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The appropriate sensory information feedback is important for the success of an object

grasping and manipulation task. In many scenarios, the need arises for multiple feedback

information to be conveyed to a prosthetic hand user simultaneously. The multiple sets

of information may either (1) directly contribute to the performance of the grasping or

object manipulation task, such as the feedback of the grasping force, or (2) simply form

additional independent set(s) of information. In this paper, the efficacy of simultaneously

conveying two independent sets of sensor information (the grasp force and a secondary

set of information) through a single channel of feedback stimulation (vibrotactile via

bone conduction) to the human user in a prosthetic application is investigated. The

performance of the grasping task is not dependent to the second set of information in

this study. Subject performance in two tasks: regulating the grasp force and identifying

the secondary information, were evaluated when provided with either one corresponding

information or both sets of feedback information. Visual feedback is involved in the

training stage. The proposed approach is validated on human-subject experiments using

a vibrotactile transducer worn on the elbow bony landmark (to realize a non-invasive bone

conduction interface) carried out in a virtual reality environment to perform a closed-loop

object grasping task. The experimental results show that the performance of the human

subjects on either task, whilst perceiving two sets of sensory information, is not inferior

to that when receiving only one set of corresponding sensory information, demonstrating

the potential of conveying a second set of information through a bone conduction

interface in an upper limb prosthetic task.

Keywords: neuroprostheses, sensory feedback restoration, human-robot interaction, tactile feedback, bone

conduction
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1. INTRODUCTION

It is well-established that the performance of grasping and object
manipulation task relies heavily on the appropriate feedback.
This is established in human grasping with or without using
prostheses (Childress, 1980; Augurelle et al., 2003) and in robotic
grasping algorithms (Dahiya et al., 2009; Shaw-Cortez et al.,
2018, 2019). Within prosthetic applications, such feedback allows
effective closed-loop control of the prostheses by the human user
(Saunders and Vijayakumar, 2011; Antfolk et al., 2013; Markovic
et al., 2018; Stephens-Fripp et al., 2018). To date, prosthetic hand
users rely on visual and incidental feedback for the closed-loop
control of hand prosthesis (Markovic et al., 2018), as explicit
feedbackmechanisms are not prevalent in commercial prostheses
(Cordella et al., 2016). Incidental feedback can be obtained
from vibrations transmitted through the socket (Svensson et al.,
2017), proprioceptive information from the muscles (Antfolk
et al., 2013), sound from the motor (Markovic et al., 2018), or
the reaction forces transmitted by the actuating cable in body-
powered prostheses (Shehata et al., 2018). Visual feedback has
been the baseline feedback mechanism in prosthetic grasping
exercises as it is the only feedback available naturally to all
commercial hand prostheses (Saunders and Vijayakumar, 2011;
Ninu et al., 2014).

It is also established that a combination of feedback
information is required—and required simultaneously—for
effective grasping and manipulation to be realized. In Westling
and Johansson (1984) and Augurelle et al. (2003), it was
demonstrated that the maintenance of grip force as a function of
the measured load in a vertical lifting scenario is accompanied by
their slip detection function. It was argued that in the scenarios of
moving a hand-held object, accidental slips rarely occur because
“the grip force exceeds the minimal force required” by a safety
margin factor. No exceedingly high values of grip force are
obtained due to a mechanism measuring the frictional condition
using skin mechanoreceptors (Westling and Johansson, 1984).
This argues for the use of two sets of information during
the operation, namely the feedback of the grip force as well
as the information of the object slippage and friction, even
if it is to update an internal feed-forward model (Johansson
and Westling, 1987). Other examples include an exercise in
“sense and explore” where the proprioception information is
required along with the tactile information relevant to the
object/environment being explored. Information on temperature
in addition to the proprioception and tactile could also be needed
in specific applications to indicate dangerous temperature, for

example when drinking hot beverage using a prosthetic hand—
the user may not feel the temperature of the cup until it

reaches the lips and causes a burn (Lederman and Klatzky,
1987).

Investigations in the prosthetic literature have so far focused
on conveying each independent sensor information to the
human user through a single transducer. The feedback is either
continuous (Chaubey et al., 2014) or event driven (Clemente
et al., 2017) and multiple transducers have been deployed via
high density electrotactile arrays (Franceschi et al., 2017). The
number of feedback transducers that can be deployed on the

human is limited due to the physiology and the available space.
Physiologically, the minimum spatial resolution is determined by
the two point discrimination that can be discerned on the skin.
The minimum spatial resolution is 40 mm for mechanotactile
and vibrotactile feedback (on the forearm) and 9 mm for
electrotactile feedback (Svensson et al., 2017). An improved
result was shown in D’Alonzo et al. (2014), colocating the
vibrotactile and electrotactile transducers on the surface of the
skin. Spatially, the number of transducers that can be fitted in
a transhumeral or transradial socket is limited by the available
space within the socket and the contact surface with the residual
limb. The limitation of the available stimulation points is even
more compelling when using bone conduction for vibrotactile
sensation. For osseointegrated implants there is only one rigid
abutment point (Clemente et al., 2017; Li and Brånemark, 2017)
and for non-invasive bone conduction there are 2–3 usable bony
landmarks near the elbow (Mayer et al., 2019). In all these
experiments, each sensory information is still conveyed by one
dedicated feedback channel.

A few studies have recognized the need for the more efficient
use of the feedback channels and proposed the use of multiple
sensor information via a single feedback channel. Multiple sets
of information have been transmitted in a sequential manner
(Ninu et al., 2014), event triggered (Clemente et al., 2016), or
representing only a discrete combination of the information
from two sensors (Choi et al., 2016, 2017). Time sequential
(Ninu et al., 2014) or event triggered feedback (Clemente et al.,
2016) can be used for tasks or events where the need for
each sensing information can be decoupled over the subsequent
events, therefore do not address the need described above for
simultaneous feedback information.

Of the many facets of the challenges in closing the prosthetic
control loop through the provision of effective feedback, we
seek in this paper to improve the information density that
can be conveyed through a single stimulation transducer to
deliver multiple sets of feedback information simultaneously
to the prosthetic user. Specifically, the amplitude and the
frequency of the stimulus signal are used to convey different
information. This concept was observed in Dosen et al.
(2016), where a vibrotactile transducer was designed to produce
independent control of the amplitude and the frequency of
the stimulation signal. It was reported that a psychophysical
experiment on four healthy subjects found 400 stimulation
settings (a combination of amplitude and frequency of the
stimulus signal—each termed a “vixel”) distinguishable by
the subjects.

In this paper, the efficacy of this concept is further investigated
on a closed-loop operation of a hand prosthesis in virtual reality.
One set of information, the grasp force, is used in the closed-
loop application, providing sensory feedback on the grasp force
regulated by the motor input via surface electromyography
(sEMG). The second set provides an additional secondary
information. Note that a closed-loop operation differs from
psychometric evaluation as the sensory excitation is a function
of the voluntary user effort in the given task. This study is
investigated within the context of non-invasive bone conduction
interface, where the need for higher information bandwidth is
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compelling due to the spatial limitations in the placement of
feedback transducer to the human user. It should be noted
that the purpose of the study in this paper is to establish
the ability for a second piece of information to be perceived.
Once this is established, the second set of information may be
used to (1) perceive an independent set of information, such
as the temperature of the object grasped, or (2) improve the
performance of the primary task with additional information.
In this paper, the second set of information is not expected to
improve the performance of the primary task, which is the closed
loop object grasping task.

It was found that the human subjects were able to discern
the two sets of information even when applied simultaneously.
The baseline for comparison is the case where only one set
of sensor information was directly conveyed as feedback to
the human user. Comparing the proposed technique to the
baseline, a comparable performance in regulating the grasp force
of the prosthesis (accuracy and repeatability) and in correctly
identifying the secondary information (low, medium, or high)
was achieved.

2. CONVEYING MULTI-SENSOR
INFORMATION VIA FEWER FEEDBACK
CHANNELS

We define the sensor information as y ∈ RN , where N is
the number of independent sets of sensor information, where
the measurements can be continuous-time signals or discrete
events. The feedback stimulation to the prosthetic user is
defined as x ∈ RM , where M is the number of channels
(transducers) employed to provide the feedback stimulation.
The scenario being addressed in this paper is that where N >

M. The relationship between measurement y and the feedback
stimulation x can be written as

x = φ(y) (1)

where φ :RN → RM .

2.1. Sensor Information y
Four major sensing modalities are generally present in the
upper limbs: touch, proprioception, pain, and temperature.
The touch modality is further made up of a combination of
information: contact, normal and shear force/pressure, vibration,
and texture (Antfolk et al., 2013). To achieve a robust execution
of grasping and object manipulation task, only a subset of these
sensing modalities are used as feedback. Recent studies have
further isolated the types of feedback modalities and information
that would be pertinent to an effective object grasping and
manipulation, such as grip force and skin-object friction force (de
Freitasnzo et al., 2009; Ninu et al., 2014). Furthermore, literature
has explicitly determined that such combination of feedback
information is required simultaneously for an effective grasping
and manipulation (Westling and Johansson, 1984; Augurelle
et al., 2003). In the context of an upper limb prosthesis, it is
possible to equip a prosthetic hand with a large number of
sensors (Kim et al., 2014; Mohammadi et al., 2019) so that

N > M. It should be noted that the N sets of independent
information can be constructed out of any number of sensing
modalities, such as force sensing, grasp velocity sensing, tactile
information e.g., for object roughness. It may even contain
estimated quantities that cannot be directly measured by sensors,
for example: object stiffness may require the measurements of
contact force and displacement.

2.2. Feedback Stimulation x
The state of the art of non-invasive feedback in prosthetic
technology generally utilizes electrotactile (ET), vibrotactile
(VT), and mechanotactile (MT) modalities, placed in contact
with the skin as a way to deliver the sensation (Stephens-Fripp
et al., 2019). More novel feedback mechanisms have also been
explored, such as using augmented reality (Markovic et al., 2014).
Of these modalities, ET and VT present the challenges of a
varying stimulation perception with location of application, VT
also presents the challenge where its perception is static-force
dependent (i.e., it depends on how hard the VT transducer is
pressed against the skin) while MT is often bulky, with high
power consumption (Svensson et al., 2017; Stephens-Fripp et al.,
2018).

It was shown, however, that VT applied over bony landmarks
does not suffer from the static force dependency (Mayer
et al., 2018), is compact and does not suffer from high power
consumption (Mayer et al., 2019). It does, however, restrict
the locations that this technique can be applied to on the
upper limb, as there are relatively fewer bony landmarks on
the upper limb than skin surface. A psychophysical evaluation
in Mayer et al. (2019) demonstrates comparable results in
non-invasive vibrotactile feedback on the bone to the invasive
(osseointegrated) study in Clemente et al. (2017). It is highlighted
that personalization is required for the perception threshold in
order to be used as an interface. A higher sensitivity has been
reported for frequencies in the range of 100–200 Hz where lower
stimulation forces are required. This allows the use of more
compact transducers with lower power consumption (Mayer
et al., 2019).

2.3. Specific Sensor Information and
Feedback Stimulation Utilized
In order to demonstrate the concept of conveying multi-
sensor information via fewer feedback channels, this paper
uses one feedback channel to convey two sets of independent
sensor information, namely the grasp force fg and a secondary
information s, which could be e.g., skin-object friction,
temperature. That is,

y =

[

fg
s

]

∈ R2, (2)

where fg represents a continuous-time signal of the grasp force
and s is a discrete class of the secondary information. The primary
information, the grasp force, is used as a feedback to the task of
regulating the object grasp force. The secondary information does
not directly contribute to the task of regulating the grasp force.
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VT via bone conduction is selected as the feedback
stimulation, applied on the elbow bony landmark. The sinusoidal
waveform applied as the vibrotactile stimulus is:

x(t) = a(t) sin(2π f (t)t), (3)

where the amplitude a(t) is modulated as a linear function of the
continuous-time grasp force signal fg(t):

a(t) = a0 + kafg(t). (4)

while the frequency f (t) is modulated as a linear function of the
secondary information s(t)

f (t) = f0 + kss(t), (5)

where s(t) ∈ {S1, S2, S3} is a discrete set describing the secondary
information at time t. The offset a0 and f0 denote the minimum
amplitude and frequency detectable by human bone conduction
perception. The constants ka and ks are positive.

3. METHODOLOGY

The proposed approach is validated in a human-subject
experiment using a VT transducer worn on the elbow bony
landmark to provide the feedback and a virtual reality
based environment to simulate the grasping task, as shown
in Figure 1A. This experiment seeks to verify that subjects
can differentiate two encoded sensory information conveyed
via one bone conduction channel. This is done by firstly,
comparing the performance of the proposed approach against
the baseline of carrying out the same task with only one set of
information conveyed through the feedback channel. Secondly,
the performance with and without the addition of visual feedback
was compared.

The experiment consists of three parts:

(1) A pre-evaluation of the psychophysics of the interface;
(2) Obtaining the bone conduction perception threshold at the

ulnar olecranon for individual subjects;
(3) Evaluating the performance of the human subject in the task

of grasping within a virtual reality environment.

The experiment was conducted on 10 able-bodied subjects
(2 female, 8 male; age 28.7 ± 4 years). Informed consent
was received from all subjects in the study. The experimental
procedure was approved by the University of Melbourne
Human Research Ethics Committee, project numbers 1852875.2
and 1750711.1.

3.1. Psychophysics
This subsection performs the psychophysical evaluation of the
bone conduction interface as sensory feedback. This is done
to ensure that subjects can discriminate between the given
stimulation frequencies and amplitudes chosen in the later
for the Grasp Force Regulation and Secondary Information
Classification Task (see section 3.3). Therefore the minimum
noticeable difference for subjects, later referred to as “just
noticeable difference” (JND), is obtained to quantify the
capabilities of the bone conduction interface in frequency and
amplitude domain.

3.1.1. Setup

3.1.1.1. Orthosis
A custom elbow orthosis with adjustable bone conduction
transducers was fitted to the subjects dominant hand for the
experiment as shown in Figure 1A. The orthosis (O) was fixed to
the upper and lower arm of the subject through adjustable velcro
straps. The vibrotactile transducer (VT) position was adjusted
by a breadboard-style variable mounting in order to align and

FIGURE 1 | The setup of the grasp task in virtual reality is shown in (A) where the subject is seated with the arm placed in the orthoses (O) onto the table. The

vibrotactile transducer (VT) is mounted onto the ulnar olecranon; the EMG electrodes (sEMG) onto the forearm and the virtual reality headset (VR) placed on the

subjects head. The subjects first person view in virtual reality in (B) shows the prosthetic (P); the grasped object (D); the non-dominant hand (H) for commands as

activating/deactivating EMG or touching the sphere (S) for reporting the secondary information class and to advance to the next task; (C) shows the top person view

of the virtual reality setup.
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be in contact with the ulnar olecranon, which is the proximal
end of the ulna located at the elbow. The VT is adjusted using
two screws to ensure good contact with the bony landmark. The
orthosis is placed on the desk (see Figure 1A), and kept static
during the experiments.

3.1.1.2. Bone conduction
The setup consists of a B81 transducer (RadioEar Corporation,
USA), calibrated using an Artificial Mastoid Type 4930 (Brüel
& Kjære, Denmark) at the static force of 5.4 N. The stimulation
signals were updated at 90 Hz and amplified using a 15 W Public
Address amplifier Type A4017 (Redback Inc., Australia) having a
suitable 4 − 16� output to drive the 8� B81 transducers and a
suitable low harmonic distortion of < 3% at 1 kHz. Calibrated
force sensitive resistor (FSR) (Interlink Electronics 402 Round
Short Tail), placed between the transducer and the mounting
plate, were used to measure the applied force using a force
sensitive area of A = 1.33cm2. The calibration was done using
three different weights [0.2, 0.5, 0.7] kgmeasuring five repetitions
and applying a linear interpolation to obtain the force/voltage
relationship. The achieved force/voltage relationship has a
variance of 5.4 ± 0.37N. The stimulation signal was generated
using a National Instruments NI USB-6343 connected to a
Windows Surface Book 2 (Intel Core i7-8, 16GB RAM, Windows
10TM) as control unit. A MATLAB R© GUI was used to guide
the user through the psychophysics and perception threshold
experiment. The computer was connected via a Wi-Fi hotspot
through a UDP connection to the head mounted virtual reality
system for the experiment tasks.

3.1.2. Protocol
It is noted that the JND of frequency (JNDf) as well as the
JND of amplitude (JNDa) are different for each person (Dosen
et al., 2016). Therefore, a sample of five subjects are employed
to evaluate JNDf and JNDa to show that the subjects can
discriminate between the given stimulation frequencies and
amplitudes. The JNDf is measured for three frequencies fref ∈

[100, 400, 750] Hz and three amplitudes aref ∈ [0.1, 0.3, 0.5]V ,
giving the permutation of the nine different combinations. For
each combination, a standard two-interval forced-choice (2IFC)
threshold procedure is used. For the 2IFC, the reference stimulus
fref is selected out of the three predetermined frequencies and
the target stimulus ft was varied in a stochastic approximation
staircase (SAS) manner, where the variation is based on the
report of the subjects of the perceived stimulus (Clemente et al.,
2017). Therefore,

ftn+1 = ftn −
1.5fref

(2+m)
(Zn − 0.85), (6)

where ftn is the target stimulus during the previous trial, ftn+1 is
the upcoming trial, m is the number of reversals showing how
many times the answers change from wrong to right, Zn is set
to 1 for correct answer and 0 for an incorrect answer, and ftn is
initialized with 1.5 times the reference stimulus. The trials are
stopped after 50 iterations and the value ft51 for the 51st trial is
taken as the perception threshold (Clemente et al., 2017; Mayer
et al., 2019).

The JNDa is obtained similar to the JNDf where the target
amplitude atn+1 is now varied in a SAS manner and the reference
stimulus aref is chosen out of the given amplitudes.

3.2. Perception Threshold
The objective of this subsection is to determine the minimum
stimulation amplitude a0 from which subjects could perceive
a given stimulation frequency f . This will be referred to as
“perception threshold” henceforth. For any given frequency, the
amplitude thresholds change and are different for each person,
thus it is necessary to be identified (Mayer et al., 2019).

3.2.1. Setup
The same setup as for the psychophysical evaluation was used
which is explained in section 3.1.1.

3.2.2. Protocol
The perception threshold is obtained using a method of
adjustment test (Kingdom and Prins, 2016, Chapter 3). The
subjects are presented n = 10 times with each frequency f ∈

[100, 200, 400, 750, 1500, 3000, 6000] Hz. At each iteration,
the amplitude is adjusted by the subject to the lowest perceived
stimulation. The subject can adjust the amplitude in small
1Usmall = 0.005V and large 1Ularge = 0.05V increments. The
frequencies were presented in a randomized order.

The obtained perception threshold value a0 for each subject
is set in the bone conduction stimulation signal (Equation 4).
The experiment then proceeded to the virtual reality based
grasping tasks.

3.3. Grasp Force Regulation and Object
Classification
Subjects were asked to perform a set of grasp force regulation
and secondary information classification tasks with a virtual
prosthetic hand. The tasks involved regulating the grasp force
of the virtual reality prosthetic hand through the use of a
sEMG-based control interface and classifying the secondary
information. Different combinations of feedback modalities
[visual feedback (V), grasp force (F), and the secondary
information (S)] were presented, as shown in Table 1.

Three grasping tasks were tested in each group (Table 1).
“Grasp Force Regulation Task” consisted purely of applying a
grasp force to an object in-hand, this task is detailed in section
3.3.3.1. “Secondary Information Classification Task” consisted
of classifying the secondary information, with no grasp force
involved, this task is detailed in section 3.3.2.2. “Mixed Task” was
a combination of “Grasp Force Regulation Task” and “Secondary
Information Classification Task,” where subjects required to
apply a given grasp force and classify the secondary information,
this task is detailed in section 3.3.2.3. Tasks VF and VS were
considered as training for the users to familiarize themselves with
the sEMG control interface and the feedback. Tasks VFS, F, S,
and FS were used to show if subjects can differentiate multiple
sensory feedback encoded in one channel with and without visual
feedback. The tasks are detailed in the following subsections.
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TABLE 1 | Experimental cases tested: encoding two sets of information onto the

amplitude and frequency of the vibrotactile stimulation as the feedback to the

subject through bone conduction.

Task V F S

VF Grasp force x x

VS Secondary information x x

VFS Mixed x x x

F Grasp force x

S Secondary information x

FS Mixed x x

The role of visual feedback is also compared as a baseline.

The efficacy of this concept is further investigated on a closed-loop operation of a

hand prosthesis.

3.3.1. Setup

3.3.1.1. Orthoses and bone conduction
The same setup as for the psychophysical evaluation was used, as
explained in section 3.1.1.

3.3.1.2. sEMG
MyoWare sensors with Ag-AgCl electrodes were used for sEMG
data gathering. Data gathering and virtual reality update were
performed at 90 Hz.

3.3.1.3. Virtual reality
The virtual reality component of the experiment was performed
on an HTC Vive Pro HMD with the application developed in
Unity3D. The experimental platform runs on an Intel Core i7-
8700K processor at 3.7 GHz, with 32 GB RAM, andGeForce GTX
1080Ti video card with 11 GB GDDR5. An HTC Vive Controller
was used for tracking the non-dominant hand of the subject
and to interact with the virtual reality application. The subjects
report on the secondary information and navigate through the
experiment with the non-dominant hand. An HTC Vive Tracker
was used to determine the location of the dominant hand of
the subject to determine the location of the virtual prosthesis.
The application used for the experiment can be downloaded
from https://github.com/Rigaro/VRProEP.

An average time latency of a touch event generated in virtual
reality and the activation of the feedback stimulus of tlatency =

66 ms was estimated by measuring the single time latency’s
involved. The total delay results from the time delay of sending
a command from the virtual reality setup via a UDP connection
to the stimulation control unit tUDP = 65 ms (measured) and the
delay of sending the stimulation command to the NI USB-6343
tNI = 1 ms (datasheet).

3.3.2. Protocol
Subjects performed a set of grasping and secondary information
classification tasks in the virtual reality environment. The tasks
were separated into two blocks (see Table 1) with a 2 min break
between them. AnHTCVive Pro HeadMounted Display (HMD)
was used to display the virtual reality environment to subjects.
The virtual reality set-up is shown in Figure 1Awhile the subject’s

first person view in virtual reality is shown in Figure 1B and a
top person view in Figure 1C. A Vive Controller was held by
the subject on their non-dominant hand and was used to enable
the EMG interface by a button press and to select the secondary
information class in the classification task. A standard dual-
site differential surface EMG proportional prosthetic interface
was used to command the prosthetic hand closing velocity
(Fougner et al., 2012). Muscle activation was gathered using
sEMG electrodes placed on the forearm targeting wrist flexor and
extensor muscles for hand closing and opening, respectively.

3.3.2.1. Grasp force regulation task
In the grasp force task, subjects were asked to use the sEMG
control interface to regulate the grasp force to grip objects with a
certain grasp force level. A fixed stimulation frequency was used,
in line with the result of the psychophysical evaluation, while the
amplitude a(t) is used to provide feedback on the grasp force
produced by the human subject as determined by Equation (4).

The grasp force fg was calculated from the sEMG signal
magnitude. Therefore, the sEMG signal magnitude uEMG is
integrated in a recursive discrete manner, as given by

−100 ≤ uEMG(k) ≤ 100,

fg(k+ 1) = fg(k)+ 1fguEMG(k),

0 ≤ fg(k+ 1) ≤ 1,

(7)

where uEMG(k) is the sEMG input amplification adjusted per
subject to range from [−100, 100]; 1fg = 0.005 is the scaling
factor to convert sEMG signal magnitude to a force rate of
change. The grasp force fg is bounded to [0, 1]. The recursion
is updated at 90 Hz.

The grasp tasks were grouped in two parts (see Table 1). In
the first part (VF), visual feedback related to the grasp force was
given to the subjects and is considered as training. The visual
feedback consisted of the grasped object changing color in a
gradient depending on the applied grasp force fg(k). In the second
part (F), no visual feedback was provided. Three different target
grasp force levels were used for the task and each was repeated
five times in a randomized manner. The target grasp force levels
were [0.3, 0.5, 0.8]. The object starting color represented the
target grasp force level, however, subjects did not explicitly know
the exact target force.

3.3.2.2. Secondary information classification task
In the secondary information classification task, subjects were
asked to report on which of the three different classes they
perceived by touching one of three spheres in front of them
representing each of the classes. The classes (s) were low, mid,
and high, which translated to the following frequencies [100,
400, 750] Hz. The grasp force was set to constant at fg =

0.8 resulting in a constant amplitude a(t) in the feedback
stimulus to the subject for this task. In other words, it is not
regulated based on the subject sEMG involvement. Each class
was presented 5 times in a randomized manner. The secondary
information classification tasks were grouped in two parts (see
Table 1). In the first part (VS), visual feedback related to the
correct class was shown to the subject through the color of
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the classification spheres whilst presenting the stimuli and is
therefore considered as training. In the second part (S), no visual
feedback was provided.

3.3.2.3. Mixed task
The mixed task combines both the grasp force regulation
and secondary information classification tasks simultaneously,
such that the grasp force regulation had to be executed and
the subjects were then asked to report on which secondary
information class they perceived. This means that the stimulation
provided to the subjects had the grasp force fg(k) encoded
in its amplitude a(t) and the secondary information class s
encoded in its frequency f , simultaneously. A permutation
of all force levels and secondary information classes was
presented and each combination was repeated five times in a
randomizedmanner. Force levels are [0.3, 0.5, 0.8] and secondary
information classes are [100, 400, 750] Hz. The mixed tasks
were grouped in two parts (see Table 1). In the first part
(VFS), visual feedback related to the grasp force was given to
the subjects. No visual feedback was given for the secondary
information feedback. In the second part (FS), no visual feedback
was provided.

3.3.3. Data Gathering and Performance Measure
The grasp force fg (as calculated in Equation 7) and the actual
sEMG activation levels were continuously recorded for all trials
for the duration of each task, along with the desired force
target. The subject’s answer for the Secondary Information
Classification Task was recorded for tasks “Secondary
Information Classification Task” and “Mixed Task,” along
with the correct class.

The following performance measures were used:

Normalized Grasp Force: is the normalized grasp force fg(kf )
at the time kf , where kf is the time the subjects finalize the
force adjustment by disabling the EMG interface by a button
press. The mean and standard deviation is calculated over
the repetitions of each task regulating the grasp force and
represents the accuracy and repeatability of the grasp force
regulation exercise.
Secondary Information Classification Rate: The rate with
which the subject identifies the correct secondary information
class was used as the performance measure in the secondary
information classification task.

The achieved results of perception threshold, secondary
information classification rate and normalized grasp force are
visually presented using boxplots, showing the median, 25th and
75th percentiles and the whiskers indicating the most extreme
points not considered outliers. Any outliers are plotted using the
“+” symbol.

For statistical analysis a non-parametric ANOVA like analysis,
specifically a Friedman test was applied (Daniel, 1990) as an
ANOVA due to non normal distributed data (Shapiro–Wilk test)
was not suitable. This was followed up by a post-hoc analysis
via Wilcoxon signed rank test (Wilcoxon, 1945). The obtained p
values are given as well as the statistical significance indicated in
the plots.

4. RESULTS

Before using the VT bone conduction feedback interface, a pre-
evaluation of the psychophysics of this interface is conducted and
the perception threshold of each subject determined.

4.1. Psychophysics
Figures 2A,B show the obtained mean and standard deviation
for the JNDa and JNDf. In Figure 2C, the mean of both JNDa

and JNDf are plotted together to show the resolution of the
proposed interface. The black dots in Figure 2C denote the
reference stimulus of the SAS approach and the red and blue
dots show the obtained mean value of the JND. Therefore,
this plot shows the next closest noticeable stimulation point
(frequency or amplitude).

The results in Figure 2C show that the JNDa is the smallest for
lower frequencies except at 100 Hz and 0.3 V reference stimulus.
Hence, the fixed frequency of the grasp force regulation task,
as discussed in section 3.3.2, was set to 100 Hz since subjects
had the best amplitude discrimination. Comparing the results
obtained for VT on skin in Dosen et al. (2016), Figures 2A,B
show similar behavior where the JND is increasing linearly with
increasing amplitude and frequency. The lower value for JNDa at
100 Hz indicates better sensitivity at lower frequencies for higher
stimulation amplitudes in case of bone conduction.

4.2. Perception Threshold
Before applying VT bone conduction feedback, the lowest
perceived stimulation at the given frequencies was found using a
method of adjustment. This threshold a0 was used in Equation
(4) to fit the linear relation. The maximum was set to half of
the maximum transducer voltage of 0.5 V. Figure 2D shows the
obtained perception threshold for all subjects.

4.3. Grasp and Object Classification
In the following subsections, the performance of the Mixed
Task, representing the proposed concept of conveying two sets
of information simultaneously via one feedback channel to the
human subject, is compared to the baseline performance of the
Grasp Force Regulation Task and the Secondary Information
Classification Task, using the defined performance measures.

4.3.1. Secondary Information Classification Rate
The obtained secondary information classification rates are
shown in the boxplot of Figure 3A for the VFS, S, and FS tasks.
VS and VF are the training tasks and therefore the obtained data
is not considered in the plots. In VS, the subjects received visual
feedback for the correct answer in order to learn how to interpret
the secondary information feedback and therefore reached 100%
secondary information classification rate. In S, only secondary
information feedback via bone conduction is provided without
visual feedback. In FS, the grasp force level has to be adjusted and
the correct secondary information class chosen afterwards, with
both grasp force and secondary information feedback provided
simultaneously via the bone conduction mechanism.

A mean secondary information classification rate of 86.22 ±

18.17% for VFS (visual, force, and secondary information
feedback), 92.00±16.57% for S (secondary information feedback)
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FIGURE 2 | Results of the psychophysical evaluation of five subjects show the mean and standard deviation of the (A) JNDa giving the amplitude resolution for three

different frequencies at three different amplitudes and (B) JNDf giving the frequency resolution for three different amplitudes at three different frequencies while (C)

shows a summary plot of the obtained mean value of JNDa (blue) and JNDf (red) at each reference stimulus (black). In (D), the identified perception threshold value a0
at the frequencies [100, 200, 400, 750, 1500, 3000, 6000] Hz for 10 subjects, is shown.

and 89.11 ± 16.16% for FS (force and secondary information
feedback) has been observed. The mean secondary information
classification rate and standard deviation for each class (low,
medium, high) for the three different tasks are given in Table 2

and the boxplot shown in Figure 3A. A Friedman test (VFS,
S, FS) for secondary information classification rate resulted in
a statistical significance for the medium secondary information
class classification (see Table 3).

For low and high secondary information class, no
statistical significance could be found, suggesting the data
is compatible with all groups having the same distribution.
For medium secondary information class a Wilcoxon
signed rank test is applied as post-hoc test and results
are shown in Table 4. A statistical significance could be
found for VFS vs. S, but not for VFS vs. FS and S vs. FS

suggesting the data is compatible with all groups having the
same distribution.

4.3.2. Normalized Grasp Force
Figure 3B shows the boxplot of the achieved grasp force by the
subjects during VFS, F, and FS. In VF, the subjects received visual
feedback for the applied grasp force to learn how to associate
grasp force to visual feedback as well as tactile feedback. In all
cases, grasp force feedback is present, while visual feedback is
present only in VFS (see Table 1). The result of each force level
and each trial is given in Table 2.

The obtained results for the Friedman Test (VFS, F, FS) of all
force levels are shown in Table 5 and no statistical significance
could be found suggesting the data is compatible with all groups
having the same distribution.

Frontiers in Neuroscience | www.frontiersin.org 8 April 2020 | Volume 14 | Article 348

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Mayer et al. Multi-Sensor Information via Single Feedback-Channel

FIGURE 3 | Boxplots of the obtained results of the (A) secondary information classification task, subdivided into the three secondary information classes, and in (B)

the achieved grasp force, subdivide into the three target grasp force levels, is shown for 10 subjects. *Asterisk indicates statistical difference by post-hoc

analysis p < 0.05.

TABLE 2 | Shows the mean and standard deviation of the obtained results for secondary information classification rate and normalized grasp force for the 4 tasks for 10

subjects.

Level VFS F S FS

Secondary information Low 97.33± 4.66 − 100.00± 0.00 98.00± 4.50

Classification rate (%) Medium 76.67± 25.19 − 90.00± 25.38 84.67± 19.89

High 84.67± 30.96 − 86.00± 25.03 84.67± 28.12

Normalized grasp force 0.2 0.29± 0.08 0.45± 0.33 − 0.50± 0.33

0.5 0.43± 0.11 0.60± 0.35 − 0.56± 0.29

0.8 0.68± 0.09 0.80± 0.24 − 0.80± 0.24

TABLE 3 | The p-values of the Friedman test for the secondary information

classification rate for the three different classes.

Secondary information class

Low Medium High

p value 0.174 0.031 0.717

A significance level of p < 0.05 was used.

5. DISCUSSION

5.1. Conveying Multi-Sensor Information
5.1.1. Secondary Information Classification
In this subsection, we discuss the performance of the subjects
in Tasks FS compared to S. The role of visual feedback (Task
VFS) is discussed separately in the following subsection 5.2.
Table 3 indicates a statistical difference for the performance
in recognizing the medium secondary information class but
not for low and high. However, the post-hoc test, Table 4,
provides more details by showing no significant difference
between the performance in Tasks S vs. FS for detecting
the medium secondary information class. Therefore, no
statistically significant difference is found between conveying
two sets of information simultaneously through the single

TABLE 4 | The p-values of the post-hoc Wilcoxon signed rank test for medium

class of the mean secondary information classification rate.

Task

VFS vs.S VFS vs.FS S vs. FS

p value 0.024 0.062 0.255

A significance level of p < 0.05 was used.

bone conduction channel in the context of recognizing
the secondary information compared to conveying one set
of information.

5.1.2. Normalized Grasp Force
The Friedman test for the performance of the subjects in the
grasp force regulation task as shown in Table 5 does not show
any statistically significant difference across the cases of F, FS,
and VFS. This is found consistently across the three levels of
grasp force. Therefore, no statistically significant reduction in
performance is found in the proposed approach against the
baseline in the context of grasp force regulation, leading us
to conclude that adding a second set of sensor information
does not influence the ability to use the first set of sensor
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TABLE 5 | The p-values of the Friedman test for the Normalized Grasp Force for

the different target levels.

Target grasp force

0.2 0.5 0.8

p value 0.150 0.407 0.150

A significance level of p < 0.05 was used.

information in a closed-loop manner. The standard deviation is
qualitatively decreasing for increasing force levels indicating a
better repeatability for higher force levels in the case of no visual
feedback (F and FS).

It should be noted that the grasping task for F is carried
out at the stimulation frequency of 100 Hz, as justified by
the psychophysical evaluation. In the case of VFS and FS, the
subject also had the chance to carry out the task of regulating
grasp force alongside the secondary information classification
exercises, which were conducted at [100, 400, 750]Hz. This
difference did not significantly influence the ability to control the
grasp force.

5.2. Role of Visual Feedback
As visual feedback is present in a prosthetic system next
to incidental feedback, the influence of visual feedback is
investigated while incidental feedback is avoided by using a
virtual reality setup. To investigate the influence of visual
feedback, whilst feeding back two sets of information, the grasp
force has been feed back as a color gradient of the grasped object.
Though this is not a real case scenario it contains the same
underlying set of information.

5.2.1. Secondary Information Classification
Comparing VFS to S showed a statistically significant increase
in the secondary information classification rate in the absence
of visual feedback (see Table 4), for the medium secondary
information class, but not for low and high. It should be noted
that the visual feedback was representing grasp force information
and not the secondary information. Comparing VFS to FS does
not yield any statistically significant difference in performance
(see Tables 3, 4). Several explanations are possible. It could
suggest that the subjects were able to learn the meaning of the
feedback and perform better or that the reduced cognitive effort
increased performance. However, the data collected in this study
did not permit the authors to draw further conclusions.

5.2.2. Normalized Grasp Force
The obtained normalized grasp force performance shows no
statistically significant difference between the tasks involving
visual feedback VFS compared to those with no visual feedback
(F and FS). A smaller variance of the normalized grasp force
is obtained for VFS compared to F and FS. It should be noted
that VFS adds visual feedback for the same sensory information,
namely the grasp force. A similar observation was reported in
Patterson and Katz (1992) stating that the primary advantage of
supplemental feedback is to reduce the variability of responses.

This decrease can not be observed for F compared to FS as it
does not add more feedback of the same sensory information but
rather superimposes other types of sensory information.

It should be noted that the results are obtained using a
virtual reality setup. This allows the control of the provision
of visual feedback while guiding the subjects through the grasp
task experiment. Admittedly it abstracts the experiment from a
practical grasping task. However, it does not take away the main
premise from the study, which is to understand how well two sets
of information can be conveyed in this novel manner.

6. CONCLUSION

This study investigated the efficacy of conveying multi-sensor
information via fewer feedback channels in a prosthetics context.
Two sets of sensor information: grasp force and a secondary
information, are conveyed simultaneously to human users
through one feedback channel (a vibrotactile transducer on
bone conduction). Human subject experiment was conducted
using physical vibrotactile transducers on the elbow bony
landmark and virtual reality environment to simulate the
prosthetic grasping force regulation and secondary information
classification tasks. It was found that the subjects were able
to discern the two sets of feedback information, sufficient to
perform the grasping and secondary information classification
tasks to a performance not inferior to that when carried out
with only one set of feedback information. The addition of visual
feedback, a common feedback mechanism present in prostheses,
was found to improve the repeatability of grasp force regulation
as reported in literature.

It is expected that the result is generalizable to other types
of information and modalities (not limited to grasp force and
bone conduction stimulation) and more freedom in the selection
of the number of independent sets of sensor information N
and feedback stimulation channel M, as long as N > M. The
second set of information was generalized and labeled secondary
information but can be multiple in a real world application e.g.,
temperature, friction.

It should be noted that in this experiment, one set of sensor
information was used explicitly in the closed-loop performance
of grasp force regulation, while the other set constitutes
additional information. Future work will investigate other
modulation techniques to encode the multi-sets of information
into the one feedback stimulation channel and algorithms to
find an optimal matching between sensory information and
provided feedback.
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