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Abstract:  

Background: Accurate diagnostic strategies to rapidly identify SARS-CoV-2 positive 

individuals for management of patient care and protection of health care personnel are 

urgently needed. The predominant diagnostic test is viral RNA detection by RT-PCR from 

nasopharyngeal swabs specimens, however the results are not promptly obtainable in all 

patient care locations. Routine laboratory testing, in contrast, is readily available with a 

turn-around time (TAT) usually within 1-2 hours.  

Method: We developed a machine learning model incorporating patient demographic 

features (age, sex, race) with 27 routine laboratory tests to predict an individual’s SARS-

CoV-2 infection status. Laboratory test results obtained within two days before the release 

of SARS-CoV-2-RT-PCR result were used to train a gradient boosted decision tree 

(GBDT) model from 3,356 SARS-CoV-2 RT-PCR tested patients (1,402 positive and 

1,954 negative) evaluated at a metropolitan hospital.  

Results: The model achieved an area under the receiver operating characteristic curve 

(AUC) of 0.854 (95% CI: 0.829-0.878). Application of this model to an independent patient 

dataset from a separate hospital resulted in a comparable AUC (0.838), validating the 

generalization of its use. Moreover, our model predicted initial SARS-CoV-2 RT-PCR 

positivity in 66% individuals whose RT-PCR result changed from negative to positive 

within two days.  

Conclusion: This model employing routine laboratory test results offers opportunities for 

early and rapid identification of high-risk SARS-CoV-2 infected patients before their RT-

PCR results are available. It may play an important role in assisting the identification of 
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SARS-COV-2 infected patients in areas where RT-PCR testing is not accessible due to 

financial or supply constraints.  
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Introduction:  

The Coronavirus Disease-2019 (COVID-19) pandemic has rapidly spread 

worldwide resulting in over 14 million confirmed cases and more than 603,000 total 

deaths as of July 20, 2020 (1). The highly contagious nature of SARS-CoV-2 (2), rapid 

progression of disease in some infected patients (3) and the subsequent stress on the 

healthcare system has created an urgent need for rapid and effective diagnostic 

strategies for the prompt identification and isolation of infected patients. Currently, the 

diagnosis of COVID-19 relies on SARS-CoV-2 virus-specific real-time reverse-

transcriptase polymerase chain reaction (RT-PCR) testing of nasopharyngeal swabs or 

other upper respiratory track specimens (4, 5). However, while the TAT of RT-PCR testing 

is usually within 48 hours (6), it can be substantially longer due to many variables 

including the need for repeat testing or the lack of needed supplies. Many smaller 

hospitals do not yet have access to on-site SARS-CoV-2 RT-PCR testing. These issues 

can result in delayed hospital admission and bed assignment, inappropriate medical 

management including quarantining of infected patients and increased exposure of 

healthcare personnel and other patient contacts to the virus. Rapid diagnosis and 

identification of high-risk patients for early intervention is vital for individual patient care, 

and, from a public health perspective, for controlling disease transmission and 

maintaining the healthcare workforce.  

Currently in hospital EDs, the nationally recommended practice when evaluating 

patients with moderate to high risk for COVID-19 is SARS-CoV-2 RT-PCR testing, a panel 

of routine laboratory tests, a chest X-ray and symptomatology, whereas chest computed 

tomography (CT) is not recommended due to cost and TAT considerations (2, 7).  Routine 
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laboratory tests are generally available within 1-2 hours and are accessible prior to patient 

discharge from the ED. Several studies (3, 8-10) have reported laboratory abnormalities 

in COVID-19 patients on admission and during the disease course, including increases 

in C-reactive protein (CRP), D-dimer, lactic acid dehydrogenase (LDH), cardiac troponin, 

procalcitonin (PCT), and creatinine as well as lymphopenia and thrombocytopenia. While 

no single laboratory test can accurately discriminate SARS-CoV-2 infected from non-

infected patients, the combination of the results of these routine laboratory tests may 

predict the COVID-19 infection status.  

Recent promising advances in the application of artificial intelligence (AI) in several 

healthcare areas (11-15) have inspired the development of AI-based algorithms as 

diagnostic (6) or prognosis tools (16) for complex diseases, such as COVID-19. In this 

study, we hypothesized that the results of routine laboratory tests performed within a short 

time frame as the RT-PCR testing, in conjunction with a limited number of previously 

identified predictive demographic factors (age, gender, race) (17), can predict SARS-

CoV-2 infection status. Thus, we aimed to develop a machine learning model integrating 

age, gender, race and routine laboratory blood tests, which are readily available with a 

short TAT. 
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Methods 

Data collection: 

We conducted a retrospective study with 5,893 patients evaluated at the New York 

Presbyterian Hospital/Weill Cornell Medicine (NYPH/WCM) during March 11 to April 29, 

2020. SARS-CoV-2 RT-PCR results, routine laboratory testing results and patient 

demographic information were obtained from the laboratory information system (Cerner 

Millennium, Cerner Corporation). Exclusion criteria included patients < 18 years old, 

patients who had indeterminate RT-PCR results, and patients who did not have laboratory 

results within two days prior to the completion of RT-PCR testing (Figure 1). Among a 

total of 4,207 RT-PCR results from 1,402 RT-PCR positive and 1,954 negative patients 

in our dataset, 54.1% of RT-PCR tests were ordered from the Emergency Department 

(ED), 32.4% were ordered on inpatients, including 2.7% from ICU patients, and the rest 

were ordered from the outpatient surgery department, the outpatient clinics, and the 

private ambulatory setting. Among the RT-PCR results excluded from the dataset due to 

no corresponding laboratory results, 50.0% were ordered for “non-patient institutional” 

including patient samples used for validation, plasma donor specimens, and healthcare 

workers. An additional 20.0% of excluded RT-PCR tests were ordered on ED patients 

who were likely discharged, 12% were from “private ambulatory” setting, 2.8% were 

ordered for outpatient clinic with no associated hospital admission, and the rest were from 

the surgery or dental departments to rule out COVID-19 infection.  Same criteria were 

applied to the dataset collected from New York Presbyterian Hospital/Lower Manhattan 

Hospital (NYPH/LMH) during the same time period. A total of 1,822 RT-PCR tests ordered 

for 496 RT-PCR positive and 968 negative NYPH/LMH patients were obtained and used 
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for validation. Among them, 60.9% were ordered from ED and 36.3% were from 

inpatients. This study was approved by the Institutional Review Board (#20-03021671) of 

Weill Cornell Medicine. 

 

SARS-CoV-2 RT-PCR testing 

SARS-CoV-2 RT-PCR testing was performed at NYPH/WCM using the RealStar 

SARS-CoV-2 RT-PCR kit 1.0 (Altona Diagnostics) reagent system which targets on the 

S gene and E gene, the Cobas SARS-CoV-2 RT-PCR assay (Roche Diagnostics) which 

targets on the ORF1 a/b gene and E gene, the Panther Fusion SARS-CoV-2 RT-PCR 

assay (Hologic) which targets on the OFR1 a/b gene region 1 and region2, and Xpert 

Xpress SARS-CoV-2 RT-PCR (Cepheid) which targets on the N2 gene and E gene (18). 

Among 4,207 RT-PCR reactions included in the NYPH/WCM training set, 1187 (28.2%), 

1768 (42.0%), 3 (0.0%), and 1249 (29.7%) were performed on the Altona, Roche Cobas, 

Hologic, and Cepheid platform, respectively. Based on the laboratory validation, there 

was no meaningful difference in the sensitivity of each platform (19, 20). There was no 

difference in turnaround time for positive or negative RT-PCR results. RT-PCR was 

performed using the Roche Cobas SARS-CoV-2 RT-PCR assay and Cepheid Xpert 

Xpress SARS-CoV-2 RT-PCR at NYPH/LMH.  

Routine Laboratory testing: 

At NYPH/WCM, routine chemistry testing was performed on Siemens ADVIA XPT 

analyzers and Centaur XP analyzers. Procalcitonin was performed on the Roche e411 

analyzer. Blood gas analysis was performed on the Instrumentation Laboratory GEM 
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Premier 4000 analyzer. Routine hematological testing was performed on the UniCel DXH 

800 analyzer. Coagulation tests were performed on the Instrumentation Laboratory 

ACLTM TOP CTS Coagulation System.  

At NYPH/LMH, Routine chemistry testing including procalcitonin was performed 

on Abbott ARCHITECT® c SYSTEM ci 4100 and ci 8200 analyzers. Blood gas analysis 

was performed on the Radiometer analyzer ABL 820 FLEX. Routine complete blood 

count (CBC) testing was performed on the UniCel DXH 800 analyzer. Coagulation tests 

were performed on the STAGO STA-R® Evolution multiparametric analyzer. 

Model construction: 

A total of 685 distinct laboratory tests were ordered for patients in the NYPH/WCM 

dataset. A 685-dimensional vector was generated for each RT-PCR test. If one specific 

test was ordered multiple times, an average of the values was calculated and used for 

analysis. Univariate analysis was performed on all laboratory test results to obtain the 

significance of the association between each laboratory test and the RT-PCR result with 

SciPy1.4.1 (21). Laboratory tests were selected to construct the input feature vectors of 

the prediction model based on the following criteria: 1) a result available for at least 30% 

of the patients two days before a specific SARS-CoV-2 RT-PCR test, and 2) showing a 

significant difference (P-value, P-value after Bonferroni correction, P-value after 

demographics adjustment all less than 0.05) between patients with positive and negative 

RT-PCR results. After the  feature selection process (details are provided in the online 

Supplemental Material), a 33-dimensional vector (27 routine lab tests, one age, one 

gender, four race variables (African American, Asian, Caucasian and others) was 

constructed to represent every RT-PCR test. The value on each dimension was the 
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average result value of the corresponding laboratory test taken two days before the RT-

PCR test in addition to the patients’ age, gender and race. The patient’s race and gender 

variables were encoded with binary values. The missing value of a specific laboratory test 

in a feature vector was imputed by the median value of the available non-missing value 

of that dimension over all patients. The result of each RT-PCR test was referred to as the 

label of the test. 

Mathematically, let 𝒙𝒙𝑖𝑖 be the 33-dimensional feature vector of the 𝑖𝑖-th RT-PCR test. 

Let 𝑦𝑦𝑖𝑖 ∈ {0,1} be its corresponding label. 𝑦𝑦𝑖𝑖 = 0 means the result of the 𝑖𝑖-th RT-PCR test 

is “Not Detected” and we refer to this RT-PCR test as a negative sample, while 𝑦𝑦𝑖𝑖 = 1 

means the result is “Detected” and we refer to this RT-PCR test as a positive sample. Our 

goal was to “learn” a classification function 𝑓𝑓  that can accurately map each 𝒙𝒙𝑖𝑖  to its 

corresponding 𝑦𝑦𝑖𝑖. We considered 4 popular classifiers in this study: 

• Logistic regression, where 𝑓𝑓 is a linear function and our implementation is based 

on the scikit-learn package 0.23.1 using sklearn.linear_model.LogisticRegression 

with all default parameter settings 

• Decision tree, where 𝑓𝑓 is a classification tree and our implementation is based on 

the scikit-learn package 0.23.1 (22) with sklearn.tree.DecisionTreeClassifier with 

all default parameter settings. According to the document (https://scikit-

learn.org/stable/modules/tree.html#tree-algorithms-id3-c4-5-c5-0-and-cart), the 

decision tree algorithm implemented in scikit-learn is an optimized Classification 

and Regression Tree (CART) algorithm (23). 

https://scikit-learn.org/stable/modules/tree.html#tree-algorithms-id3-c4-5-c5-0-and-cart
https://scikit-learn.org/stable/modules/tree.html#tree-algorithms-id3-c4-5-c5-0-and-cart
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• Random forest, where 𝑓𝑓 is a random forest (24) and our implementation is based 

on scikit-learn package 0.23.1 with sklearn.ensemble.RandomForestClassifier 

with all default parameter settings and the number of trees equal 100. 

• Gradient boosted decision tree (GBDT), where 𝑓𝑓 is a gradient boosting machine 

with decision tree as base learners (25). Our implementation is based on scikit-

learn package 0.23.1 with sklearn.ensemble.GradientBoostingClassifier with all 

default parameter settings and the number of trees equal 100. 

The models were evaluated in two different settings. The first setting was a 5-fold 

cross validation with the NYPH/WCM data, where all RT-PCR tests were randomly 

partitioned into 5 equal buckets with the same positive/negative ratio in each bucket as 

the ratio over all tests. The implementation was based on scikit-learn package 0.23.1(22) 

with the sklearn.model_selection.StratifiedKFold function. Then the training and testing 

procedure was performed 5 times for these 4 different classifiers. Each time a specific 

bucket was used for testing and the remaining 4 buckets for training. In the second setting 

all data from NYPH/WCM were used for training, and the data from NYPH/LMH was used 

for testing. In both settings, highly suspicious negatives (HSN) were excluded in the 

training process. Here an HSN was defined as a negative RT-PCR test in a patient who 

had a positive RT-PCR result upon re-testing within 2 days.  
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Results: 

The pipeline of our modeling framework is illustrated in Figure 2. A summary of 

statistics of the 27 routine laboratory tests used to construct the input feature vectors of 

the prediction model is shown in online Supplemental Table 1. The models were trained 

and tested on a retrospective dataset collected from 3,356 SARS-CoV-2 RT-PCR tested 

adult patients who had routine laboratory testing performed within 48 hours  prior to the 

release of RT-PCR result, between March 11 to April 29, 2020, at NYPH/WCM. This 

dataset included 1,402 SARS-CoV-2 RT-PCR positive and 1,954 negative patients who 

ranged in age from 18 to 101 years (mean 56.4 years, demographic information in Table 

1). Among 590 patients who had repeat testing during this 7-week study period, 53 were 

initially negative but became positive upon repeat testing. Among this subgroup, 32 

patients’ RT-PCR results changed from negative to positive within a 2-day period.  

The performance of four machine learning models from 5-fold cross validation are 

summarized in Figure 3. The GBDT model achieved the best performance with an area 

under the receiver operating characteristic curve (AUC) value of 0.854 (95% CI: 0.829 - 

0.878), sensitivity of 0.761 (95% CI: 0.744 - 0.778), specificity of 0.808 (95% CI: 0.795 – 

0.821), and agreement with RT-PCR of 0.791 (0.776-0.805) at the operating point 

determined by the maximum Youden Index (26), confidence intervals for sensitivity and 

specificity are analyzed by the approach based on Box-Cox transformation (27). 

Furthermore, since 54% of RT-PCR tests were ordered from the ED, performance of the 

GBDT model was tested on ED patients and achieved an AUC of 0.879, a sensitivity of 

0.800, a specificity of 0.825, and an agreement with RT-PCR of 0.815.  
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As an independent validation, we tested the performance of the trained model on 

an independent patient dataset (496 positive and 968 negative by RT-PCR, Table 1) 

collected from NYPH/LMH] during the same time period as the NYPH/WCM site. Using 

the model trained on NYPH/WCM patients, we were able to obtain an AUC of 0.838 on 

the NYPH/LMH data, confirming the ability to generalize our model to other hospitals. 

Given the same sensitivity (0.758) as NYPH/WCM, the specificity reached 0.740.  

To further interpret the trained GBDT model, we adopted the Shapley additive 

explanations (SHAP) (28) technique using the SHAP package 

(https://github.com/slundberg/shap). It assigns each feature an importance value (the 

Shapley value) for each specific classification. The summary plot of the impact of 

laboratory tests to final prediction is shown in Figure 4a.  For instance, higher lactic acid 

dehydrogenase (LDH) values drive a positive prediction, whereas lower lymphocyte count 

values drive a negative prediction. In addition, lower troponin values were seen in COVID-

19 positive patients than the control group, who were also ill patients coming to hospital 

for other causes, such as myocardial infarction.  

Among the 32 patients whose SARS-CoV-2 RT-PCR results were initially negative 

but upon repeat testing within two days were positive, our approach predicted positive of 

the initial RT-PCR for 21 patients (66%). For example, a Hispanic male patient in his 70s 

underwent a RT-PCR testing which showed a negative result. Since the second RT-PCR 

test taken on the next day was positive, the initial RT-PCR was a suspicious false negative 

result possibly due to improper sample collection technique. The SHAP force plot (Figure 

4b) illustrates how routine laboratory test results and demographics act as “forces” to 

push the GBDT model to make positive or negative predictions. The notable elevation of 

https://github.com/slundberg/shap
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LDH, CRP, and ferritin in addition to lymphopenia and hypocalcemia in this patient, as 

well as his age, all contributed to a positive prediction by the GBDT model (positive 

probability = 0.95, 0.35 cutoff by the Youden Index), matching the subsequent RT-PCR 

result. Thus, our model may identify individuals with initial negative SARS-CoV-2 RT-PCR 

who should be retested and who could potentially need isolation at home or in the hospital 

while awaiting confirmatory RT-PCR results.  

We also varied the length of the window for collecting routine lab tests with 4 more 

settings: one day before RT-PCR, one day after RT-PCR, one day before and one day 

after RT-PCR, two days before and one day after RT-PCR. The ROC curves are plotted 

in online Supplemental Figure 2. Analysis revealed that the longer the time window 

around the RT-PCR test, with more information captured characterizing patient infection 

status, resulted in slightly higher prediction performance in terms of AUC. However, these 

performances did not differ significantly from each other or from the chosen setting.  
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Discussion: 

In this study, we proposed a machine learning model incorporating routine 

laboratory blood tests and a limited number of demographic features to predict an 

individual’s SARS-CoV-2 infection status. The model utilizes data that already exist in the 

medical record, rather than novel biomarkers, to predict SARS-CoV-2 infection status. 

Our model is able to generate a probability score of SARS-CoV-2 infection in real time 

before RT-PCR results are available, identifies the patients with a high risk of being 

SARS-CoV-2 positive and allows for quicker, more disease specific, patient management. 

As such, this model could be deployed clinically as an application integrated into the 

Electronic Medical Record (EMR) system. Using this application, clinicians could be 

alerted promptly of the infection risk level, allowing for rapid triaging and quarantining of 

high-risk patients as well as prompting rapid re-testing in those with positive model 

findings and negative SARS-CoV-2 RT-PCR results.  

A recent study (6) proposed a machine learning model integrating chest CT 

findings with clinical symptoms, exposure history, leukocyte counts, age and sex to assist 

in the diagnosis of SARS-CoV-2 infection in a Chinese patient cohort. This model could 

be useful when CT scans are available for all patients. However, CT scans are not 

recommended as part of the initial routine clinical workup of COVID-19 by the American 

College of Emergency Physicians (ACEP) (7). In contrast, our model is designed to 

complement the existing COVID-19 evaluation pathway based on the ACEP COVID-19 

Field Guideline (7). Predicting the probability of SARS-CoV-2 infection based on routine 

laboratory testing without radiology evidence is fast and inexpensive. However, it can be 

challenging because 1) the differences of individual laboratory test results are subtle 
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between infected and non-infected patients at an early stage of the disease; and 2) in 

practice, patients may not undergo extensive laboratory testing, resulting in missing 

values in the dataset. In spite of these complications, our model has demonstrated a 

robust performance and delivers accurate predictions. More importantly, we have proven 

that the model can be generalized to other hospitals, other patient populations and other 

laboratory testing environments based on the predictability seen using an independent 

patient dataset. There have been attempts to build SARS-CoV-2 predictive models with 

routine laboratory tests (10, 29) . However, these studies were based on a small set of 

routine lab tests and the patient cohort sizes were smaller than our study. 

The GBDT model was trained by iteratively selecting discriminative features from 

the root to leaf nodes and aggregating multiple trees with the weights determined from 

subset of the training samples. Thus, the tree nodes and the weights in the model reflect 

their impacts to the prediction, which is driven by the training data, making the model 

interpretable. For instance, larger values of inflammatory markers, such as LDH, ferritin, 

CRP drive to a positive prediction. These markers have been reported to be significantly 

associated with high risk of the development of COVID-19 and disease progression (9, 

30). Smaller values of lymphocyte count drive to a negative prediction. Lymphopenia is 

observed in a proportion of COVID-19 patients at hospital admission (7, 31) and is 

common features in severe COVID-19 patients (3, 32). It is noteworthy that the control 

group in the training set consisted of patients negative for COVID-19 but ill for other 

diseases. That may explain why smaller values of a few lab tests, such as troponin, ALK, 

indirect bilirubin, were seen in the SARS-CoV-2 positive group compared to the control 

groups.  
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There are three potential limitations to the use of this model. First, the model was 

trained on a dataset generated from a patient cohort who were in the hospital for moderate 

to life-threatening presentations of COVID-19. Thus, this model may not be applicable to 

mild COVID-19 cases. Second, the model was developed with a “control group” of ill 

patients in a metropolitan hospital for other causes. Thus, the model may need further 

refinement with different populations such as patients seen in a primary care office. Third, 

clinical application of the proposed model may require modification of laboratory testing 

practice to include tests that are not currently part of the institutional COVID-like illness 

(CLI) laboratory test panel.  

 Generally speaking, an ideal training set for a learning-based approach should 

cover the variability of samples across different demographic and geographic 

distributions, as well as comorbidities, facilities (e.g. ED, inpatients, out-patient clinics) 

and to follow their changes over time. In practice, any training set collected within a fixed 

time period cannot satisfy all these wishes. The deployment of software in medical 

scenarios cannot be achieved by one stop. It is a continuous learning process that 

involves model monitoring, updating and customization. The US Food and Drug 

Administration (FDA) published a white paper (33) last year particularly discussing how 

to properly regulate the adaptations/modifications of AI/machine learning models as a 

medical device. The proposed ensemble model predicts COVID-19 infection by 

aggregating the decisions of a set of individual base learners, which are decision trees in 

GBDT. Because of such an additive nature, our ensemble model framework not only 

provides a convenient way of incorporating necessary model updating, but also makes 

model monitoring, maintenance, and regulation more flexible. New base learners should 
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be trained on the new data when the model performance drops below a certain threshold 

due to the changes of patient population and testing strategies, and the ensemble model 

should be updated accordingly by incorporating the new base learner. The 

hyperparameters in the model, such as model updating frequency, model performance 

cutoff, number of base learners, etc., need to be determined according to concrete 

deployment scenarios.   

Conclusions: 

The proposed machine learning model, using age, gender, race and 27 routine 

laboratory tests, is a feasible and promising technique that can provide a rapid and 

objective prediction of SARS-CoV-2 infection status. The robust performance of our 

model was confirmed in an independent testing set. Our results have illustrated the 

potential role for this model as a tool to preliminarily identify high-risk SARS-CoV-2 

infected patients before their RT-PCR results are available, risk stratify patients in the ED, 

and select patients who need relatively urgent re-testing, if the initial RT-PCR result is 

negative. Such use of our model could result in earlier appropriate isolation, thereby 

promoting the health of the patients while protecting the health of the public. Furthermore, 

our model may play an important role in assisting in the identification of SARS-COV-2 

infected patients in areas where RT-PCR testing is not possible due to financial or supply 

constraints.  
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Figure legends: 

Figure 1.  Inclusion/exclusion cascade of patients in the dataset.  
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Figure 2. Illustration of the modeling pipeline. Routine laboratory testing results 

completed within two days prior to the release of RT-PCR results were used to construct 

a vector, upon which we built a classifier to predict the RT-PCR positive or negative result. 

Each dimension of the vector corresponds to a specific laboratory test, and its value 

corresponds to the average of all results of this laboratory test taken during the collection 

window. The model outputs a probability score ranging from 0 – 1, indicating the risk of 

SARS-CoV-2 infection.  
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Figure 3. Performance of four models using five-fold cross validation on the test set. (a) 

Comparison of the ROC curves for the gradient boosted decision tree (GBDT) model, 

random tree model, logistic regression model, and decision tree model. (b) Comparison 

of the AUC, sensitivity, specificity, and agreement with SARS-CoV-2 RT-PCR (at the 

operating point determined by the Youden Index) achieved by the four models.  
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Figure 4. Contribution laboratory tests to the prediction of the GBDT model, using the 

SHAP technique. (a) The lab tests are organized on the y-axis according to their mean 

absolute SHAP values shown on the x-axis, which represents how the testing results 

drive the prediction of the GBDT model. Individual values of each test for each patient 

are colored according to their relative values. (b) Representative force plot of a patient 

who had a negative RT-PCR result at the initial ED visit. The GBDT model predicts a 

positive probability score of 0.95. Lab tests in red are positive “force” whereas test in 

blue are negative “force” driving the COVID-19 positive prediction.  
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Table 1. Basic demographics of the patients based on their first RT-PCR testing result.  

 New York Presbyterian 
Hospital/Weill Cornell Medicine  

 New York Presbyterian 
Hospital/Lower Manhattan Hospital 

 Total 

(n = 3,356) 

Positive 

(n = 1,402) 

Negative 

(n = 1,954) 

P-value 
(Positive 
vs. 
Negative) 

Total 

(n = 1,464) 

Positive 

(n = 496) 

Negative 

(n = 968) 

P-value 
(Positive 
vs. 
Negative) 

Gender - - - 3.16e-27 - - - 2.26e-13 

Male 

n (%) 

1,558  

(46.42 %) 

805  

(51.67%) 

753  

(48.33%) 

- 634  

(43.31%) 

281  

(44.32%) 

353  

(55.68%) 

- 

Female 

n (%) 

1,798 

(53.58%) 

597 

 (33.2%) 

1,201 

(66.8%) 

- 830  

(56.69%) 

215  

(25.90%) 

615  

(74.10%) 

- 

Age 

Years (SD) 

56.44 

(19.46) 

61.40 

(17.56) 

52.89  

(19.98) 

1.41e-36 56.20  

(20.81) 

65.65 

(18.27) 

51.36 

(20.37) 

2.31e-37 

19-40 years 

n (%) 

901  

(26.85%) 

190  

(21.09%) 

711  

(78.91%) 

- 479  

(32.72%) 

59  

(12.32%) 

420  

(87.68%) 

- 

40-60 years 

n (%) 

888 

(26.46%) 

405  

(45.61%) 

483  

(54.39%) 

- 330  

(22.54%) 

111  

(33.64%) 

219  

(66.36%) 

- 

>60 years 

n (%) 

1567  

(46.69%) 

807  

(51.50%) 

760  

(48.50%) 

- 655  

(44.74%) 

326  

(49.77%) 

329  

(50.23%) 

- 

Race - - - 5.64e-05 
(white vs. 
black) 

- - - 0.4128 
(white vs. 
black) 

African 
American 

323  

(9.62%) 

138  

(42.72%) 

185  

(57.28%) 

- 161 

 (11.00%) 

43 

(26.71%) 

118  

(73.29%) 

- 

Asian 227 

(6.76%) 

62 

(27.31%) 

165 

(72.69%) 

 235 

(16.05%) 

75 

(31.91%) 

160 

(68.09%) 

 

Caucasian 1137  

(33.88%) 

347  

(30.52%) 

790  

(69.48%) 

- 259  

(17.69%) 

59  

(22.78%) 

200  

(77.22%) 

- 

Other 421  

(12.54%) 

221  

(52.49%) 

200  

(47.51%) 

- 145  

(9.90%) 

49  

(33.79%) 

96  

(66.21%) 

- 

Unknown 1228  

(36.59%) 

624  

(50.81%) 

604  

(49.19%) 

- 658  

(44.95%) 

267  

(59.42%) 

391  

(41.28%) 

- 




