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The gastrointestinal tract is the largest compartment of the body’s immune

system exposed to microorganisms, structural components and metabolites,

antigens derived from the diet, and pathogens. Most studies have focused

on immune responses in the stomach, the small intestine, and the colon,

but the esophagus has remained an understudied anatomic immune seg-

ment. Here, we discuss the esophagus’ anatomical and physiological dis-

tinctions that may account for inflammatory esophageal diseases.

Introduction

The esophagus, besides the transport function of food,

is an organ critical for mucosal immunity. There is an

increasing awareness that antigens and metabolites

derived from microorganisms and the diet are in con-

tact with the esophagus’ mucosal immune system.

Food proteins are digested and proteolyzed by the

stomach’s low pH and proteases secreted by the pan-

creas after they have passed the esophagus. These find-

ings have led to skyrocketing numbers of studies

investigating immune responses in the small and large

intestine. However, the esophagus remains a somewhat

understudied immune organ, although it is easily

accessible by endoscopy without specific preparations

and allows biopsy sampling more straightforward than

other parts of the human intestine.

Eosinophilic esophagitis (EoE) can clinically present

with food impaction or dysphagia histologically char-

acterized by an eosinophil-predominant inflammation

(> 15 eosinophils per high power field) [1]. Worldwide,

EoE has an increasing incidence and prevalence, with

currently an incidence of 4.4–7.4 per 100 000 individu-

als per year and a prevalence of 43 per 100 000 indi-

viduals [2]. It has been shown that due to an impaired

esophageal epithelial barrier, dietary antigens, struc-

tural components of microbes, and bacterial microor-

ganisms penetrate the esophageal mucosa. The

recognition of these dietary antigens or bacterial

metabolites by esophageal epithelial cells and underly-

ing immune cells leads to an inflammation character-

ized by increased expression of Th2 cytokines, such as

thymic stromal lymphopoietin (TSLP), IL-5, and IL-

13 [3–7]. However, the cellular composition of the

mucosal immune system in the esophagus is primarily

unknown.

Moreover, studies have recently appreciated that the

esophagus has its distinct microbiome of predominantly
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gram-positive bacteria dominated by Streptococcus [8–
10]. The microbiome’s dynamic changes depending on

the ingestion of meals, nocturnal rhythms, and diseases

are beyond this review’s scope. However, they have

been anticipated as a prerequisite for changes in

immune cells’ cellular composition in health and

disease.

With few exceptions, most reviews discussing the

mucosal immune system’s structure focus on the small

intestine and colon. Considering that the esophagus’

immune-mediated diseases have an increasing inci-

dence and prevalence, in this review, we discuss the

esophagus’s immune system’s organization and point

out the specifics of the esophagus’ immune system.

The anatomic structure of the
esophagus

The esophagus is a continuous fibromuscular tube

composed of the epithelium, lamina propria, submu-

cosa, muscle layers, connective tissues, and the adven-

titia. It passes from the hypopharynx behind the

trachea and heart through the mediastinum and dia-

phragm into the stomach. The esophagus is approxi-

mately 20–27 cm long, and its explicit function is the

transportation of the alimentary bolus from the mouth

into the stomach. However, the esophagus is not only

a transit organ and also has a critical function in the

mucosal immune response. At least three layers of

squamous cells, the stratified squamous epithelium,

line the esophagus’ luminal side. The esophagus and

the oral cavity represent the upper gastrointestinal

tract (GIT) and belong, together with the vaginal cav-

ity, to the type 2 mucosal surface lined by stratified

squamous epithelium, primarily serving as a physical

protective barrier. The mucosal surface of the esopha-

gus lacks mucosa-associated lymphoid tissues, the

polymeric immunoglobulin receptor, goblet cells, and

Paneth cells in contrast to type 1 mucosal surfaces

(e.g., lower intestine, lungs, and uterus) lined by a sin-

gle layer columnar epithelium. As a consequence, the

esophagus lacks a thick mucus layer and IgA. How-

ever, one study investigating the presence of

immunoglobulins in the esophagus of HIV-infected

individuals has described IgA as the predominant

immunoglobulin in the esophagus [11]. Nevertheless, it

remains unclear whether, in immunodeficient individu-

als, IgA is secreted across the epithelium in the eso-

phageal lumen or derived from IgA-containing saliva.

It is somewhat surprising that, in contrast to the

colon, the esophagus lacks a thick mucus layer, despite

the presence of hydrogen ions (H+) and bile acids from

the stomach and duodenum. Esophageal peristalsis

and gravity in an upright position clear 95% of

refluxed acid, but ~ 5% of the refluxed stomach con-

tents remain in the esophagus [12]. The esophagus has

to neutralize hydrogen ions and bile acids, facilitated

by bicarbonate, antimicrobial peptides, and lactoferrin

containing saliva forming a soluble mucus capable of

lubrication to protect the epithelium [13,14]. The

unprotected esophageal epithelium is susceptible to

contact with food contents, hydrogen ions, and bile

acids. After entry of luminal content through the dis-

rupted epithelial barrier into the esophagus, immune

cells beneath the epithelium initiate a specific defense

mechanism to protect the esophagus.

The architecture of the squamous
epithelium as a first defense line

The esophageal squamous epithelium consists of three

distinctive layers: the stratum corneum (superficial

layer), stratum spinosum, and stratum germinativum

(basal cell layer) [15]. Each layer plays its part in

maintaining epithelial integrity to protect the underly-

ing tissue from environmental products and prevent

the development of esophageal pathologies. The glyco-

calyx covers the esophageal epithelium’s apical mem-

brane providing a robust physical barrier that shields

the esophagus from damage. In the stratum corneum,

filaggrin connects with intermediate keratin filaments

creating a lipid-protein matrix that forms an impene-

trable epithelial barrier and an intercellular glycocalyx

[16]. Moreover, intercellular junctional complexes con-

sisting of tight and adherens junctions intertwine indi-

vidual epithelial cells of the stratum spinosum, limiting

the flux of molecules, ions, and acid into the intercellu-

lar space, thereby protecting the epithelium from dam-

age. Tight junctions interconnecting cell membranes

and regulating paracellular ion-permeability are at the

apical side of the epithelium. Proteins such as claudin,

occludin, zonulin, and junctional adhesion molecules

span over the intercellular space and connect with

neighboring cells’ cytoskeleton [15]. Dysfunctional

tight junctions lead to an impaired epithelial barrier

facilitating electrolyte and fluid loss and increasing sus-

ceptibility to atopic diseases (e.g., atopic dermatitis,

asthma, and EoE). Malfunction of the tight junction

proteins (e.g., claudin and occludin) can occur in these

diseases [5,17–19]. Another crucial functional structure

represents the adherens junction consisting of the

transmembrane protein E-cadherin and the intracellu-

lar catenins and vinculin, which ensure attachment to

actin filaments. Adherens junctions are responsible for

stabilizing cell-cell adhesion, regulating the actin

cytoskeleton, and mediating intracellular signaling and
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transcription regulation [20]. The apical junction com-

plex’s most basal structure is the desmosomes that

consist of two transmembrane proteins, desmocollin,

and desmoglein. Desmosomes support the adherens

junctions in cell-cell adhesion [21]. The junctional com-

plex formation is calcium-dependent [22], as paracellu-

lar permeability increases, and transepithelial

resistance decreases after the experimental removal of

calcium in cell cultures. Consequently, esophageal stem

cells isolated from biopsies have to be cultured in a

calcium-rich medium to differentiate and generate eso-

phageal organoids [23].

When noxious agents overcome pre-epithelial and

epithelial defenses, postepithelial defense mechanisms

are in place to prevent tissue destruction. Paracellular

glycoconjugates with buffer capacity [24] and the

mucosal blood supply, which not only provides oxy-

gen, nutrients, and bicarbonate ions but also removes

metabolic byproducts, such as hydrogen ions, lactic

acid, and CO2, have protective functions for the eso-

phageal epithelium [14,25,26]. The epithelium can

renew and repair wounds after damage. Restitution is

a quick repair in minutes to hours by migrating adja-

cent viable cells to replace dead cells and close wounds

[27]. The second form of epithelial repair replaces dead

cells with newly generated viable cells by mitosis, a

more protracted process of days to weeks [28]. Fur-

thermore, immune cells located beneath the epithelium

serve as an additional firewall to remove incoming

antigens and pathogens after a barrier breach has

occurred.

Acid-induced esophagitis

When the esophagus fails to clear the reflux of gastric

content and bile acids, gastroesophageal reflux disease

(GERD) can develop. In the general population, 10–
30% of adults suffer from heartburn, retrosternal pain,

and regurgitation [29]. Obesity, hiatal hernia, delayed

gastric emptying, and chronic pulmonary disease can

increase thoracoabdominal pressure gradients and pre-

dispose to GERD [30–35]. GERD complications

include erosive esophagitis, peptic strictures, Barrett’s

esophagus with the replacement of the esophageal squa-

mous epithelium by intestinal columnar epithelia with

sequential development of dysplasia, and esophageal

carcinoma [29,36–38]. Despite symptomatic reflux, up

to 70% of GERD individuals do not develop esopha-

geal erosions [39]. Microscopically, dilated intercellular

spaces are also present in nonerosive reflux disease

[40,41]. It has been suggested that chronic acid exposure

induces epithelial cells to secrete pro-inflammatory

cytokines resulting in a mucosal immune cell infiltrate

dominated by neutrophils and eosinophils, causing ero-

sions [42]. This hypothesis gives a potential explanation

as why macroscopic changes are absent in nonerosive

reflux characterized by potentially lower acid exposure,

mostly preserved esophageal clearance, and the absence

of a pro-inflammatory cytokine signature [42–44]. These
studies received further support by data that observed

significant immune cell infiltration only in erosive reflux

disease, despite the observation that erosive and

nonerosive reflux disease both presented with micro-

scopic changes, such as dilated intercellular spaces

[38,45]. The pro-inflammatory cytokine pattern in ero-

sive reflux disease includes the neutrophil chemoattrac-

tants IL-1b and IL-8, and IL-6 and chemokines, such

as RANTES, MCP-1, MIP1-a, platelet-activating fac-

tor, and the eotaxins [46–48]. Although neutrophils

dominate the immune cell infiltrate in GERD [49], eosi-

nophils accumulate in up to 50% of GERD posing a

clinical challenge for the distinction from EoE [49].

Since proton pump inhibitors (PPIs) have proven to be

an effective treatment for GERD without overt side

effects, immunological research in the esophagus has

shifted from GERD to EoE, an immune-mediated dis-

ease induced by food allergens and with a treatment

spectrum of limited efficacy.

Immune cells as critical firewalls in
the esophagus

A unique microbiome, mainly gram-positive bacteria,

colonizes the esophagus, formerly thought to be only

transiently populated by swallowed bacteria from the

oral cavity. When these potentially harmful microor-

ganisms and metabolites pass the squamous epithe-

lium, the immune system beneath the epithelium has

to fight these threats and defend the host. Only a few

immune cells are present in the esophagus of healthy

individuals, but increase during infection or inflamma-

tion. It needs to be pointed out that most studies have

so far investigated the distribution of immune cells in

the esophagus, but functional studies describing

immune cells in esophageal diseases are scarce. Com-

parable to the skin, CD1+ Langerhans cells (LCs) are

present in the esophageal epithelium. As in the skin,

LCs in the esophageal epithelium are in close associa-

tion with lymphocytes in the suprabasal layer [50].

Access to esophageal tissue is only possible by taking

biopsies from the esophagus during invasive esopha-

gogastroscopy, in contrast to noninvasive biopsy col-

lection from the skin and the oral cavity. Studies by

Novak et al. have investigated mucosal dendritic cells

(DCs) in the oral cavity [51,52]. These studies allow

some assumptions on esophageal DCs’ characteristics

4760 The FEBS Journal 289 (2022) 4758–4772 ª 2021 The Authors. The FEBS Journal published by John Wiley & Sons Ltd on behalf of

Federation of European Biochemical Societies

The esophageal immune system T. Kaymak et al.



because of the oral cavity’s proximity to the esopha-

gus. Furthermore, the DCs in the oral cavity reside

beneath the squamous epithelium like in the esophagus

[53]. In contrast to the small and large intestine, the

esophagus lacks organized secondary lymphoid tissues

with follicle-associated epithelium, where antigens are

sampled and presented to T cells. In the esophagus,

DCs phagocytose antigens directly from the lumen

[54]. It has been suggested that DCs induce a tolero-

genic state by presenting antigens to T cells in the

epithelium, the lamina propria, or after migration to

regional lymph nodes [53,55]. During inflammation,

blood-borne DCs infiltrate, in addition to resident

LCs, the esophageal epithelium, take up antigens, and

migrate to the mediastinal lymph nodes to induce an

immune response [55,56]. Comparable to the small

intestine, tolerance-inducing DCs stay in an immature

state and do not express CCR7, which binds CCL19

and CCL21, two cytokines responsible for the homing

of immune cells to draining lymph nodes, whereas

infiltrating DCs fully differentiate and begin to express

CCR7 [55]. Higher expression of T-cell inhibitory sur-

face molecules (e.g., B7-H) in tissue-resident mucosal

DCs compared to epidermal DCs reflects the specific

esophageal tissue environment [51].

After antigen presentation by DCs to T cells in the

regional lymph nodes, the effector T cells circulate

back to the esophagus. Under noninflamed conditions,

only a few T cells are present in the esophageal epithe-

lium, comprising mainly CD8+ T cells like the intraep-

ithelial lymphocyte compartment in the small intestine

[57]. During inflammation, the T cell numbers increase

and can form dense clusters of CD4+ and CD8+ T cells

reminding of isolated lymphoid follicles in suprabasal

regions of the esophagus [53]. Although T cells are

widely present in the gut and lung, T cells’ characteri-

zation in the esophagus is lacking. It is of interest to

determine the distribution of IFN-y-producing Th1,

IL-13-producing Th2, and IL-17A-producing Th17

cells in the esophagus of healthy individuals and to

compare them to T cells in the inflamed esophagus.

There have also been innate lymphoid cells (ILCs)

described in the esophagus. Doherty et al. have

reported the presence of ILC2s in the human esopha-

gus that increased in numbers in EoE and correlated

with the degree of mucosal eosinophilia. The stimula-

tion with IL-2, IL-33, and TSLP, three cytokines with

increased expression in EoE, expanded the numbers of

ILC2s in vitro [58]. To this end, we did not find any

studies describing the presence of type 1 and type 3

ILCs in the esophagus.

Taken together, immune cells in the esophagus serve

as critical firewalls in the esophagus. However, there is

a great need to better phenotype and functionally

describe the distribution of immune cells in the esoph-

agus and how these cells’ composition changes in eso-

phageal diseases.

The esophageal microbiome

In recent years, it became apparent that the micro-

biome is essential for the proper functioning of the

GIT, the immune system, defense against pathogens,

metabolism, and energy regulation. Approximately

10% of all metabolites in the peripheral blood stem

from the microbiota [59]. Our microbiota provides

roughly 10% of our daily ingested calories due to fer-

mentation [60]. The microbiota also protects from

infectious esophagitis, such as Candida esophagitis

with the Candida albicans serotype, the most common

Candida species causing esophagitis [61]. The micro-

biome interferes with the immune system, and its criti-

cal relevance for the digestive system and metabolism

is one of the most popular current research topics.

While the small intestine and colon microbiota are at

the center of research, the esophageal microbiome has

been widely neglected. It has been assumed that the

esophageal microbiome does not exist and only reflects

a transient bacterial mix of swallowed oral and

refluxed gastric commensals. Methodical limitations

further hampered the esophageal microbiome research

to acquire samples noninvasively and without oropha-

ryngeal cross-contamination [62].

Nonetheless, recent studies revealed an independent

resident microbiome in the esophagus [63–65]. Indeed,
several phyla found in the oral cavity and lungs are

also present in the esophagus (e.g., Firmicutes,

Fusobacteria), suggesting that swallowed oral commen-

sals influence the formation of the resident esophageal

microbiota (Table 1). The absence of several oral

microbiota strains in the esophagus indicates that not

all bacteria present in the oral cavity can colonize and

survive in the esophagus [63–67]. Moreover, the eso-

phageal mucosa is populated with a unique microbiota

as some Firmicutes members, including Clostridium,

Eubacterium, Megasphaera, Mogibacterium, and Mor-

yella populate only the esophagus and not the oral

cavity [8–10]. Approximately 140 bacterial species have

been identified by 16s rRNA-sequencing in the esopha-

gus that constitutes the esophageal microbiome, with

the most common bacteria belonging to six different

phyla (70% Firmicutes, 20% Bacteroidetes, 4% Acti-

nobacteria, 2% Proteobacteria, 2% Fusobacteria, and

1% TM7) [63–65]. The dominant genera characterizing

the esophageal core microbiome are Streptococcus,

Prevotella, Veillonella, and Fusobacterium [8–10]. The
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esophageal core microbiome’s composition presents

with variations along the esophagus but persists

between gender and age groups [62,64,65,68].

Microbiota studies in the colon mainly analyzed

fecal samples that may not represent the composition

of upper parts of the colon or the terminal ileum. Tak-

ing biopsies from the ileum requires colon cleansing,

which tremendously affects the composition of the

microbiota. Similar limitations should also be consid-

ered for the esophagus as taking biopsies in the esoph-

agus by esophagogastroscopy requires a fasting period

of four to six hours before the examination. Novel

devices for taking esophageal swabs may allow the

analysis of the esophageal microbiome in future with-

out a fasting period before the examination. We want

to stress that a firm definition of a ‘healthy micro-

biota’ is lacking. In inflammatory bowel disease, the

colon has an increased bacterial load with a simultane-

ous decrease of diversity, a condition termed ‘dysbio-

sis’ [69,70]. However, the term ‘dysbiosis’ lacks a

precise definition. ‘Altered microbiota’ provides a bet-

ter description of the observed changes in the micro-

biota composition in diseases. In the esophagus,

patients with EoE or esophageal adenocarcinomas

(EAC) have an altered microbiota [65,71]. In acid-

induced esophagitis or Barrett’s esophagus, Yang et al.

reported an enrichment in gram-negative bacteria

(anaerobes and microaerophiles) together with an

increase in bacterial diversity [65,72]. Other reports

describe an increase in gram-negative bacteria (e.g.,

Veillonella, Prevotella, Campylobacter, Fusobacterium,

Haemophilus, Corynebacterium, and Neisseria) in EoE

or acid-induced esophagitis, further indicating an

increased abundance of gram-negative bacteria in

esophagitis [65,72–74].
Unresolved questions from these studies include

how and which environmental factors, such as diet or

drugs, influence the esophageal microbiome. For

example, a low fiber diet is associated with expanding

mucus degrading bacteria in the colon [75], whereas a

fiber-rich diet reduces mucus degrading bacteria [76].

Simultaneously, a fiber-rich diet expands bacterial

strains that degrade fibers into short-chain fatty acids

(butyrate, acetate, propionate). Short-chain fatty acids

have a vast range of different effects on endogenous

metabolism and inflammation, such as satiety regula-

tion [77], browning of white adipose tissue and fat

accumulation [78], increased glucagon-like peptide 1,

and peptide YY secretion, and intestinal gluconeogene-

sis [79,80]. Only limited data on the effects of diet on

the esophageal microbiome exist [81]. One study in

pediatric EoE patients investigating the impact of a

six-food elimination diet that avoids wheat, milk, soy,

nuts, eggs, and seafood/shellfish on the esophageal

microbiome did not reveal any changes the micro-

biome. After the reintroduction of allergenic foods,

Granulicatella and Campylobacter increased in EoE

[65].

Table 1. The esophagus’s core microbiome and alteration in EoE and GERD. + present; ++ abundant; +++ highly abundant; C, Core

microbiome; ↑ increased abundance; ↓ reduced abundance; N.d., not determined.

Phylum Healthy EoEa GERDa

Firmicutes +++ Harris et al. [74], Pei et al. [63], Fillon et al. [64] ↓ Harris et al. [74] ↑ Harris et al. [74],

↓ Liu et al. [73]

Veillonella C, Harris et al. [74], Fillon et al. [64] ↓ Harris et al. [74] ↑ Harris et al. [74]

Streptococcus C, Harris et al. [74], Fillon et al. [64], Norder Grusell et al. [66] ↓ Harris et al. [74] ↑ Harris et al. [74]

Bacteriodetes ++ Harris et al. [74], Pei et al. [63], Fillon et al. [64] ↔ Harris et al. [74] ↓ Harris et al. [74],

↔ Liu et al. [73]

Prevotella C, Harris et al. [74], Fillon et al. [64], Norder Grusell et al. [66] ↔ Harris et al. [74] ↓ Harris et al. [74]

Actinobacteria + Pei et al. [63], Fillon et al. [64] N.d. N.d.

Corynebacterium + Benitez et al. [65] ↑ Benitez et al. [65] N.d.

Proteobacteria + Harris et al. [74], Pei et al. [63], Fillon et al. [64] ↑ Harris et al. [74] ↓ Harris et al. [74],

Liu et al. [73]

Haemophilus + Fillon et al. [64], Norder Grusell et al. [66] ↑ Harris et al. [74] ↓ Harris et al. [74]

Campylobacter + Benitez et al. [65] ↑ Benitez et al. [65] N.d.

Neisseria + Fillon et al. [64], Norder Grusell et al. [66] ↑ Harris et al. [74],

Benitez et al. [65]

↓ Harris et al. [74]

Fusobacteria + Harris et al. [74], Pei et al. [63], Fillon et al. [64] ↓ Harris et al. [74] ↓ Harris et al. [74],

↑ Liu et al. [73]

Fusobacterium C, Harris et al. [74], Fillon et al. [64], Norder Grusell et al. [66] ↓ Harris et al. [74] ↓ Harris et al. [74]

TM7 + Pei et al. [63], Fillon et al. [64] N.d. ↑ Liu et al. [73]

aOnly nontreated EoE and GERD presented.
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The intake of antibiotics also tremendously influ-

ences the composition of the microbiome in the GIT.

The widespread prescription of antibiotics and agricul-

tural business use, which we are exposed to by drink-

ing water and eating food products, was established in

the 1940s [81–83]. As an unwanted side effect, antibi-

otic treatment may reduce the microbiome’s diversity

and disrupt beneficial microbial communities. Potential

pathogens may settle in the emerging niches [84]. In

the colon, the increased incidence of pseudomembra-

nous enterocolitis caused by Clostridium difficile toxin

A or B is one of the most significant examples [85].

The intestinal microbiota’s reconstitution by fecal

microbiota transplant can treat pseudomembranous

enterocolitis [86–88]. In an experimental model of Bar-

rett’s esophagus in rats, the animals’ treatment with

antibiotics did not influence Barrett’s esophagus [89].

Interestingly, it has been proposed that the eradication

of Helicobacter pylori with antibiotics inversely corre-

lates with the development of EAC [90].

Furthermore, PPIs increase the gastric pH by

inhibiting acid secretion in the stomach, which may

also indirectly affect the esophageal microbiota [81,91].

PPI treatment increases the Firmicutes phylum mem-

bers’ abundance and decreases the Proteobacteria phy-

lum members’ presence in the esophagus [91]. Other

widely used drugs that might affect the microbiota

composition include nonsteroidal anti-inflammatory

drugs and probiotics [92].Altogether, a unique micro-

biome distinct from the oral cavity microbiome popu-

lates the esophagus. First studies indicate that

esophagitis leads to an altered microbiome.

Eosinophilic esophagitis

Activation of the immune system associated with an

altered microbiome can induce esophageal diseases

(Fig. 1). Early antibiotics and PPI in infancy, cesarean

delivery, maternal fever, and preterm labor predispose

to EoE [93]. EoE is a food-triggered Th2-mediated

chronic inflammatory disease characterized by eosino-

phil infiltration (> 15 eosinophils per hpf), increased T

and mast cell numbers [4], and associated with an

altered microbiome [74]. EoE affects males predomi-

nantly compared to females, with a ratio of 3 : 1 [94].

In contrast to the healthy esophagus, which is devoid

of eosinophils, the accumulation of eosinophils,

attracted by chemokines eotaxin-1, eotaxin-3, and

cytokines, such as IL-5 and IL-13, in the stratum cor-

neum of the esophageal epithelium, characterizes EoE

[95–98]. Eosinophil-derived granule proteins induce

barrier breach and promote a Th2 inflammation [99–
103], resulting in a sustained direct exposure of the

esophageal immune system to triggering food allergens

leading to transmural inflammation, smooth muscle

dysfunction, basal cell hyperplasia, and consequently

to fibrosis [104]. Also, mast cells infiltrate the inflamed

esophageal tissue to release histamine in EoE [4,105].

An impaired epithelial barrier has been described in

EoE with reduced proteins required to maintain the

intact esophageal epithelial barrier, such as filaggrin

and desmoglein, combined with dilated intercellular

spaces between epithelial cells [5,6,106]. Interestingly,

genome-wide association studies suggested genetic risk

variants of genes expressed by epithelial and immune

cells in EoE [107]. The identified single nucleotide

polymorphisms included TSLP [108]; c11orf30,

STAT6, and ANKRD27 [109]; cytosolic calcium-

activated cysteine proteases CAPN14 (calpain-14)

[110]; and the filament aggregating protein filaggrin

[111]. The cytosolic calcium-activated cysteine pro-

teases, including CAPN14, modulate integrin-

cytoskeletal interactions, and filaggrin binds keratin

intermediate filaments, reinforce a barrier dysfunction

in EoE. Preclinically, experimental work with patient

samples and cell lines by Azouz and colleagues indi-

cated that the reduced expression of the serine pro-

tease inhibitor, SPINK7 leads to barrier dysfunction

[112]. Further research from the same group suggested

that SPINK7 restricts the activity of the serine pro-

tease kallikrein 5 (KLK5) and that klk5-deficient mice

are protected from the development of an ovalbumin

(OVA)-induced EoE mouse model [113]. It is under

discussion whether a barrier defect is a prerequisite for

sensitizing the esophageal immune system to EoE and

requires continuous antigen exposure to drive esopha-

geal inflammation. However, the observed barrier

defect in EoE could also be secondary as a conse-

quence of inflammation in the esophagus. One

approach to solve this issue is establishing cohorts in

the preclinical phase of EoE before disease onset. In

individuals with a preclinical phase of EoE, researchers

Fig. 1. Immune cell composition of the esophagus and in EoE. Macroscopic endoscopic view on the esophagus of healthy individuals and in

EoE. In EoE, micro-abscesses resembling the eosinophil infiltration in the esophagus appear. Histology confirms eosinophil infiltration in the

mucosa of EoE. A few immune cells, such as LCs and T cells, are present in the noninflamed esophagus. In EoE, an infiltration of the

mucosa with DCs, monocytes, macrophages, eosinophils, basophils, neutrophils, T cells, and B cells occurs. The figure was generated with

SERVIER MEDICAL ART 3.0 (The Servier Group, Suresnes, France).
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could investigate the expression of proteins involved in

establishing an intact esophageal epithelial barrier.

The epithelial barrier breach further induces the

expression of the cytokines TSLP, IL-25, and IL-33

that, in turn, drive a Th2-mediated inflammation

[4,114]. The Th2 cytokine IL-13 increases the expression

of the esophagus-specific protease CAPN14, which

degrades desmoglein-1 required to form cell-cell junc-

tions [101,115]. Furthermore, IL-13 reduces filaggrin

expression in atopic dermatitis [116] and contributes to

eosinophil chemotaxis by inducing eotaxin-3 expression

[98,117]. Increased TSLP expression has been reported

in patients with active EoE correlated with eosinophil

extracellular trap formation [6]. Patients with a gain-of-

function polymorphism of TSLP have increased baso-

phil numbers in the esophagus [3]. Moreover, the IL-1

superfamily member IL-33, which is constitutively

expressed in the nucleus and acts as a cytokine by bind-

ing to its receptor ST2, is expressed by the esophageal

mucosa [118] and by undifferentiated epithelial cells of

EoE patients [119]. Basophils express the IL-33 receptor

ST2, and genetic deletion of ST2 prevents inflammation

in an OVA-induced EoE mouse model [120]. Since EoE

patients have increased Th2 cytokine expression, the

specific targeting of cytokines with monoclonal antibod-

ies is a promising avenue for the treatment of EoE. The

human mAb Dupilumab binds the IL-4Ra receptor

chain blocking both IL-4 and IL-13 signaling. In a mul-

ticenter phase II trial, Dupilumab improved dysphagia

and eosinophil count at week 10 of treatment [121].

Eosinophilic esophagitis is of allergic etiology, cor-

roborated by a high prevalence of concurrent atopic

diseases and remendability by allergen avoidance.

However, the frequently observed increased food

antigen-specific IgE levels in EoE do not correlate with

the EoE-triggering allergens [122]. Consistently, EoE

patients treated with the anti-IgE antibody, omal-

izumab, failed in clinical case series and in prospective,

randomized, double-blind, placebo-controlled studies

to show a significant relieve of symptoms [123,124].

EoE is preferably associated with antigen-specific IgG4

antibodies [124], which have neutralizing properties

due to their week binding affinity to IgG receptors

and low complement activation [125–127]. The ele-

vated IgG4 concentrations in active EoE decrease dur-

ing dietary interventions by avoiding possible food

allergens present in wheat, milk, soy, nuts, eggs, and

seafood/shellfish [126]. Altogether, these data suggest

that IgE does not drive the pathophysiology in EoE.

In summary, the pathophysiology of EoE is incom-

pletely understood (Fig. 2). Since EoE presents with

vomiting and feeding problems in young children and
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(e.g. IL-5, IL-13 and 

eotaxins)
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Eosinophil infiltration and 
degranulation (e.g. MBP, EPO, ECP)
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Epithelial barrier impairmentEpithelial barrier impairment
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Fig. 2. Epithelial barrier impairment and immune cell-derived cytokines in EoE. In EoE, a breached esophageal barrier is passed by antigens,

which are phagocytosed by DCs or macrophages. DCs migrate to draining lymph nodes to prime na€ıve T cells or activate effector T cells in

the lamina propria. T cells produce Th2 cytokines, induce the expression of chemokines, such as eotaxins by epithelial cells for the

attraction of eosinophils, and facilitate further barrier breaches by affecting adherens and tight junctions. The graph was designed with

SERVIER MEDICAL ART 3.0 (The Servier Group).
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dysphagia and food impaction in adults [128], there is

a clinical need for better treatment options. Because

food antigens trigger EoE, with milk and wheat as the

most prevalent food antigens [129,130], a six-food

elimination diet with avoidance of wheat, milk, soy,

nuts, eggs, and seafood/shellfish is an effective treat-

ment. However, the six-food elimination diet signifi-

cantly impacts life quality, limiting the compliance for

this treatment for EoE [130–132]. Topical corticos-

teroids improve clinical symptoms and are highly effi-

cacious for induction and maintenance therapy of EoE

[133,134]. Small molecules and biologicals that specifi-

cally target checkpoints are of significant interest to

further improve the treatment of EoE. In the search

for targeted therapies of EoE, one has to consider that

the inflammation in EoE extends eosinophils’ biology.

Infiltrating T cells, B cells, and mast cells could pro-

vide specific targets for the treatment of EoE [4].

Conclusions

Increasing evidence indicates that the esophagus is a trans-

port organ with critical importance for mucosal immunity

and contributes to immune-mediated diseases. A better

characterization of the esophageal immune system and its

relationship with the microbiota will give insights into the

development of esophageal diseases. Likely, this research

will pave the way for discovering targeted therapies to

improve the treatment of esophagitis. We anticipate the

following research questions that may be solved before

this exciting research will enter daily practice in the clinic.

1. Information on the distribution of immune cells in

the healthy esophagus, GERD, and EoE is scarce.

Since sampling of esophageal tissues during endo-

scopy is possible, systematic analysis of immune cells

in esophageal biopsies with single-cell RNA sequenc-

ing and mass cytometry will help characterize the cel-

lular composition of the esophageal immune system.

These analyses are a requirement before possible tar-

geted therapies in EoE can be explored.

2. Emerging evidence indicates that the esophagus has

a core microbiome distinguishable from the oral cav-

ity’s microbiome, the skin, the small intestine, and

colon. Most assumptions on the esophageal micro-

biome stem from studies investigating the oral or the

intestinal microbiome. There is a need to better char-

acterize the esophageal microbiome in response to

the diet, medications, and diseases, such as EoE.

With advances in this area of research, it will in

future be possible to move the fascinating research on

the esophageal mucosal immunity for the development

of targeted therapies for EoE into the clinic. We

expect that studies investigating the esophageal muco-

sal immune system will move into focus soon.
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