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Abstract 
Hepatocellular carcinoma (HCC) is still a significant global health problem. The development of bioinformatics may provide the 
opportunities to identify novel therapeutic targets. This study bioinformatically identified the differentially expressed genes (DEGs) 
in HCC and associated them with HCC prognosis using data from published databases. The DEGs downloaded from the Gene 
Expression Omnibus (GEO) website were visualized using the Venn diagram software, and then subjected to the GO and KEGG 
analyses, while the protein–protein interaction network was analyzed using Cytoscape software with the Search Tool for the search 
tool for the retrieval of interacting genes and the molecular complex detection plug-in. Kaplan–Meier curves and the log rank test 
were used to associate the core PPI network genes with the prognosis. There were 57 upregulated and 143 downregulated 
genes in HCC samples. The GO and pathway analyses revealed that these DEGs are involved in the biological processes (BPs), 
molecular functions (MFs), and cell components (CCs). The PPI network covered 50 upregulated and 108 downregulated genes, 
and the core modules of this PPI network contained 34 upregulated genes. A total of 28 of these upregulated genes were 
associated with a poor HCC prognosis, 27 of which were highly expressed in HCC tissues. This study identified 28 DEGs to be 
associated with a poor HCC prognosis. Future studies will investigate their possible applications as prognostic biomarkers and 
potential therapeutic targets for HCC.

Abbreviations: BPs = biological processes, BUB1B = mitotic checkpoint serine/threonine kinase B, CC = cell components, 
CCNB1 = cyclin-B1, CDK1 = cyclin-dependent kinase 1, DEGs = the differentially expressed genes, FC = fold change, GEO 
= the Gene Expression Omnibus, GEPIA = Gene Expression Profiling Interactive Analysis, GO = Gene Ontology, HCC = 
hepatocellular carcinoma, KEGG = Kyoto Encyclopedia of Genes and Genomes, MAD2L1 = Mitotic arrest deficient 2 like 1, 
miRNAs = microRNA, PPI = protein–protein interaction.
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1. Introduction
Hepatocellular carcinoma (HCC) is the fifth most commonly 
diagnosed human cancer in the world,[1] accounting for 
approximately 841,080 new annual cases and approximately 
781,631 cancer-related deaths globally.[2] In China, there were 
461,600 new HCC cases and 422,100 HCC-related deaths 
in 2015.[3] Clinically, HCC patients are usually diagnosed at 
an intermediate to an advanced stage of disease, thus mak-
ing total surgical tumor resection or percutaneous ablation 
unlikely; thus, liver transplantation followed by radiotherapy 
and transcatheter arterial chemoembolization has become the 
best treatment of choice.[4] Unfortunately, HCC has a high 

recurrence rate even after a successful surgical resection of 
tumor lesion(s), which is likely due to the insensitivity of 
HCC to chemotherapy and radiotherapy after surgery.[5] 
Therefore, further studies of the underlying mechanisms of 
HCC development could help us to identify and evaluate the 
novel HCC biomarkers for prediction of treatment outcomes 
and prognosis of HCC patients.

In recent years, the high-throughput sequencing and bio-
informatics research have sped up the analytical process and 
understanding of gene alterations in human diseases, includ-
ing cancer.[6] Using microarray technology, researchers have 
revealed many differentially expressed genes (DEGs) involved 
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in HCC initiation, development, progression, and metastasis. 
For example, Ally et al have shown that the wingless and Int-1 
signaling pathway as well as mouse double minute 4 homolog, 
MET, vascular endothelial growth factor, myeloid cell leukemia 
protein 1, isocitrate dehydrogenase 1, and telomerase reverse 
transcriptase are aberrantly expressed or activated, suggest-
ing that these genes could be potential therapeutic targets for 
HCC; whereas aberrant expression of cytotoxic T-lymphocyte-
associated protein 4, programmed cell death protein 1 and 
programmed death-ligand 1, which are all important immune 
checkpoint proteins, was not observed in the control tissues.[7] 
In addition, Mou et al have identified differentially expressed 
miRNAs, like hsa-mir-221, and its interactions with estrogen 
receptor alpha and C-X-C motif chemokine 12 as potential tar-
gets for early HCC detection and treatment.[8] Moreover, many 
other bioinformatics studies have been conducted recently, fur-
ther improving the bioinformatics methods and providing a bet-
ter understanding of the underlying HCC mechanisms.[9]

Therefore, in this study, we searched and downloaded the 
GSE101685, GSE62232, and GSE112790 datasets from the 
NCBI Gene Expression Omnibus (GEO) website and identified 
DEGs and then performed GO and KEGG pathway enrichment 
analyses. Thereafter, we also established the protein–protein 
interaction (PPI) network using molecular complex detection 
for these DEGs and then associated the core DEGs with the 
HCC prognosis using the Kaplan–Meier plotter and re-analyzed 
these core DEGs. This study could provide a novel insight into 
HCC for the future development of novel biomarkers and ther-
apeutic targets for HCC.

2. Methods

2.1. Collection of public gene expression data

This study searched and downloaded 3 gene expression pro-
files from HCC and the corresponding normal specimens 
(GSE101685, GSE62232, and GSE112790) from the GEO 
database (https://www.ncbi.nlm.nih.gov/gds), data of which 
obtained from analysis of the GPL570 platform ([HG-U133_
Plus_2] Affymetrix Human Genome U133 Plus 2.0 Array; 
Affymetrix, Santa Clara, CA, USA) in 24 cases of HCCs ver-
sus 8 normal liver, 81 HCCs versus 10 normal liver, and 183 
HCC versus 15 normal liver specimens, respectively, resulting in 
a total of 321 samples (288 HCC and 32 nontumor liver tissue 
samples).

2.2. Identification of DEGs

DEGs in HCC versus normal liver tissue specimens were iden-
tified by using the GEO2R online tools.[10] Specifically, the raw 
data were first analyzed using the online Venn diagram software 
(http://bioinformatics.psb.ugent.be/webtools/Venn/) to identify 
DEGs from these 3 datasets. If the DEGs met the criteria of |log 
fold change (FC)| ≥ 2.0 and adjusted P-value < .05, these genes 
were considered as upregulated genes, whereas the DEGs with 
a log FC value < 0 were considered as a downregulated ones.

2.3. The GO and KEGG analyses

The GO term analysis was applied to define genes and their 
products, mRNA, or proteins in order to evaluate the unique 
biological signaling of the high-throughput transcriptome or 
genomic data.[11] The KEGG database was used to integrate the 
currently known PPI network information for the metabolism, 
genetic information processing, environmental information 
processing, cellular processes, organismal systems, human dis-
eases, and drug development[12] using the database for annota-
tion, visualization and integrated discovery 6.8 (https://david.
ncifcrf.gov), an online bioinformatics tool designed to interpret 

biological function annotations of genes or proteins.[13] In our 
study, we utilized the database for annotation, visualization 
and integrated discovery to identify the enriched biological 
processes (BPs), molecular functions (MFs), and cellular com-
ponents (CCs) as well as pathways with P < .05 as the cutoff 
criterion for these DEGs in HCC.

2.4. The PPI network construction and analysis

We used an online Search Tool of the search tool for the retrieval 
of interacting genes (the Retrieval of Interacting Genes) to assess 
the potential interactions of these DEG-related proteins.[14] The 
cutoff criteria were as follows: required confidence level ≥ 0.4, 
while the maximum interactor number = 0.[15] We then used 
Cytoscape software to visualize the PPI network using the 
molecular complex detection, version 1.31 functions (the degree 
cutoff value = 2; the maximum depth = 100; k-core = 2; and 
node score cutoff = 0.2 as significance).

2.5. Analysis of HCC prognosis and GEPIA confirmation of 
DEGs

We conducted HCC survival analysis using the European 
Genome-phenome Archive, The Cancer Genome Atlas, and 
GEO databases[16] using the Kaplan–Meier plotter (www.
kmplot.com), which is capable of assessing the effects of 54,000 
genes for association with the prognosis of 21 cancer types in 
the HGU133 Plus 2.0 array, with mean follow-up time of up to 
69 months.[17] After that, we performed GEPIA via an interac-
tive website (http://gepia.cancer-pku.cn)[18] and further assessed 
these DEGs values in HCC.

2.6. Statistical analysis

The data were downloaded and analyzed using the R statistical 
software (version 4.0.2[19];). All other analyses were incorpo-
rated directly in the above subtitles. Overall, a P value <.05 was 
considered statistically significant.

3. Results

3.1. Identification of HCC-related DEGs

In this study, we searched and downloaded 3 gene expression 
profiles (GSE101685, GSE62232, and GSE112790 containing 
288 HCC and 32 normal liver samples) from the GEO data-
base and obtained 723, 385, and 444 DEGs, respectively. We 
then used the cutoff value of |log FC| ≥ 2.0 or < 0 and P < .05 to 
identify a total of 200 DEGs (57 upregulated and 143 downreg-
ulated genes; Fig. 1 and Table 1).

3.2. DEGs GO terms and KEGG pathways

These 200 DEGs were analyzed for the GO terms, that is, the 
upregulated DEGs were enriched in the BPs terms for differ-
ent cell processes, like cell division or mitotic cytokinesis. 
In contrast, the downregulated DEGs were enriched in other 
cell pathways, like the epoxygenase P450 pathway, the oxi-
dation-reduction process,. In the MFs, the upregulated DEGs 
were enriched in protein kinase binding or protein kinase activ-
ity, whereas the downregulated DEGs were enriched in oxygen 
binding, heme binding, and steroid hydroxylase activity. For the 
CC GO term, the upregulated DEGs were enriched in the mid-
body, cytoplasm, spindle microtubule, and centrosome; whereas 
the downregulated DEGs were enriched in the organelle mem-
brane, extracellular region, endoplasmic reticulum membrane, 
and extracellular exosome (Table 2).

Furthermore, the KEGG analysis revealed that the upregu-
lated DEGs were enriched in chemical carcinogenesis, retinol 

https://www.ncbi.nlm.nih.gov/gds
http://bioinformatics.psb.ugent.be/webtools/Venn/
https://david.ncifcrf.gov
https://david.ncifcrf.gov
http://gepia.cancer-pku.cn
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metabolism, drug metabolism - cytochrome P450, metabolism 
of xenobiotics by cytochrome P450, and the cell cycle; however, 
the downregulated DEGs did not significantly associated with 
(formed) any signaling (P < .05; Table 3).

3.3. Identification of DEGs-related PPI network

Since PPIs are key for gene-gene interactions in cells, we obtained 
the PPI network of these DEGs using the online search tool 
search tool for the retrieval of interacting genes and Cytoscape 
software. This PPI network contained a total of 158 nodes and 
885 edges, covering 50 upregulated and 108 downregulated 
genes (Fig. 2A); however, we could not relate 42 of these 200 
DEGs into this PPI network complex because they did not asso-
ciate with this overall PPI network. Next, we analyzed the core 
modules of this PPI network using the MOCDE app and found 
them to include 34 nodes and 537 edges (Fig. 2B), showing that 
all 34 core nodes were from upregulated genes of the 158 core 
DEGs, but nor from the downregulated DEGs, with unknown 
reason.

3.4. Association of these core DEGs with survival of HCC 
patients

We then performed Kaplan–Meier analysis (http://kmplot.
com/analysis/) to associate these 34 main DEGs with HCC 
prognosis. The database is capable to assess the effect of 54k 
genes (i.e., mRNA, miRNA, or protein) on survival in 21 can-
cer types, including breast (n = 7830), ovarian (n = 2190), 
lung (n = 3452), and gastric (n = 1440) cancers. As shown in 
Figure 3 and Table 4, we found that 28 DEGs were signifi-
cantly associated with a poor HCC prognosis, whereas the 
remaining 6 DEGs were not associated with the HCC prog-
nosis (P > .05).

Next, we performed GEPIA of these 28 genes between can-
cer patients and healthy individuals (http://gepia.cancer-pku.
cn/). We found that 27 of these 28 genes were highly expressed 
in HCC tissue samples versus normal livers (P < .05; Fig.  4 
and Table  5). These 27 genes, particularly Cyclin B1, CDK1, 
MAD2L1, or BUB1B, were enriched in the cell cycle signaling 
(P = 3.09E-4; Fig. 5 and Table 6).

Figure 1. The Venn diagram of 200 DEGs. Illustration of the 200 DEGs from the 3 datasets (GSE101685, GSE62232, and GSE112790), which downloaded 
from PubMed database analyzed by using Venn diagram software (http://bioinformatics.psb.ugent.be/webtools/Venn/). The various colors represent different 
datasets. (A) The 57 upregulated DEGs (log FC ＞ 0). (B) The 143 downregulated DEGs (log FC < 0). DEGs = the differentially expressed genes, FC = fold 
change.

Table 1

Identification of DEGs in HCC tissue samples versus normal livers.

Expression Genes 

Upregulated 
DEGs

(n = 57)

CDK1, TYMS, FAM72A///FAM72D///FAM72B///FAM72C, SPINK1, UBD///GABBR1, RKAA2, CAP2, DTL, RACGAP1, FAM83D, CTHRC1, UHRF1, 
RRM2, ZWINT, CCNB1, NDC80, TOP2A, KIAA0101, ASPM, HELLS, FLVCR1, HMMR, CCNA2, CD24, TTK, CDKN3, AKR1B10, PBK, NCAPG, 
GINS1, GPC3, CDKN2C, SULT1C2, CCL20, ROBO1, SPP1, CENPU, PRR11, LOC101930489///MIR4435-2HG///LINC00152, NEK2, ANLN, 
ACSL4, APOBEC3B, BIRC5, KIF20A, AURKA, UBE2T, DUXAP10, CRNDE, NUSAP1, NQO1, BUB1B, MAD2L1, COL15A1, DLGAP5, ECT2, PRC1

Downregulated 
DEGs

(n = 143)

HBA2///HBA1, MT1G, CYP4A22///CYP4A11, LECT2, TUBE1, CYP26A1, BBOX1, PLG, CYP2A6, SOCS2, LINC01093, CYP2C8, CXCL14, SLC22A1, 
IGF1, SULT1E1, CYP39A1, SPP2, HAO2, LINC01554, FAM134B, MT1F, SLC25A47, MFSD2A, FLJ22763, HHIP, APOA5, ADH1B, KCND3, KCNN2, 
SLCO1B3, SLC10A1, SLC1A2, GSTZ1, PRG4, LY6E, ASPA, CYP1A2, INS-IGF2///IGF2, MT1E, CNDP1, MAN1C1, BCO2, FOLH1B///FOLH1, FCN3, 
ACSM3, GBA3, CYP2C19, PDGFRA, ANXA10, TTC36, LOC100287413///GLYATL1, CLEC4G, CYP2B6, GYS2, KBTBD11, FOLH1B, KMO, LPA, 
GHR, CLEC1B, MIR675///H19, CXCL2, LIFR, CLRN3, CYP2C9, CFHR3, MARCO, BHMT, CYP2A7, CYP2E1, EXPH5, MT1H, LCAT, CTH, CLEC4M, 
VNN1, LYVE1, ESR1, HSD11B1, RSPO3, IGFBP3, FOS, LOC101928916///NNMT, PLAC8, ALDOB, HAMP, DNASE1L3, DCN, NAT2, BCHE, CPEB3, 
IL1RAP, RDH16, AKR1D1, CYP8B1, CXCL12, GNMT, TMEM27, HPGD, CRHBP, DNAJC12, MFAP3L, MME, AVPR1A, WDR72, THRSP, CYP4A11, 
IDO2, HGFAC, IGFALS, MT1X, MT2A, ADGRG7, S100A8, C7, CYP3A43, PZP, FBP1, AADAT, ADH4, GPM6A, OIT3, HGF, MOGAT2, MT1M, MA-
GI2-AS3, CYP3A4, GLYAT, CYP2B7P///CYP2B6, CETP, GLS2, SRD5A2, ADRA1A, ECM1, APOF, HBB, MT1HL1, C9, SRPX, FCN2, OAT, LINC00844

The upregulated DEGs were identified by the criteria of log
2
 fold change (FC) ≥ 2.0 and adjusted P value <.05, and the number of the DEGs was 57. The downregulated DEGs were identified by the criteria 

of log fold change (FC) ≤ 2.0 and adjusted P value <.05, and the number of the DEGs was 143.
DEGs = the differentially expressed genes 

http://kmplot.com/analysis/
http://kmplot.com/analysis/
http://gepia.cancer-pku.cn/
http://gepia.cancer-pku.cn/
http://bioinformatics.psb.ugent.be/webtools/Venn/
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4. Discussion
HCC development and progression, like most other malignan-
cies, involve the aberrant activation of oncogenes and the loss 

of tumor suppressor genes, resulting in abnormal BPs, MFs, and 
CCs as well as alterations of cell growth and apoptosis.[20] In the 
current study, altered CCNB1, CDK1, MAD2L1, and BUB1B 
expression was shown in HCC versus normal liver tissues, and 

Table 2

GO terms of the DEGs in HCC tissue samples. 

Expression Category Term Count % P FDR 

Upregulated DEGs GOTERM_BP_DIRECT
GOTERM_BP_DIRECT
GOTERM_BP_DIRECT
GOTERM_BP_DIRECT
GOTERM_BP_DIRECT
GOTERM_BP_DIRECT
GOTERM_MF_DIRECT
GOTERM_MF_DIRECT
GOTERM_MF_DIRECT
GOTERM_MF_DIRECT
GOTERM_CC_DIRECT
GOTERM_CC_DIRECT
GOTERM_CC_DIRECT
GOTERM_CC_DIRECT
GOTERM_CC_DIRECT

GO:0051301–cell division
GO:0000281–mitotic cytokinesis

GO:0000910–cytokinesis
GO:0051988–regulation of attachment of 

spindle microtubules to kinetochore
GO:0007067–mitotic nuclear division

GO:0007052–mitotic spindle organization
GO:0019901–protein kinase binding
GO:0004672–protein kinase activity
GO:0008017–microtubule binding
GO:0003682–chromatin binding

GO:0030496–midbody
GO:0005737–cytoplasm

GO:0005876–spindle microtubule
GO:0005634–nucleus

GO:0005813–centrosome

8
4
4
3
5
3
5
5
4
6
8

25
4

19
6

9.33
4.66
4.66
3.50
5.83
3.50
5.83
5.83
4.66
6.99
9.33
29.1
4.67
22.1
6.99

6.73E-07
7.09E-05
1.40E-04
1.68E-04
4.36E-04

.003
9.99E-05
8.04E-04

.001

.002
1.79E-08
1.32E-06
1.51E-04
9.04E-04

.003

9.15E-04
0.096
0.190
0.229
0.591
3.656
0.105
0.843
1.367
2.430

1.95E-05
0.001
0.164
0.981
2.747

Downregulated DEGs GOTERM_BP_DIRECT
GOTERM_BP_DIRECT
GOTERM_BP_DIRECT
GOTERM_BP_DIRECT
GOTERM_BP_DIRECT
GOTERM_BP_DIRECT
GOTERM_BP_DIRECT
GOTERM_BP_DIRECT
GOTERM_MF_DIRECT
GOTERM_MF_DIRECT
GOTERM_MF_DIRECT
GOTERM_MF_DIRECT
GOTERM_MF_DIRECT
GOTERM_MF_DIRECT
GOTERM_CC_DIRECT
GOTERM_CC_DIRECT
GOTERM_CC_DIRECT

GO:0019373–epoxygenase P450 pathway
GO:0055114–oxidation-reduction process

GO:0042738–exogenous drug catabolic process
GO:0017144–drug metabolic process

GO:0045926–negative regulation of growth
GO:0071294–cellular response to zinc ion
GO:0006805–xenobiotic metabolic process

GO:0008202–steroid metabolic process
GO:0019825–oxygen binding
GO:0020037–heme binding

GO:0005506–iron ion binding
GO:0004497–monooxygenase activity

GO:0008392–arachidonic acid epoxygenase 
activity

GO:0008395–steroid hydroxylase activity
GO:0031090–organelle membrane
GO:0005576–extracellular region
GO:0072562–blood microparticle

9
24
7
8
7
7

10
8

12
16
16
12
8
8

15
34
9

5.72
15.3
4.45
5.08
4.45
4.45
6.35
5.08
7.63
10.2
10.2
7.63
5.08
5.08
9.53
21.6
5.72

2.53E-13
3.94E-11
1.16E-10
7.07E-10
3.26E-09
3.26E-09
5.01E-09
2.33E-08
2.06E-14
4.59E-14
2.39E-13
2.52E-13
4.72E-12
4.52E-10
8.33E-16
6.75E-09
1.00E-05

3.93E-10
6.11E-08
1.80E-07
1.10E-06
5.06E-06
5.06E-06
7.77E-06
3.61E-05
2.85E-11
6.33E-11
3.30E-10
3.49E-10
6.52E-09
6.25E-07
1.02E-12
7.78E-06

0.012

 GOTERM_CC_DIRECT
GOTERM_CC_DIRECT

GO:0005789–endoplasmic reticulum membrane
GO:0070062–extracellular exosome

19
36

12.1
22.9

2.38E-05
2.29E-04

0.027
0.263

The GO term analysis was applied to define genes and their products, mRNA, or proteins in order to evaluate the unique biological signaling of the high-throughput transcriptome or genomic data. The table 
was utilized DAVID to identify the enriched biological processes (BPs), molecular functions (MFs), and cellular components (CCs) as well as pathways with P < .05 as the cutoff criterion for these DEGs in HCC.
DAVID = the database for annotation, visualization and integrated discovery, FDR = false discovery rate, GO = gene ontology. 

Table 3

KEGG pathways of the DEGs in HCC tissue samples. 

Pathway 
ID Name Count % P Genes 

hsa05204 Chemical carcinogenesis 12 4.93 2.43E-08 CYP3A4, CYP3A43, CYP2C19, CYP2C9, CYP2C8, ADH4, 
NAT2, HSD11B1, ADH1B, CYP2A6, CYP2E1, CYP1A2

hsa00830 Retinol metabolism 10 4.11 4.02E-07 CYP3A4, CYP2B6, CYP2C9, CYP2C8, ADH4, ADH1B, 
CYP26A1, CYP2A6, CYP1A2, RDH16

hsa00982 Drug metabolism - cytochrome P450 10 4.11 6.84E-07 CYP3A4, CYP2C19, CYP2B6, CYP2C9, CYP2C8, ADH4, 
ADH1B, CYP2A6, CYP2E1, CYP1A2

hsa00980 Metabolism of xenobiotics by  
cytochrome P450

9 3.37 1.38E-05 CYP3A4, CYP2B6, CYP2C9, ADH4, HSD11B1, ADH1B, 
CYP2A6, CYP2E1, CYP1A2

hsa04110 Cell cycle 7 2.88 0.01 CCNB1, CDK1, MAD2L1, CDKN2C, TTK, BUB1B, CCNA2

The KEGG database was used to integrate the currently known PPI network information for the metabolism, genetic information processing, environmental information processing, cellular processes, 
organismal systems, human diseases, and drug development using DAVID 6.8 (https://david.ncifcrf.gov), an online bioinformatics tool designed to interpret biological function annotations of genes or 
proteins.
DAVID = the database for annotation, visualization and integrated discovery, HCC = hepatocellular carcinoma, KEGG = Kyoto Encyclopedia of Genes and Genomes.

https://david.ncifcrf.gov
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changes in expression of these genes resulted in tumor cell cycle 
progression and cell growth. Therefore, these genes were asso-
ciated with a poor overall survival of HCC patients. A previous 

study conducted by Sarathi et al reported alteration of several 
genes in HCC, which associated with the stage of HCC, such as 
NDUFA4L2, CRHBP, and PIGU. However, their data were not 

Figure 2. The PPI network. (A) The PPI network covers a total of 158 DEGs. Nodes indicate proteins; edges indicate the interaction of proteins. The blue nodes 
refer to downregulated DEGs; the red nodes refer to upregulated DEGs. (B) Module analysis of the DEGs using the Cytoscape software with a cutoff value 
of 2, the node score cutoff value = 0.2 (k-core = 2), and maximum depth = 100. DEGs = the differentially expressed genes, PPI = protein–protein interaction. 

Figure 3. The Kaplan–Meier survival curves of the 28 DEGs. Association of the 34 core genes with HCC prognosis as analyzed by using the online tool Kaplan–
Meier plotter. The data demonstrated that 28 of 34 genes were associated with significantly poor HCC prognosis (P < .05). DEGs = the differentially expressed 
genes, HCC = hepatocellular carcinoma. 

Table 4

Survival significance of the 34 key candidate genes in HCC.

Category Genes 

Genes with a significantly 
worse survival (P < .05)

ANLN, ASPM, AURKA, BIRC5, BUB1B, CCNB1, CDK1, CDKN3, DLGAP5, DTL, ECT2, FAM83D, GINS1, HELLS, 
KIAA0101, KIF20A, MAD2L1, NCAPG, PBK, PRC1, RACGAP1, RRM2, TOP2A, TTK, TYMS, UBE2T, UHRF1, ZWINT

Genes without a significantly 
worse survival (P > .05)

CCNA2, NDC80, NEK2, NUSAP1, HMMR, CENPU

HCC = hepatocellular carcinoma.
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shown in our current study, which might be due to the different 
RNA-Seq data. The heterogeneity of HCC might be the another 
reason and blocked the treatment in clinical.[21]

The cell cycle is a cell process that is strictly controlled by 
different cyclins and cyclin-dependent kinases (CDKs).[22] 
Cyclin B1 (CCNB1) is a protein associated with cell mitosis 
and primarily expressed in the G2/M phase of the cell cycle. 

Zheng et al have shown that miRNA-200c expression was 
able to enhance the radiosensitivity of esophageal cancer by 
arrest of cells at cell cycle G2/M via downregulation of CCNB1 
expression.[23] Similarly, Pan et al have reported that eukary-
otic translation initiation factor 3 subunit D silencing was able 
to suppress renal cancer cell tumorigenesis by induction of 
G2/M-phase arrest and downregulation of the CCNB1/CDK1 

Figure 4. The expression level of the 27 DEGs between the liver tissue and the normao tissue. Identification of 27 genes that are significantly highly expressed 
in HCC tissues. The 28 genes that are significantly associated with a poor survival of HCC patients were analyzed by using GEPIA of HCC tissues versus normal 
livers. The data showed that 27 of these 28 genes were highly expressed in HCC versus normal liver samples (*P < .05). The red color refers to HCC; the gray 
color refers to normal liver samples. DEGs = the differentially expressed genes, GEPIA = gene expression profiling interactive analysis, HCC = hepatocellular 
carcinoma. 

Table 5

Validation of the 28 genes from the GEPIA data.

Category Genes 

Highly expressed 
genes (P < .05)

ANLN, ASPM, AURKA, BIRC5, BUB1B, CCNB1, CDK1, CDKN3, DLGAP5, DTL, ECT2, FAM83D, GINS1, HELLS, 
KIAA0101, KIF20A, MAD2L1, NCAPG, PBK, PRC1, RACGAP1, RRM2, TOP2A, TYMS, UBE2T, UHRF1, ZWINT

Nonhighly expressed 
genes (P > .05)

TTK

GEPIA = gene expression profiling interactive analysis.
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signaling pathway activity.[24] Other studies have demonstrated 
that CCNB1 overexpression is associated with a poor prog-
nosis of human epidermal growth factor receptor 2-positive 
breast cancer,[25] colorectal cancer,[26] nonmuscle-invasive blad-
der cancer,[27] pancreatic cancer,[28] and non-small cell lung 
cancer.[29] Our current data further support these findings in 
other cancers. Indeed, Zhuang et al also have revealed that the 
upregulated CCNB1 expression in HCC tissues associated with 
a worse HCC prognosis.[30] Furthermore, Gavet et al have pre-
viously demonstrated that the cyclinB1-Cdk1 complex, which 
functions as the master mitotic factor, was significantly acti-
vated in the late G2 phase to trigger the prophase of the cell 
cycle.[31] CDK1, also known as cell division control protein 2 
or CDC2, is one of the CDK family members that is frequently 
mutated in various tumor tissues; this mutation results in 
uncontrolled cell proliferation or unscheduled reentry into the 

cell cycle.[32] Zhong et al have revealed that the BTB (BR-C, 
ttk and bab) or POZ (Pox virus and Zinc finger) domain-con-
taining protein potassium channel tetramerisation domain con-
taining 12 was able to activate CDK1 and Aurora A to induce 
the G2/M transition for cell growth and tumorigenesis.[33] In 
addition, a possible reason for everolimus resistance in prostate 
cancer cells might be due to upregulation of the CDK1-cyclin 
B complex, which leads to tumor cell progression towards cell 
cycle G2/M phase.[34] Meanwhile, knockdown of eukaryotic 
translation initiation factor 3 subunit D expression notably 
suppressed renal cell carcinoma cell tumorigenesis by inhibition 
of the cyclin B1/CDK1 signaling.[24] Thus, CDK1 not only par-
ticipates in cell-cycle progression but also regulates cell apop-
tosis by phosphorylation of caspases,[35] indicating that CDK1 
is a promoter of tumorigenesis in different tissues and cells and 
could be a target for future cancer therapy.

Figure 5. The KEGG pathway enrichment analysis of the 27 selected genes. The data showed that level of Cyclin B1, CDK1, MAD2L1, and BUB1B was markedly 
enhanced in the cell cycle pathway. The red arrows point out the position of these genes. CycB, Cyclin B1; Mad2, MAD2L1; BubR1, BUB1B. BUB1B = mitotic 
checkpoint serine/threonine kinase B, CDK1 = Cyclin-dependent kinase 1, KEGG = Kyoto Encyclopedia of Genes and Genomes, MAD2L1 = Mitotic arrest 
deficient 2 like 1.

Table 6

Re-analysis of 27 selected genes via KEGG pathway enrichment.

Pathway ID Name Count % P Genes 

cfa04110 Cell cycle 4 8.36 3.09E-04 CCNB1, CDK1, MAD2L1, BUB1B
cfa04115 p53 signaling pathway 3 6.27 .002 CCNB1, CDK1, RRM2

KEGG = Kyoto Encyclopedia of Genes and Genomes.
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Mitotic arrest deficient 2 like 1 (MAD2L1) is a component 
of the mitotic spindle assembly checkpoint that participates in 
cell mitosis.[36] Foijer et al have demonstrated that deletion of 
MADL1 in mouse hepatocytes results in HCC development 
and progression because of chromosome instability,[37] although 
another study conducted by Scintu et al has shown that the 
MAD2L1 level is not associated with intra-chromosomal insta-
bility in human ductal breast carcinoma.[38] This discrepancy 
might be due to the different types of species and neoplasms. 
However, several studies have shown an association of high 
MAD1L2 expression with cancer risk and a poor progno-
sis.[39–42] Additionally, Li et al have reported that miR-200c-5p 
expression leads to the reduction of HCC cell proliferation 
and metastasis by suppression of MAD1L2 expression.[43] Our 
current data further support the oncogenic role of MAD1L2 
in HCC. Furthermore, the mitotic checkpoint serine/threonine 
kinase B (BUB1B) is a mitotic checkpoint serine/threonine pro-
tein kinase that binds to centromeres during cell mitosis.[44] 
BUB1B overexpression has been associated with the develop-
ment of several human cancers[45–48] and with a poor survival 
of patients. Fu et al also have reported that a high BUB1B 
expression enhanced the development of prostate cancer and 
was associated with a poor prognosis of patients.[46] Moreover, 
mutations of the BUB1B gene are associated with mosaic var-
iegated aneuploidy syndrome and contribute to a high risk of 
developing childhood cancers.[49,50]

However, the current study is just a proof-of-principle study 
and lacks experimental verification, although previous studies 
have been conducted to associate some of these molecules with 
HCC tumorigenesis. Our finding of the association of 4 genes 
(CCNB1, CDK1, MAD2L1, and BUB1B) with a poor HCC 
prognosis will need to be confirmed in the future. In conclu-
sion, the current study identified a number of DEGs (especially 
Cyclin B1, CDK1, MAD2L1, or BUB1B) to be associated with a 
poor HCC prognosis. Future studies will investigate their func-
tions in HCC and apply them as prognostic biomarkers and 
potential therapeutic targets for HCC.

5. Conclusions
We assessed DEGs in 288 HCC versus 32 normal liver tis-
sues from 3 online datasets (GSE101685, GSE62232, and 
GSE112790) and revealed a total of 200 DEGs (57 upregulated 
and 143 downregulated genes). Our GO term and pathway 
analysis identified that these DEGs were involved in BPs, MFs, 
and CCs. The PPI network analysis covered 50 upregulated and 
108 downregulated genes. The core modules of this PPI network 
contained 34 upregulated genes, 28 of which were associated 
with a poor HCC prognosis, and 27 of these 28 genes were 
highly expressed in HCC tissues. In conclusion, our current 
study revealed 200 DEGs, 28 of which were associated with a 
poor HCC prognosis. However, further studies are needed to 
confirm their involvement in HCC development and to verify 
them as prognostic markers and potential treatment targets for 
HCC.
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