kp)

92 as shown in Eq. (1):

Drug exposure in the tissue ðAUCÞ
ZDrug exposure in the plasma ðAUCÞ �Kp

ð1Þ

where drug exposure in the plasma and tissue can be calculated
using total drug concentration vs. time curve, and Kp values can be
calculated by total drug concentrations in tissues vs. plasma
(Ctissue/Cplasma) or total drug AUC in tissue vs. plasma (AUCtissue/
AUCplasma)

92.
Drug tissue selectivity affects the therapeutic window of drugs

to balance the dose, efficacy, and toxicity. It can be described
using the two equations as shown in Eqs. (2) and (3), depending
on various experimental purposes and conditions. Drug tissue
selectivity can be described by the proportion of total drug con-
centration or exposure in certain tissues related to efficacy or
toxicity among the total drug concentration or exposure to all the
tissues as shown in Eq. (2):

Drug tissue selectivityZCtissue

.X
Ctissue or AUCtissue

.
X

AUCtissue

ð2Þ

where the sum of Ctissue or AUCtissue is the total drug concentra-
tion or AUC in the tissues. Eq. (2) is suitable for drug candidates
with unknown toxicity profiles. The measurement of drug selec-
tivity in all major tissues can provide information on the potential
toxicity of drug candidates. However, the measurement of total
drug tissue exposure in all major tissues is time-consuming and
labor-intensive; thus, it is only suitable for screening from a small
number of drug candidates.

Therefore, drug tissue selectivity can also be described by the
ratios of total drug concentration or exposure in disease-targeted
tissues related to drug efficacy to that in healthy vital organs
related to toxicity as shown in Eq. (3):

Drug tissue selectivityðratioÞZCeff

�
Ctox or AUCeff

�
AUCtox

ð3Þ
where Ceff or AUCeff is the drug concentration or AUC in tissue
related to efficacy, and Ctox or AUCtox is the drug concentration or
AUC in tissue related to toxicity. Eq. (3) can be used when major
or vital toxicity of drug candidates is clearly demonstrated and
related to one or two tissues. Eq. (3) does not require the mea-
surement of all tissue concentrations, which is less time
consuming and less labor intensive.
5.3. Measurement of total drug concentration/exposure vs. free
drug concentration/exposure for STR

It is debatable if the concentration or exposure of total drugs or
free drugs should be used for above calculations for lead drug
candidate selection according to the traditional “free drug hy-
pothesis” of small molecules. “Free drug hypothesis” suggests that
the total drug concentration in the plasma includes an equilibrium
between free unbound drugs and plasma protein-bound drugs41,93;
only free unbound drugs (but not protein-bound drugs) could
distribute to other tissues, while the protein-bound drugs serve as
reservoir in the plasma to release the free drugs41,93; the total drug
concentrations in the tissues also include the free unbound drugs
and bound drugs; only free unbound drugs can interact with their
molecular targets for pharmacological functions41,93; at steady
state, the free drug concentration in tissue is similar or equal to the
free drug concentration in plasma41,42, and thus, drug concentra-
tion or exposure of in plasma can be used to predict the phar-
macologic effects in the targeted tissues.

Although it is correct that only free drugs could engage their
molecular targets for pharmacological actions while bound drugs
could serve as a reservoir to release free drugs for pharmaco-
logical actions, it is incorrect to assume only free drugs can
distribute to other tissues based on the following reasons: (1) The
assumption of only free drugs for distribution into tissues
completely overlooks the trafficking of plasma proteins them-
selves (such as albumin) from systemic circulation to tissues. In
fact, albumin is actively transported from plasma to extra-cellular
matrix, and to tissues through FcRn and other active transport
process45, which carries fatty acids or drugs to different tissues.
Previous study found that albumin-bound small molecules (tyro-
sine kinase inhibitors) interacting with albumin-binding proteins
on vascular and in tissues, such as gp18, gp30, gp60/albondin, and
secreted protein acidic and cysteine-rich (SPARC), which medi-
ates tissue accumulation of these small molecules in normal tis-
sues, which is associated with their toxicity46. Protein-bound
drugs may also contribute higher drug accumulation in tumor
tissues than that in the normal tissues40. (2) “The free drug hy-
pothesis” is incorrect in the following situations since an asym-
metric free drug distribution between plasma and tissue occurs:
the uptake and efflux drug transporters involved in drug uptake
and extrusion (e.g., liver and brain)42e44,49; ionizable drugs
affected by the pH gradient and “lysosomal trapping” effect42,50;
drugs covalently binding to the target42; prodrugs, and protein
degraders42. It is well known that free drug hypothesis does not
apply to antibodyedrug conjugates, nanomedicine, nucleic
acids42; and drug locally administrated (e.g., inhalation)37,48,94,
which are not included in this review.

Therefore, the “free drug hypothesis” is only true in some
limited cases when drugs are passive diffused from plasma to its
target and not rapidly cleared, but it is incorrect in many other
situations42. Free drug fraction is a very important parameter in
both plasma and tissues in the drug optimization process since it
is indeed true that only free drug could bind to its molecular target
for pharmacological function. However, overemphasis of free
drug fraction in the plasma by only measuring plasma protein
binding during drug optimization process may be misleading. We
propose to use the total drug exposure/selectivity in disease-
targeted organs vs. normal organs since equilibria and transport
of both free unbound drugs and protein-bound drugs are presented
in normal tissues and disease-targeted tissues51e53. Previous
preclinical and clinical studies also directly used total tissue
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exposure or Kp (total drug in tissue/plasma ratio) to screen drug
candidates and evaluate dose dependent efficacy/toxicity54e64.
The clinical development group from AstraZeneca developed
translational Pharmacokinetics and Pharmacodynamic (PK/PD)
model, which suggests total drug levels were preferred over free
drug level for clinical PK/PD relationships48,64. The free drug
concentration in the tissues may still be very useful, which is very
difficult to measure. Its use for lead drug candidate selection may
still be debatable. Several methods are available to determine free
unbound drugs (fu) in the tissues, among which equilibrium
dialysis is the most commonly used method95. However, most of
the current methods to determine fu use tissue homogenates,
which destroys all subcellular structures and cannot truly repre-
sent free drug concentration in the tissues at the site of action42,52.

5.4. Developing in vitro high-throughput screening to study
STAR

High throughput study of SAR has been successfully implemented
in drug optimization process8,10,16e20, and thus it will not be
reviewed here. However, high throughput STR methodology is
still lacking. In the future, it would be ideal to develop in vitro
screening tools to screen STR, in addition to SAR studies, during
the early stage of the optimization process. The diffusion chamber
may provide an easy and high-throughput method for screening
tissue exposure and selectivity of drug candidates (Fig. 3A). The
amount of drug diffusion from the plasma chamber (mimicking
drug in systemic circulation) into the homogenized tissue chamber
(mimicking different tissues, such as the liver, kidney, heart, etc.)
can be measured over time. The plasma partition coefficient (Kp)
can be calculated using either total drug concentration or AUC
ratios of tissue chambers/plasma chambers over different time
points. Meanwhile, the total drug exposure and tissue selectivity
of the drugs in different tissues can be calculated using Equations
(1)e(3), which can be confirmed by correlation with in vivo tissue
exposure and selectivity in animal models.

The emergence of organ-on-a-chip technologies may also
provide a better HTS for STR (Fig. 3B and C). Organon-on-a-chip
technologies may incorporate human physiological conditions that
contribute to drug tissue exposure/selectivity. Various single-organ
chips provide tissue barriers with multicellular vascular or
epithelial interfaces of organs (e.g., blood vessel networks, the
lung, and the gut), which determines drug penetration in certain
tissues. Some organs-on-a-chip may also provide tissue-level or-
ganization, such as parenchymal cells (e.g., the liver, heart, skel-
etal muscle, and tumors), which contribute to the binding of the
drug to specific tissues96,97. Multi-organ chips or “body-on-a-
chip” could be developed to integrate multiple organ units that
mimic the entire human body and determine the STR in tissues of
different organs98.

5.5. Developing artificial intelligent (AI)-aided computation
model to evaluate STAR

AI-aided computational tools have been successfully used in 3D
protein structure prediction of molecular targets, in design of drug
molecules to inhibit the molecular target, and in study of SAR of
drug molecule interaction with its targets15,99e101. Although there
have been some attempts to use AI and machine learning tech-
nology to utilize structural information of the compounds in
predicting drug-like properties and plasma PK102,103, these new
technologies have not been used to successfully study STR. In the
future, it is ideal to use AI and machine learning for structure
representations (molecule graph notation, linear notation, or
chemical descriptors) to predict STR in lead compound selection
and clinical trial design and balance the doseeefficacyetoxicity.
For instance, physicochemical descriptors of lead compounds can
be computationally analyzed using cheminformatics. These de-
scriptors may include, but are not limited to, structural keys,
hashed fingerprints; autocorrelation, charge, logP, protein binding,
refractivity, compositional, topological, and connectivity de-
scriptors, composite descriptors from MOE (Molecular Operating
Environment), and Kappa shape indices. AI-based computation
mode can be used to analyze the relationship between chemical
descriptors and tissue exposure, tissue/plasma partition coeffi-
cient, and tissue selectivity for a selected set of compounds with
in vitro and in vivo STR data40. Once these information of
adequate number of compounds have been established by AI-
aided computation modeling, for any newly designed com-
pounds, the prediction of SAR and STR will be performed using
AI-based computation analysis before synthesis, which may
reduce effort during drug optimization. In addition, much needed
information for AI-based computation modeling for the FDA-
approved drug has already included in the NDA application
package in FDA database, such as the physicochemical properties,
14C mass balance studies in different tissues, clinical efficacies,
and preclinical and clinical toxicities. If these data can be
collected, AI-aided computation analysis can be performed to
predict STR in relationship to clinical dose, efficacy, adverse
events, and toxicity. However, this effort requires collaboration
among academia, the FDA, and pharmaceutical industry to
develop and validate these AI-aided computational tools.

Traditionally, physiologically based pharmacokinetic (PBPK)
modeling has been used to predict total drug tissue exposure from
total drug concentration in the blood (not only in the plasma),
which can be scaled from animal models to humans. However,
PBPK modeling relies on extensive tissue concentration data from
preclinical animal models, which are labor intensive. If the in vitro
screening method using a diffusion chamber or organs-on-a-chip
can be used to predict tissue exposure/selectivity, PBPK can be
established based on the in vitro screening data, which may
improve the predictive power and practical application of the STR
for lead compound selection and clinical trial design. PBPK
modeling incorporates all physiological parameters in each organ
to predict the drug concentration over time in all tissues37,104.
Presently, PBPK models have been integrated into the drug
development process and regulatory submissions with the main
purpose of qualitatively and quantitatively predicting drugedrug
interactions and scaling PK properties to humans to support
initial dose selection in pediatric and first-in-human trials37,105.
However, the prediction of a clinical tissue PK profile using PBPK
modeling is challenging for the following reasons: (1) PBPK
models constructed based on compound-specific preclinical data
are usually unable to be refined and updated with clinical obser-
vation where tissue exposure in humans is difficult to detect; and
(2) slight structure modification of the compounds may dramati-
cally alter tissue exposure/selectivity in different organs, where
traditional PBPK cannot be practically performed in real-time
decision making of lead compound selection or clinical trial
design. Some preliminary efforts have used PBPK modeling for
the translation of drug’s PK in the lung between animal species
and humans for 12 inhaled bronchodilator drugs, which were used
to study the dose-dependent clinical effect of the drugs on lung
function37,64.



Figure 3 In vitro high-throughput screening tool to study the structureetissue selectivity/exposureeactivity relationship (STR). (A) Tissue

diffusion chamber may provide an easy and high throughput screening to study structure‒tissue exposure/selectivity relationship (STR). (B)

Single-organ chips, and (C) Body-on-a-Chip integrates multiple organ units to study STR in different organs.
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5.6. Preclinical animal models to study STAR

Currently, several lead compounds selected based on their
SAR studies are routinely tested in disease animal model for
efficacy. It is feasible to test 5e10 compounds for one mo-
lecular target, which requires no further review in this com-
mentary. However, preclinical animal test of compounds for
STR studies require the measurement of drug exposure/selec-
tivity in all tissues that are labor intensive. Therefore, it is not
feasible to test hundreds of compounds in STR studies.
Therefore, it is important to decide which step of the drug
optimization process the STR studies should be implemented.
Here, we propose a feasible early stage drug optimization
strategy using STAR to select lead compounds for clinical
studies (Fig. 4). In general, approximately 200e400 com-
pounds are synthesized for SAR studies during the drug
optimization process for a single drug target. After screening
the in vitro activity for specificity and potency of these
compounds, several dozens of compounds would undergo
in vitro ADME screening (solubility, permeability, stability,
and protein binding) to select a few compounds for in vivo
pharmacokinetic studies based on plasma PK profiles. Several
compounds with acceptable plasma PK profiles should be
further tested for STR studies to determine their tissue expo-
sure and selectivity in preclinical animal models, in addition
to efficacy testing. The in vitro and in vivo activities (by
SAR), in vitro ADME, in vivo plasma PK, and in vivo tissue
exposure and selectivity (by STR) should be considered to
select the best lead compound for clinical studies, which may
improve the success rate of drug development.
5.7. Developing non-invasive imaging technologies in human to
evaluate STAR in clinical trials

Ideally, in vivo imaging technology would be tremendously useful
for studying STAR in human clinical trials to improve the success
rate of drug development. Although imaging modalities have been
used in clinical trials for drug development, currently there is no
suitable imaging technology to study STAR in clinical trials.
Dynamic position emission tomography (PET) imaging may be
used to visualize radioactivity-labeled compounds for target
engagement in vivo or observe compound tissue exposure, both of
which can be used to study STR. For instance, quantitative
assessment of target engagement provides a potential method to
visualize drug distribution and delivers direct evidence for dose
selection to achieve adequate drug exposure in the target organ to
ensure pharmacological activity88. PET imaging has been used in
the clinic to assess target engagement in tissues using radiolabeled
neurokinin 1 (NK1) receptor antagonists, which help in decision-
making in clinical trials. Clinical PET imaging studied receptor
occupancy using [18F] SPARQ, which showed that high NK1 re-
ceptor occupancy by the antagonist did not translate to therapeutic
efficacy. The PET imaging study confirmed that the lack of effi-
cacy is due to the invalid hypothesis of pharmacological mecha-
nism, but not due to the inadequate drug exposure in the brain,
which led to the decision to stop pursuing NK1 antagonist for anti-
depression or anxiety treatment106,107. Rather, the adequate drug
exposure in the brain of aprepitant, a selective NK1 antagonist,
was later approved for prevention of acute and delayed
chemotherapy-induced nausea and vomiting108. The PET imaging
study helped to optimize the dose to exhibit full central nervous
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optimization process.
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system target engagement, thereby achieving adequate efficacy
and minimize drugedrug interactions in treating cancer patients.
However, the most commonly used positron emitting radioiso-
topes decay fast with a relatively short half-life (e.g., 20 min for
C-11 and 110 min for F-18), which only allows for short-term
detection of drug tissue exposure/selectivity and target engage-
ment109. Although F-18 labeled compounds in PET imaging have
a slightly longer half-life (110 min), F-18 labeling of compounds
may alter drug exposure and selectivity in different organs, as
shown in the previous study40. The C-11 labeling of the compound
may have minimal effect on drug tissue exposure/selectivity, but it
only has an 11 min half-life. C-14-labeled compounds are widely
used in animal models and humans for mass balance studies. The
distribution studies of C-14-labeled compounds in animal models
may provide useful information in lead compound selection based
on tissue exposure/selectivity, but it is only used in humans for
mass balance studies without knowing tissue exposure/selec-
tivity110. Other in vivo imaging methods, such as magnetic reso-
nance imaging, are only able to visualize human anatomy without
the capability to visualize drug molecules in the body with
adequate sensitivity and specificity. Mass spectrometry imaging
(MSI) is currently used only to visualize drug molecules in ex vivo
tissue sections, while the hand-held probe of MSI is in the
development process; therefore, it is not yet capable of detecting
or imagining drug molecules in the human body. Clearly, more
imaging modalities for studying STAR are desired for selecting
drug candidates and balancing clinical dose/efficacy/toxicity in
the future.

6. Conclusions

In the past few decades, 90% of clinical drug developments have
failed during clinical phase I, II, and III clinical studies and drug
approval due to four possible reasons: lack of clinical efficacy,
unmanageable toxicity, poor drug-like properties, and lack of
commercial needs and poor strategic planning. Although many
successful strategies are correctly implemented to overcome the
four possible reasons of 90% of clinical development failures, the
success rate of clinical drug development remains at 10%e15% in
the past few decades. This high failure rate raises the question of
whether certain aspects of drug development are overlooked? On
the one hand, true target validation, which confirms the molecular
target is the cause of human disease and drug’s intended target, is
still challenging for the success of clinical drug development. On
the other hand, current drug optimization may have over-
emphasized one aspect but overlooked others that may mislead
drug candidate selection and unbalance clinical dose/efficacy/
toxicity.

In clinical drug development, in order to achieve a delicate
balance among clinical dose, efficacy, and toxicity to optimize the
benefit/risk ratios in patients, an ideal drug candidate would have
high potency and specificity to inhibit its molecular target without
off-target effect, high drug exposure in disease-targeted tissues to
achieve adequate efficacy at an optimal dose (ideally at low
doses), and minimal drug exposure in healthy tissues to avoid
toxicity at optimal doses (even at high doses). The delicate bal-
ance of clinical dose/efficacy/toxicity of drug candidates in clin-
ical trials is not only determined by their potency/specificity in
inhibiting its molecular targets (through SAR studies), but also by
their tissue exposure/selectivity in disease-targeted tissues and
normal tissues (through STR studies). However, current drug
optimization process overly emphasized drug’s potency/specificity
through SAR studies but overlooked drug’s tissue exposure/
selectivity in disease-targeted tissues vs. normal tissues through
STR studies, which may have misled the drug candidate selection,
impacted clinical dose optimization, and tipped the balance of
clinical efficacy and toxicity.

We propose a STAR system to improve the drug optimization
process, which classifies drug candidates into four different clas-
ses based on three aspects: drug potency/specificity (high or low),
drug tissue exposure/selectivity (high or low) and required dose
for balancing clinical efficacy/toxicity (high or low). The four
different classes of drug candidates (classes I‒IV) require different
strategies to select lead drug candidates, optimize clinical doses,
and balance clinical efficacy/toxicity. In this STAR system, class I
drug candidates have high specificity/potency and high exposure/
selectivity, which requires low dose to achieve balanced efficacy/
safety and are most desirable with a high success rate. Class II
drug candidates have high specificity/potency and low tissue
exposure/selectivity, which needs a high dose to achieve adequate
efficacy but may have unmanageable toxicity. Class II drug can-
didates need to be cautiously evaluated to balance clinical dose/
efficacy/toxicity. Class III drug candidates have relatively low but
adequate specificity/potency but high tissue exposure/selectivity,
which may require a low to medium dose to achieve adequate
efficacy with manageable toxicity. The class III drug candidates
may have a high clinical success rate but are often overlooked due
to poor plasma drug exposure at an early stage of drug discovery.
Class IV drug candidates have low specificity/potency and low
exposure/selectivity, which often requires high dose and shows
inadequate efficacy with high toxicity and should be terminated as
early as possible. In the future, the STAR system can be improved
using AI-aided computation modeling, in vitro screening, in vivo
testing, and non-invasive imaging technology. Application of
STAR will improve the efficiency of drug optimization and clin-
ical studies for four different classes of drug candidates to improve
the success rate of clinical drug development.
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