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Abstract

A common goal in olfaction research is modeling the link between odorant structure and odor 
perception. Such modeling efforts require large data sets on olfactory perception, yet only a few of 
these are publicly and freely available. Given that individual odor perception may be informative 
on personal makeup and interpersonal relationships, we hypothesized that people would gladly 
provide olfactory perceptual estimates in the context of an odor-based social network. We devel-
oped a web-based infrastructure for such a network we called SmellSpace and distributed 10 000 
scratch-and-sniff registration booklets each containing a subset of 12 out of 35 microencapsulated 
odorants. Within ~100 days, we obtained data from ~1000 participants who rated the odorants 
along 13 verbal descriptors. To verify that these estimates are comparable to lab-collected esti-
mates we tested 26 participants in a controlled lab setting using the same odorants and descrip-
tors. We observed remarkably high overall group correlations between lab and SmellSpace data, 
implying that this method provides for credible group-representations of odorants. We further 
estimated the usability of the data by applying to it two previously published models that used 
odorant structure alone to predict either odorant pleasantness or pairwise odorant perceptual 
similarity. We observed statistically significant predictions in both cases, thus further implying 
that the current data may be helpful toward future efforts of modeling olfactory perception from 
structure. We conclude that an odor-based social network is a potentially useful instrument for col-
lecting extensive data on olfactory perception and here post the complete raw data set from the 
first ~1000 participants.
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Introduction

Predicting odorant perception from odorant structure is a major 
goal in olfaction research. To this end, there is a need for large 
databases of olfactory perception, yet only few of these are pub-
licly and freely available. The largest is the National Geographic 
Survey on Smell collected by Wysocki and colleagues (Wysocki and 
Gilbert 1989). Here ~1.4 million individuals provided detection and 
identification scores and intensity and pleasantness ratings for 6 

odorants. This data has not been publicly posted, but it is available 
by request. Two additional data sets are available in books. One is 
the Arctander data (Arctander 1969) that contains perceptual esti-
mates made by one perfumer who rated 3102 odorants and flavor 
chemicals, and the second is the Atlas of Odor Character Profiles 
amassed by Andrew Dravnieks and colleagues (Dravnieks 1985). 
The Dravnieks atlas includes average ratings from ~150 participants 
who rated 138 monomolecules and 16 mixtures/oils across 146 
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verbal descriptors. Finally, several recent large-scale efforts orches-
trated by Keller, Vosshall, and colleagues, including one that pro-
vided ratings from 49 participants who rated 476 odorants across 
19 descriptors, have been posted and are available for download 
(Keller et al. 2012, 2017; Keller and Vosshall 2016). In addition to 
the above, there are several sources that contain information on 
many odorants, but at lower resolution, that is, with only one or very 
few descriptors per odorant and without a numerical scale of appli-
cability. These include the Good Scents Company webpage (http://
www.thegoodscentscompany.com/index.html), the Sigma-Aldrich 
Flavors and Fragrances catalog (Sigma-Aldrich 2016), and various 
costly software (such as Flavor-Base by Leffingwell & Associates). 
Each of these describe odorants using one or a handful of primary 
descriptors but with minimal information on how they were derived. 
In light of the above, any addition of publicly available large data on 
olfactory perception may aid in the field effort of modeling percep-
tion from structure.

A challenge in generating large perceptual data sets is in how 
to convince individuals to volunteer. One option is to rely on par-
ticipants’ scientific curiosity or good will. This was indeed sufficient 
drive for ~1.4 million participants of the 1986 National Geographic 
Survey on Smell, but relying on good will alone obviously restricts 
the extent of time commitment one can expect, or in turn the num-
ber of ratings one can obtain. An obvious alternative to good will 
is financial reward. This has indeed been the path of recent efforts, 
yet it too has limitations. A  known concern associated with the 
financial reward model is low motivation. Participants who return 
to lab to provide hundreds upon hundreds of olfactory estimates 
find it hard to remain motivated, and this can hamper the quality 
of data. Of course, one can financially incentivize performance, but 
many tasks, such as rating odorants along verbal descriptors, have 
no performance element to them (one can estimate consistency, but 
one cannot be more or less “correct” at subjective ratings). Given 
these considerations, we put our minds to thinking on how could 
we convince many people to provide us with their olfactory percep-
tions, ideally again and again. We identified 2 primary motivations 
on which we could capitalize: first, individuals gladly invest time in 
online self-tests, such as personality tests, presumably because this 
information can serve in building one’s own “narrative psychol-
ogy” (Dweck 2013). Second, social rewards such as meeting new 
friends can outweigh monetary rewards (Heyman and Ariely 2004). 
We therefore hypothesized that if we could satisfy these 2 driving 
forces using odor perceptions, we would have in hand a powerful 
tool for data collection. Regarding learning things about oneself, we 
know that olfactory perception is shaped by both culture (Majid 
and Levinson 2011) and genetic makeup (Mainland et al. 2014b). 
Therefore, it is not unlikely that olfactory perception may be linked 
to individual aspects such as personality. Regarding interactions 
with others, we know that olfactory perceptions and preferences are 
linked to human mate selection (Wedekind et al. 1995; Lundström 
and Jones-Gotman 2009). Therefore, it is not unlikely that olfac-
tory perception may be related to interpersonal interactions. With 
these hypotheses in mind, we estimated that if we told potential 
participants that if they give us their olfactory perceptions, we in 
return could potentially tell them something meaningful about them-
selves and introduce them to people they may like; we would then 
obtain quality data. Notably, the current manuscript is not about 
testing these 2 hypotheses (namely that olfactory preferences pre-
dict personal traits and interpersonal relationships), nor do we here 
make these claims. Here, we merely use these hypotheses as selling 
points to convince participants to join in a smell-based social net-
work we called SmellSpace (www.smellspace.com). In SmellSpace, 

participants provided perceptual estimates of odorants and in return 
received predictions on their personality (with no claims as to the 
validity of these predictions) and connections with people who smell 
the world the way they do (with minimal claims as to the value of 
these matches). This approach allowed us to collect data from ~1000 
participants within a relatively short period of time, and this data 
is made available here in full for use by the community. Such data 
can be applied to building and/or testing models that link odorant 
structure to odorant perception.

Materials and methods

All procedures described in this manuscript are consistent with 
the Declaration of Helsinki for medical research involving human 
subjects and were approved by the Weizmann Institute of Science 
Institutional Review Board (IRB). All participants provided online 
informed consent to participate.

Choosing odorants and descriptors 
The combination of the number of odorants and descriptors we 
used, and their identity, was based on various constraints and ensu-
ing compromises. There is an inherent conflict between the scientific 
goal of SmellSpace, which is to obtain data on as many odorants 
and descriptors as possible, versus the participant-related goal of 
SmellSpace, which is to relate participants to one another. This latter 
goal relies on our ability to characterize an individual’s olfactory per-
ception or what we call an olfactory perceptual fingerprint (Secundo 
et al. 2015). Such fingerprints are most efficiently compared across 
individuals when based on a fixed common set of odorants and 
descriptors (Secundo et al. 2015). Thus, whereas the scientific goals 
are to test as many different odorants and descriptors as possible, 
the social network goals call for a fixed set of odorants and descrip-
tors common across all participants. As a compromise, we opted for 
a “Fixed Set” (from here on) of odorants and descriptors that will 
indeed be common to all participants of SmellSpace in order to serve 
the social network functions and an added “Rotator Set” (from here 
on) that will each be delivered to a subset of participants and serve 
to build the growing scientific database. To determine the size of the 
“Fixed Set,” we go to Figure 4A in Secundo et al. 2015 and observe 
that 7 ± 3 odorants and 11 descriptors is the smallest number that 
still allows generation of an olfactory perceptual fingerprint that is 
individually stable. Thus, we selected 10 odorants that span phys-
icochemical olfactory space (Figure 1A; Table 1) and the 11 descrip-
tors (out of the ~60 tested in Secundo et al. 2015) that provided for 
the most stable olfactory perceptual fingerprint. In other words, if 
we generate an individual olfactory perceptual fingerprint for the 
same person who smells the same odorants day after day, this set 
of descriptors provides the most stable outcome. The odorants are 
the first 10 listed in Table 1, and the descriptors are: “Pleasantness”; 
“Intensity”; “Garlicky”; “Sweet”; “Fruity”; “Chemical”; “Bitter”; 
“Burnt”; “Spicy”; “Clean-Dirty”; “Fresh-Rotten.” Given that we 
want to limit participation effort to ~15 min, the Fixed Set takes 
up most of this time, allowing us to add a Rotator Set of only 2 
odorants and 2 descriptors per participant. This is indeed a modest 
added contribution from each person, but it will add up over time. In 
this initial run of SmellSpace that included 10 000 printed odorant 
booklets, we introduced 25 “Rotator” odorants (Table 1; Figure 1A) 
at 800 copies each (other than 2 that were at 400 copies, see Table 
1) and 2 “Rotator” descriptors (“Volatile”; “Develops Over Time”) 
that were used in the entire run. We would like to reiterate that we 
are not claiming anything special about these rotating odorants or 
descriptors. Whereas the fixed sets were determined theoretically 
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(odorants spanning space and descriptors optimizing perceptual fin-
gerprints), the rotators reflect an initial implementation of the goal 
of SmellSpace, namely to collect new data on descriptors and odor-
ants that have not been matched before. Using SmellSpace, we will 
be able to estimate the value of such novel combinations.

The odorant booklets 
In order to deliver uniform odorants to participants at different loca-
tions, we opted for scratch-and-sniff (S&S) technology. In brief, S&S 
uses microencapsulation to deposit encapsulated odorant oils onto 
printed matter. Once the microcapsules are insulted, for example by 
scratching, they release the odorant. This method, originally devel-
oped by the 3M corporation in the 1960s, has been used in applica-
tions related to publishing, advertising, games, toys, and more but 
is perhaps most known to the field of olfaction research through 2 
sources: The first is the already described National Geographic Survey 
on Smell (Wysocki and Gilbert 1989). The second is the University 
of Pennsylvania Smell Identification test or UPSIT (Doty et al. 1984). 
The UPSIT consists of 40 microencapsulated odorants presented 
to users in the context of a 4-alternative forced-choice discrimina-
tion task. The UPSIT became a widely used standard olfactory test, 
used in clinics to characterize olfactory impairments associated with 
many diseases and conditions (e.g., Doty et al. 1993). We opted for 
this method because of its robustness. We printed 10 000 SmellSpace 
booklets, each containing 12 odorants, 1 on each 10 by 15 cm page 
(Figure 1B,C; Supplementary Video 1, also at: https://youtu.be/s0IR_
cEIpMc). Each odorant page was followed by a blank page that can 
be used as a pad to scratch the previous page, thus minimizing cross 
contamination by the user’s hand. Instructions for use were demon-
strated in an online video that was made available to users through 

SmellSpace and can also be seen here in Supplementary Video 1. 
The odorant oils were prepared in part by us (all monomolecules 
from Sigma-Aldrich) and in part by a fragrance house (DreamAir). 
All odorants were diluted using Isopropyl myristate (IPM) (chemi-
cal abstracts service [CAS]#: 110-27-0). Dilutions were shipped to 
a commercial microencapsulation printing company (The Aroma 
Company) who deposited them onto the printed booklets. In lab, 
IPM is odorless. To estimate any contaminants associated with the 
printing process, we included IPM alone as one of the rotator odor-
ants (code NE, Table 1).

The website 
We built SmellSpace using Drupal, an open source content manage-
ment system (www.drupal.org). SmellSpace is currently in Hebrew 
and English, but the Drupal structure allows translating into addi-
tional languages with relative ease. Participants first registered at the 
login page by providing age and gender alone. Following registration, 
participants could complete the odorant booklet. This consisted of 
a process whereby we first verified participant authenticity (human 
as opposed to bot) by prompting for a unique code that was printed 
onto the cover of each booklet. Once the code was validated against 
a list, the participant was guided through the odorant pages and 
instructed to use a visual analogue scale (VAS) in order to rate each 
odorant along the 13 verbal descriptors (Figure 1D). In cases where 
a descriptor has clear separate terms for its opposite extremes, these 
terms were placed at each end of the VAS. For example, a VAS ranging 
from “Fresh” to “Rotten” or “Clean” to “Dirty.” Alternatively, other 
VAS scales had one descriptor, for example, smells like “Garlic” and 
ranged from “Not at all” to “Very.” After the participant completed 
rating all odorants, he/she became a member of SmellSpace. This 

Figure 1. Odorants were distributed by Scratch and Sniff booklets. (A) The monomolecules used in the study: 10 fixed odorants and 13 rotators (the remaining 
12 odorants were mixtures) depicted within the first and second principal components of a representative physicochemical space containing ~1500 odorant 
molecules. (B) An odorant page from within the booklet. The microencapsulated odorant (in this case; JX) was printed on the entire page. (C) A participant sniff-
ing the booklet. (D) Example of the VAS scale in the webpage.
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allowed them to navigate through various SmellSpace features such 
as “Nose Yourself” where the user can observe personality estimates 
modeled on their olfactory fingerprint (again, with clear disclaim-
ers as to their validity) or “Nose Your Friends” where SmellSpace 
matches individuals based on their olfactory fingerprints (again, with 
clear disclaimers as to the value of such matches).

Results

We recruited ~1000 participants in ~100 days
We distributed a first run of 10  000 booklets by various means, 
including distribution at public lectures and distribution together with 
a municipal newspaper. Moreover, participants could (and still can) 
register online and ask that a booklet be mailed to them, thus provid-
ing for some international distribution as well. Within ~100 days, 985 
participants completed the odorant rating task. The participants were 

442 men and 542 women (gender data for one participant was cor-
rupted), their reported age ranged from 10 to 98 with an average of 
34.12 (Figure 2), and whereas 849 participants were from Israel, 136 
were from 19 other countries (Figure 2 inlay). We refrain from further 
analyzing data from the 10-year-old participant and one for whom 
we do not have age data, retaining a total of 983 adult participants 
for further analysis. All this data is available in Supplementary Data 
File 1. To gather a sense of the data obtained through SmellSpace, we 
first provide some descriptive statistics, concentrating on the 10 fixed 
odorants that were rated by all participants.

Odorant intensity varied slightly across 100 days
A potential limitation of microencapsulation is that the odorants 
can leak over time. Thus, we examined both absolute intensity and 
intensity over time. We plotted the perceived intensity of the fixed 
odorants over the first 100 days. An analysis of variance (ANOVA) 

Table 1. The odorants used

   Concentration 

 Odor code Name CAS number (V/V in IPM) CID Number of 
subjects

Intensity 
ratings

1 JX Laevo-fenchone 7787-20-4 7.60% 14525 985 62.6305
2 QB Isoamyl acetate 123-92-2 25.00% 31276 985 48.0234
3 SD 3-Propylidene phthalide 17369-59-4 7.90% 5373603 985 71.9421
4 EQ Cuminaldehyde 122-03-2 13.60% 326 985 74.0538
5 AY Strawberry glycidate 1 (aldehyde C-16) 77-83-8 100.00% 6501 985 56.8213
6 XI Nonanal (aldehyde C-9) 124-19-6 100.00% 31289 985 48.5157
7 FL Citral 5392-40-5 100.00% 638011 985 56.7553
8 JQ Skatole 83-34-1 0.75% 6736 985 53.0751
9 ZB Hexanol 111-27-3 30.00% 8103 985 33.9107

10 LV 6-Methylquinoline 91-62-3 10.70% 7059 985 51.3553
11 KO Musk 1222-05-5 100.00% 91497 65 46.3846
12 JT (Mixture) [XI, LV, SD, EQ]    65 78.6154
13 UV Damascenone 23696-85-7 10.00% 5366074 53 56.8491
14 OS (Mixture) [EQ, ZB, QB, JX]    53 71.6981
15 SS ISO E Super 54464-57-2 100.00% 108242 34 54.4412
16 WZ (Mixture) [JX, JQ, LV, EQ]    34 75.0294
17 LB Iralia pure 1335-46-2 100.00% 5371084 54 70.2778
18 RZ (Mixture) [JQ, QB, LV, XI]    54 61.0741
19 VY (Mixture) [JX, SD, FL, LV]    66 74.303
20 MH Oxane 59323-76-1 10.00% 101010 78 82.5641
21 SF (Mixture) [XI, ZB, FL, JX]    78 62.359
22 ZI Damscone alpha 24720-09-0 10.00% 5366077 94 74.7766
23 WV (Mixture) [JQ, SD, FL, LV, QB, XI, EQ, ZB, JX, AY]    128 78.4922
24 FE 4-(2,6,6-trimethylcyclohexen-1-yl)but-3-en-2-one 8013-90-9  26955 102 64.0294
25 UB Isoamyl phenyl acetate 102-19-2 100.00% 7600 102 68.4804
26 NB Norlimbanol 70788-30-6 25.00% 116699 119 76.3697
27 TJ Thiogeraniol 38237-00-2 25.00% 6365572 98 79.6224
28 FM Clementine aldehide 20407-84-5  5283361 66 74.7424
29 IF Aldehide C7 111-71-7 10.00% 8130 155 48.7806
30 HG Galaxolide 1222-05-5 70.00% 91497 33 48.9394
31 OA (Mixture) [ZB, JQ, QB, JX]    119 67.8151
32 EK (Mixture) [EQ, SD, QB, ZB]    98 77.2551
33 AS (Mixture) [XI, LV, SD, ZB]    155 76.1677
34 BA (Mixture) [XI, QB, JQ, EQ]    33 75.9091
35 NE IPM pure (the diluent) 110-27-0   34 37.9412

All odorants used, the first 10 are the fixed odorants and the remaining are rotators, columns as follows: odorant number; 2-letter odorant code; odorant com-
mon name; odorant CAS number; odorant dilution volume-by-volume in IPM before encapsulation; compound identification number (CID) identification number; 
the number of subjects that rated the odorant; the average odorant intensity rating. Note that odorants KO and HG are the same molecular species, KO supplied by 
Sigma-Aldrich and HG by DreamAir. The mixtures are equal combinations of their components without added dilution. We printed 13 booklet types, each contain-
ing the 10 fixed odorants and 2 of the rotators. The 13 rotator pairs were: “KO+JT”; “UV+OS”; NB+OA”; “TJ+EK”; “IF+AS”; “HG+BA”; “SS+WZ”; “LB+RZ”; 
“FM+VY”; “MH+SF”; “ZI+WV”; “FE+UB”; “NE+WV”. We printed 800 copies of each type but the last, (“NE+WV”) of which we printed 400.
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on intensity estimates with conditions of Odorant and Time (binned 
every 10  days) revealed a main effect of Time (F(9,9829)  =  35.93, 
P = 2.17e-8), a main effect of Odorant (F(9,9) = 173.43, P = 2.7e-
306), and a significant interaction (F(81)  =  2.79, P  =  1.602e-15). 
The main effect of Odorant reflected odorant-specific intensity dif-
ferences (Figures 3A and 4; Table 1), whereby odorant ZB stood 

out as the lowest intensity odorant, not significantly different 
from the diluent alone (intensity NE [diluent]  =  37.94  ± 26.99, 
ZB = 33.91 ± 25.40, t = −0.9, P = 0.35) (throughout the manuscript 
reported variability is ±standard deviation in the text and ±stand-
ard error in the figures). All other odorants were significantly more 
intense than the diluent (all t > 2.2, all P < 0.02). The main effect 
of Time revealed an overall average minor −1.7 ± 9.98% change 
in perceived intensity from the first to last 10-day time-bin, and 
the interaction reflected that this change was significant for only 
2 odorants, odorant XI with a 17.7% increase (P = 0.0036), and 
odorant FL with a 16.2% drop (P = 0.0017) but not in any other 
odorant (Figure 3B). Whereas the reduced intensity of FL over time 
may reflect leaking, we have no explanation for the increase in per-
ceived intensity of XI. Given that ZB, Hexanol (CAS# 111-27-3), 
is typically characterized as a perceptible odorant (e.g., “ethereal 
fusel oil fruity alcoholic sweet green” in the Good Scents data), we 
speculate that its odd profile in our data (~160 participants didn’t 
smell it at all) reflects failed encapsulation of this molecule (more 
on this in the discussion).

Descriptor application was nonnormally distributed 
across odorants
Next, we examined the application of each descriptor for each 
odorant across subjects and observe that none of them were nor-
mally distributed (Kolmogorov–Smirnov, all ksstat > 0.0481, all 
P  <  0.02) (Figure 4). We consider this an important observation 
given that with ~1000 observations in hand, skewed distribu-
tions imply meaningful descriptors-to-odorant pairings. Moreover, 
a 2-way ANOVA with conditions of Odorant (1 through 9)  and 
Descriptor (1 through 11)  yielded main effects of Odorant and 
Descriptor and an interaction of the two, all with F and P values 
beyond machine precision (i.e., infinite F and P = 0). From this, we 

Figure 3. The odorants varied in perceived intensity. (A) Mean and standard error of perceived intensity for all 35 odorants used, rank-ordered by intensity. (B) 
Perceived intensity of the 10 fixed set odorants across 100 days of distribution (day 0 is the first day of distribution). Each point is the average for that day. The t 
and p values reflect a two-tailed paired t-test between the first 10 days and last 10 days.

Figure 2. One thousand participants within 100 days. A histogram depicting 
age and gender of the participants. The insert pie chart denotes country of 
origin: IL = Israel; US = USA; JP = Japan; DE = Germany; CH = Switzerland; 
GB = Great Britain.
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conclude that this set of descriptors is indeed variably applied to 
this set of odorants (Figure 4).

The group estimates obtained through SmellSpace 
are comparable to group estimates obtained in a 
controlled lab setting
A potential concern associated with remote testing is the quality of 
the data. Are such estimates similar to estimates obtained in a typical 
lab setting? Data quality can be estimated on different fronts: One is 
data quality per participant, that is, is a participant consistent with 
him/herself? To estimate this, one needs test–retest measures, which 
were not part of SmellSpace. An alternative estimate is the quality of 
data obtained per odorant or per descriptor from the entire group. 
That is, does a given odorant take on a stable and unique repre-
sentation and a given descriptor take on a stable and unique pat-
tern of application? This can be estimated by comparing the average 
ratings across groups of individuals, something that we can do in 
SmellSpace. With these considerations in mind, we set out on the 
following path: We first tested and then retested 26 participants 
(13F, mean age = 29.8 ± 6.19) in a lab experiment using the same 

web-interface and the same “Fixed Set” of 10 odorants but delivered 
from sniff-jar rather than scratch-and-sniff source. Here, experi-
ments were conducted in well-controlled rooms specially designed 
for olfaction psychophysics experiments, subserved by HEPA and 
Carbon filtration and coated in stainless steel to prevent odor con-
tamination. Each participant completed the entire experiment twice, 
day after day. Participants were payed for participation. All this data 
is available in Supplementary Data File 2. This data set will allow us 
to first determine whether the 26 lab participants are “good” partici-
pants (repeatability). Once we verify this, we can then compare the 
group ratings of these verified participants to equivalent-sized groups 
from SmellSpace in order to estimate whether the group data we 
obtain per odorant and per descriptor in SmellSpace is comparable 
to the group data we obtained from a group of verified participants.

To ask whether the lab participants are “good” participants, we 
first looked at the entire fixed set (i.e., a vector made of 10 fixed 
odorants, each rated on 11 fixed descriptors). We observe that the 
average correlation across days was r  =  0.68  ± 0.14, P  <  0.0001 
(Figure 5A). Looking separately at each descriptor across odorants, 
we observe the following 11 correlations for fixed descriptors across 
days: Pleasantness r  =  0.75  ± 0.17, P  =  0.012; Sweet r  =  0.68  ± 

Figure 4. Descriptors were variably applied across odorants. Histograms for each of the 11 fixed descriptors as they were applied to 10 fixed odorants. Columns 
arranged according to increasing average column variance (from left to right) and rows according to increasing average row variance in increasing order from 
top to bottom (the standard deviation is color coded). In other words, “Spicy” and “Fresh-Rotten” were the most and least variably applied descriptors, respec-
tively, and JQ and QB were the most and least variably perceived odorants, respectively.
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0.25, P  =  0.03; Fruity r  =  0.66  ± 0.27, P  =  0.04; Fresh/Rotten 
r = 0.61 ± 0.29, P = 0.06; Bitter r = 0.56 ± 0.36, P = 0.09; Chemical 
r = 0.56 ± 0.34, P = 0.09; Garlic r = 0.51 ± 0.42, P = 0.13; Clean/
Dirty r = 0.43 ± 0.38, P = 0.21; Burnt r = 0.43 ± 0.37, P = 0.21; 
Intensity r = 0.41 ± 0.34, P = 0.23; Spicy r = 0.26 ± 0.4, P = 0.46 
(Figure 5B) and the following 2 correlations for the rotating descrip-
tors across days: Volatile r  =  0.3  ± 0.29, P  =  0.4; Develops over 
time r = 0.24 ± 0.29, P = 0.41 (Figure 5B). Looking separately at 
each odorant across fixed descriptors, we observe the following 10 

correlations across days: odorant QB r = 0.77 ± 0.16, P = 0.002; FL 
r = 0.77 ± 0.2, P = 0.002; AY r = 0.69 ± 0.25, P = 0.009; LV r = 0.68 ± 
0.19, P = 0.010; SD r = 0.63 ± 0.21, P = 0.02; EQ r = 0.61 ± 0.29, 
P = 0.026; ZB r = 0.60 ± 0.25, P = 0.03; JX r = 0.57 ± 0.37, P = 0.04; 
JQ r = 0.57 ± 0.34, P = 0.041; XI r = 0.54 ± 0.31, P = 0.056 (Figure 
5C). An average overall day-after-day correlation of r  = 0.68 and 
r  =  0.75 for pleasantness is consistent with previous observations 
(Secundo et al. 2015) and allows us to conclude that this is a “good” 
lab cohort. Indeed, only 3 participants tended to be less consistent 
than the others (Figure 5A). However, given that even the least con-
sistent participant was still significantly correlated with him/herself 
day-after-day (r = 0.25, P = 0.0065), we retained these participants.

Having observed that these participants are generally “good” 
participants at the individual level, that is, that individual partici-
pants provide similar estimates day after day, we next asked how this 
converges into group estimates. In other words, we asked whether 
the mean group rating provided by lab participants is stable day-
after-day. Looking at the entire fixed set (i.e., a vector made of 10 
fixed odorants, each rated on 11 fixed descriptors), we observe that 
the correlation of the mean vector in day 1 to the mean vector in 
day 2 was r = 0.97, P < 0.000001. Moreover, we can look at the 
correlation in each of the 13 descriptors across each of the 10 odor-
ants. We observed the following correlations for the 11 fixed descrip-
tors: Pleasant r = 0.99, P < 0.000001; Sweet r = 0.99, P < 0.000001; 
Fruity r = 0.98, P = 0.000001; Spicy r = 0.97, P = 0.000003; Fresh/
Rotten r  =  0.97, P  =  0.000003; Bitter r  =  0.94, P  =  0.000053;  
Burnt r = 0.94, P = 0.000053; Garlic r = 0.91, P = 0.00025; Chemical 
r = 0.88, P = 0.0007; Clean/Dirty r = 0.83, P = 0.0029; Intensity 
r = 0.83, P = 0.0029 and the following correlations for the 2 rotat-
ing descriptors: Volatile r  =  0.76, P  =  0.01; Develops over time 
r = 0.54, P = 0.1. We observed the following correlations per odor-
ant: FL r = 0.99, P < 0.00001; LV r = 0.98, P < 0.00001; JX r = 0.98, 
P < 0.00001; QB r = 0.97, P < 0.00001; JQ r = 0.96, P < 0.00001; 
ZB r = 0.96, P < 0.00001; AY r = 0.95, P < 0.00001; XI r = 0.94, 
P < 0.00001; SD r = 0.92, P < 0.00001; EQ r = 0.91, P < 0.00001. 
These remarkable correlations highlight the power and stability that 
are gained through group data.

Having observed that this group of lab participants provides con-
sistent odorant group estimates day after day, we next asked whether 
SmellSpace group estimates are consistent with lab-generated group 
estimates. We selected from SmellSpace 1000 subgroups of 26 par-
ticipants each, such that they provided for an exact match in gender 
and age to the lab cohort (this reflected various recombination of 
181 men and 179 women in SmellSpace). We then measured the cor-
relation between lab-generated group estimates (mean across both 
days) and SmellSpace-generated group estimates. Looking at the 
entire fixed set (i.e., a vector made of 10 fixed odorants, each rated 
on 11 fixed descriptors), we observe that the average correlation of 
the mean lab vector to the mean SmellSpace subgroup vector was 
r = 0.76 ± 0.033, P < 0.000001 (Figure 6A). Moreover, we can look 
at the correlation in each of the 13 descriptors across each of the 10 
odorants. We observed the following correlations for the 11 fixed 
descriptors: Burnt r = 0.86 ± 0.05, P = 0.001; Garlic r = 0.86 ± 0.05, 
P = 0.001; Fruity r = 0.81 ± 0.05, P = 0.004; Fresh/Rotten r = 0.77 ± 
0.07, P = 0.009; Spicy r = 0.75 ± 0.07, P = 0.01; Sweet r = 0.75 ± 
0.06, P  =  0.01; Clean/Dirty r  =  0.69  ± 0.07, P  =  0.02; Pleasant 
r = 0.63 ± 0.09, P = 0.05; Bitter r = 0.59 ± 0.11, P = 0.07; Chemical 
r = 0.58 ± 0.17, P = 0.07; Intensity r = −0.09 ± 0.12, P = 0.8 (Figure 
6B) and the following correlations for the 2 rotating descriptors: 
Volatile r = 0.43 ± 0.26, P = 0.21; Develops over time r = −0.14 ± 
0.18, P = 0.69 (Figure 6B). That perceived intensity was uncorrelated 

Figure 5. Individual lab participants provided consistent ratings. (A) A his-
togram reflecting the frequencies of day-after-day correlations on the 
entire fixed set (a 110 unit vector of 11 odorants along 10 descriptors). (B) 
Histograms reflecting the frequencies of day-after-day correlations on the 
fixed set of 10 odorants across each of the 13 descriptors. (C) Histograms 
reflecting the frequencies of day-after-day correlations on the fixed set of 11 
descriptors across each of the 10 odorants.
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is unsurprising given that the lab test was from sniff-jars and 
SmellSpace was scratch-and-sniff. This lack of correlation renders 
added value to the remaining perceptual correlations as it implies 
they reflect genuine odor attributes unrelated to intensity. Without 
these intensity differences, these correlations may have been even 
greater. We also observed the following correlations per odorant: QB 
r = 0.93 ± 0.02, P = 0.000004; FL r = 0.92 ± 0.02, P = 0.000008; 

JX r = 0.88 ± 0.03, P = 0.00007; XI r = 0.86 ± 0.05, P = 0.00016; 
JQ r = 0.86 ± 0.05, P = 0.00016; LV r = 0.84 ± 0.07, P = 0.0003; 
EQ r = 0.677 ± 0.07, P = 0.01; AY r = 0.58 ± 0.17, P = 0.03; SD 
r = 0.56 ± 0.07, P = 0.04; ZB r = 0.53 ± 0.1, P = 0.062 (Figure 6C).  
That ZB was the poorest correlated odorant across lab and 
SmellSpace is consistent with our estimation of failed encapsulation 
of this odorant.

The overall lab vector was highly correlated with the overall 
SmellSpace vector. However, whereas in lab all 11 fixed descriptors 
were also each individually highly correlated day-after-day (all r > 
0.8, all P < 0.003), 8 of 11 were also significantly correlated between 
lab and SmellSpace but 3 were not: Intensity r  =  −0.09  ± 0.12, 
r = 0.59 ± 0.11, P = 0.07; Bitter r = 0.59 ± 0.11, P = 0.07; Chemical 
r = 0.58 ± 0.17, P = 0.07. To estimate the dependence of this on the 
size of the SmellSpace subgroup, we systematically increased the size 
of the SmellSpace sample. For each sample size, we selected 100 ran-
dom instances from SmellSpace. Based on all the above observations, 
we conducted this analysis without odorant ZB. We observe that 
“Intensity” remains uncorrelated regardless of sample size (Figure 
7, red line). For “Bitter,” we observe that merely the removal of ZB 
was sufficient for obtaining a significant result at 25 participants 
(Figure 7, green line). For “Chemical,” we observe that only at 198 
participants in the group does the SmellSpace rating become signifi-
cantly correlated with the lab rating (r = 0.64, P < 0.05) (Figure 7, 
pink line). Thus, we conclude that subgroups of 200 participants 
from SmellSpace provide for a very strong reflection of what one can 
expect in a typical lab experiment.

Predicting odorant pleasantness from odorant 
structure alone
Having collected the data and verifying that it is comparable to lab-
collected data, we next set out to ask whether 2 previous models 
we generated for linking odorant perception to odorant structure 
survive testing with this large novel data set.

Figure 6. SmellSpace group data reflected lab group data. We sampled 
SmellSpace 1000 times, each time selecting 26 participants age and gen-
der matched to the lab cohort. (A) A histogram reflecting the frequencies of 
SmellSpace-to-lab correlations on the entire fixed set (a 110 unit vector of 11 
odorants along 10 descriptors). (B) Histograms reflecting the frequencies of 
SmellSpace-to-lab correlations on the fixed set of 10 odorants across each of 
the 13 descriptors. (C) Histograms reflecting the frequencies of SmellSpace-
to-lab correlations on the fixed set of 11 descriptors across each of the 10 
odorants.

Figure 7. Correlations with lab data as a function of SmellSpace sample size. 
We randomly sampled SmellSpace 1000 times for each sample size. For each 
sample we compared the fixed odorant set vector (without odorant ZB). The 
dashed line reflects a significant correlation between lab and SmellSpace. At 
198 SmellSpace participants, all descriptors but “Intensity” are significantly 
correlated across lab and SmellSpace.
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In Khan et al. (2007), we predicted odorant pleasantness from 
odorant structure and variations of this prediction have been repli-
cated by others several times (Mandairon et al. 2009; Zarzo 2011; 
Keller et al. 2017). However, because the manuscript by Khan et al. 
was focused on the correlation between the principal component 
of structure and the principal component of perception (pleasant-
ness), its optimized calculation for predicting pleasantness was 
obscured. Here, we take this opportunity spell out the calculation so 
that anybody can apply it. Moreover, here, we test the model using 
novel data.

To predict pleasantness, we first used DRAGON software V6 
(Mauri et al. 2006) to obtain 150 previously identified physicochem-
ical features for each odorant (Table 2). Each feature value was mul-
tiplied by a previously derived weight (Table 2). These weights also 
serve to normalize the features that are otherwise of vastly varying 
scales. To be clear, these 150 features and their weights were previ-
ously optimized by us in a previous effort. The 150 values are then 
summed to produce the pleasantness prediction for each molecule. 
In other words, we use a weighted linear sum that was previously 
optimized on different data.

Before applying this calculation, we must restrict our data 
according to 2 model limitations clearly spelled out in Khan et al: 
First, the algorithm was tested only for monomolecules and not 
for mixtures. This restricts us to 23 monomolecules currently in 
SmellSpace. Second, the pleasantness prediction algorithm works 
only for odorants equated for perceived intensity. As previously 
described, the current odorants significantly vary in perceived inten-
sity (Figure 3). To identify a subset of odorants with equal perceived 
intensity, we applied Hierarchical Clustering to the intensity esti-
mates of the 23 monomolecules we used. This uncovered 3 clusters, 
1 containing 1 odorant alone and 2 clusters of 11 odorants each. 
One of these clusters had a standard deviation of 6.08 and the other 
had a significantly lower standard deviation of 3.94 and was there-
fore selected for analysis. This cluster, however, contained odorants 
HG and KO, which were in fact 2 variants of the same molecule 
(Table 1). These will obviously yield an identical prediction from the 
model, so we therefore combined HG and KO, retaining 10 equal 
intensity monomolecules (Odorants ‘QB’; ‘AY’; ‘XI’; ‘FL’; ‘JQ’; ‘LV’; 
‘KOcombined’; ‘UV’; ‘SS’; ‘IF’).

Ten molecules is too small a number for meaningful correlation 
analysis (it would provide for r = 0.13, P = 0.73). Therefore, initially, 
rather than looking at the raw pleasantness prediction, we looked at 
the predicted difference in pleasantness for every pair of molecules. 
In other words, the predicted versus actual difference in pleasantness 
between QB and AY, QB and XI, QB and FL, etc. Thus, 10 odorants 
provide for 45 unique pairwise comparisons. Using this approach we 
observed a strong correlation between predicted and actual pairwise 
differences in odorant pleasantness (r = 0.59, P = 1.81e-05) (Figure 
8A). Finally, despite the differences in perceived intensity that vio-
late the model assumptions, we also plotted the correlation between 
predicted and rated absolute pleasantness ratings (not differences) 
for all 22 monomolecules (excluding ZB) and observed a significant 
correlation of r  =  0.51 (P  =  0.017) between predicted and actual 
odorant pleasantness (Figure 8B).

Predicting pairwise odorant perceptual similarity 
from odorant structure alone
In Snitz et  al. (2013), we predicted odorant perceptual similarity 
from odorant structure alone. In contrast to the Khan pleasant-
ness model that was optimized for monomolecules but not mix-
tures, the Snitz similarity model was optimized for mixtures but 
not monomolecules. However, its clearly acknowledged limita-
tion was that it applied to mixtures where all components were 
of equal perceived intensity, which again is not the case here. 
Although the Snitz model was not optimized for monomolecules, 
it nevertheless provided for reasonable monomolecular similarity 
estimates, se we once again test the 10 equal intensity monomol-
ecules that provide for 45 pairwise similarity comparisons (e.g., 
what is the level of perceptual similarity between QB and AY, QB 
and XI, QB and FL, etc.). For actual pairwise perceived similarity, 
we derive pairwise odorant similarity from descriptors applied to 

Figure 8. Predicting odorant perception from odorant structure in 
SmellSpace. (A) Predicting pairwise differences in monomolecular odorant 
pleasantness from odorant structure. Each dot is a comparison of 2 odor-
ants. (B) Predicting odorant pleasantness from odorant structure. Each dot is 
a monomolecule. (C) Predicting pairwise monomolecular odorant similarity 
from odorant structure. Each dot is a comparison of 2 odorants.
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the odorants. Pairwise perceptual similarity derived from descrip-
tors is very highly correlated with direct similarity ratings (r > 0.85 
in Dravnieks et al. 1978 and Callegari et al. 1997). In our method 
for deriving similarity, each odorant is represented by a vector 
consisting of its ratings along all descriptors, and these vectors are 
correlated as a measure of odorant similarity. Using this approach 
in the past, we observed derived similarity correlated with direct 
similarity at r = 0.71 (P < 0.0001) (Figure 1C in Khan et al. 2007). 
As in Snitz et  al., to calculate the predicted similarity between 

any pair of odorants u and v, the distance function between the 
vector representing odorant �u and the vector representing odor-
ant �v  was computed as the angle between them in the 21-feature 
space (Table 3). It was given by: θ (�u,�v) = arc cos

Ä
�u·�v

|�u|·|�v|

ä
= a.  

Where �u ·�v  is the dot product between the vectors and |�u| and |�v| are 
their Euclidean norms. Using this calculation, we observe a correla-
tion of r = −0.38 (P = 0.009) between predicted distance and actual 
rated pairwise similarity (Figure 5C) (if we look at all 23 odorants, 
regardless of perceived intensity, the result is r = 0.18, P = 0.004).

Table 2. The physicochemical features for predicting pleasantness

Desc. code Weight Desc. code Weight Desc. code Weight

nSK 1.262E−04 SM05_EA(ri) 6.255E−05 L3p −3.57E−06
nCL −2.980E−06 SM06_EA(ri) 4.799E−05 P2p −8.92E−06
ZM1 −9.124E−04 SM13_EA(ri) 6.593E−04 E3p 1.08E−05
MAXDP 1.732E−04 SM11_AEA(bo) 4.713E−06 Tu 2.88E−04
Psi_i_s 2.826E+00 SM15_AEA(bo) −2.647E−04 Ts 1.17E−04
SRW08 2.014E−04 SM03_AEA(dm) −2.160E−04 Ks 5.38E−05
SIC0 1.247E−05 Eig15_EA(dm) 2.592E−05 Vs −1.14E−01
CIC5 −2.021E−05 Eig06_EA(ri) −2.532E−04 HATS0u 5.42E−05
SpDiam_D 9.163E−05 Eig02_AEA(bo) 6.112E−05 H7m 2.78E−07
H_X −1.603E−04 Eig06_AEA(bo) −8.063E−05 H0v 5.30E−05
Chi_H2 8.301E−05 Eig11_AEA(bo) 1.771E−05 H3v −9.47E−06
SpDiam_Dt 7.432E−05 Mecc 4.663E−05 H7v 1.14E−06
H_D/Dt −7.089E−02 SM5_RG 1.522E−04 HATS0e 4.78E−05
EE_D/Dt 1.570E−04 SM6_RG 1.874E−04 H3p −1.05E−05
SpAbs_Dz(Z) −4.421E−04 VE3_G/D −6.906E−06 HATS7p 8.95E−06
WiA_Dz(e) 3.562E−05 VR1_G/D −2.042E−05 HATS8p 7.07E−06
SpAD_Dz(e) −7.315E−02 VR3_G/D −3.026E−05 HATS2i 7.90E−05
SpPos_B(m) 2.513E−04 TDB08m −1.927E−06 R7m+ −1.08E−07
SpAD_B(m) 2.149E−04 TDB07e 3.715E−05 R1e 5.17E−05
SpPosA_B(v) 5.311E−05 TDB07p 5.632E−06 R8e 3.85E−05
SM3_B(v) 1.782E−04 TDB09s 6.361E−06 R8p 5.84E−06
HyWi_B(p) 1.113E−04 TDB02r 2.296E−05 R3p+ 4.05E−07
SpPos_B(p) 1.357E−04 RDF155u −1.171E−05 R6i 2.95E−06
SM6_B(p) 4.491E−04 RDF035v 3.212E−05 DP10 6.86E−05
VE1_B(p) 5.796E−05 RDF045v −1.423E−05 SP15 −1.90E−04
Chi_B(i) 2.659E−05 RDF090v −1.362E−04 nCt −2.12E−04
VE3_B(i) 7.702E−07 RDF095e −6.829E−05 nR#CH/X −6.68E−07
ATS5m 9.451E−05 RDF085p −1.584E−04 nRCHO 3.14E−05
ATS6v 9.437E−05 RDF110p −2.197E−05 nArCHO 4.04E−05
ATS7v 5.203E−05 RDF140p −4.061E−06 nRC=N 8.87E−06
ATS6i 2.640E−04 RDF015s 8.325E−01 nRNR2 −2.25E−05
ATS8s 7.139E−05 RDF080s 8.029E−05 nOHp 8.62E−05
ATSC7i −9.476E−06 RDF085s −3.650E−03 nHDon −8.10E−05
MATS3v 2.435E−05 Mor13u 6.520E−06 C-017 1.51E−04
MATS3e −2.214E−05 Mor18u 7.619E−06 C-026 −1.85E−05
MATS7s −1.483E−04 Mor10m −6.187E−05 O-059 −1.16E−04
GATS4e 1.629E−05 Mor17m 1.195E−05 SdsCH 5.53E−04
GATS8i −3.500E−05 Mor32m 9.089E−06 StsC −1.69E−06
JGI4 −1.717E−06 Mor12v 6.155E−07 SdssC 2.95E−04
JGI5 8.027E−06 Mor27v −2.076E−06 NaasC 6.14E−05
SpMax2_Bh(p) 1.544E−04 Mor13e 1.362E−05 NsOH −5.69E−05
SpMax8_Bh(p) −9.740E−06 Mor17p 1.838E−-05 NaaS 0.00E+00
SpMin4_Bh(v) 4.138E−05 Mor23i 7.078E−05 B04[C-S] −2.11E−05
P_VSA_MR_3 3.568E−01 Mor26i 2.012E−05 B10[C-N] 0.00E+00
P_VSA_m_4 −4.369E−01 Mor26s 5.735E−05 F03[O-S] −8.54E−05
P_VSA_v_4 5.865E−02 P1u 5.349E−05 F04[C-S] −2.76E−05
P_VSA_e_3 −2.517E−01 L2m −1.499E−05 G(O..O) 2.79E−01
P_VSA_p_2 −5.653E−01 G1v 3.753E−06 TPSA(NO) 1.93E−04
P_VSA_p_4 5.865E−02 G2v 5.278E−05 Inflammat-80 −1.96E−06
Eta_betaS 2.386E−05 L1e 2.689E−04 Infective-80 −1.16E−04

The 150 Dragon features and their associated weighting values that together enable the prediction of odorant pleasantness.
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Discussion

We aimed to develop a novel platform for olfactory perception data 
collection and to make this data public. In one respect this was a suc-
cess, namely in that we indeed here post perceptual data from ~1000 
self-motivated individuals (Supplementary Data File 1). Moreover, 
an advantage of SmellSpace is that the subject-specific data will grow 
over time. We have already launched round 2 of SmellSpace and 
the existing participants as well as ~400 new participants in round 
2 are receiving booklets with 30 additional nonoverlapping odor-
ants, which will bring SmellSpace to 65 odorants. Thus, over time, 
SmellSpace may provide for a massive data set. Moreover, we have 
made an effort to functionalize SmellSpace as a research tool. For 
example, users of SmellSpace can enter the “My Research” tab on 
the website and order multiple odorant booklets to use in an experi-
ment of their own (free of any charge, pending booklet availabil-
ity). Any scientist/student can distribute these booklets to different 
groups (e.g., “Democrats” vs. “Republicans”) and use SmellSpace 
to test whether these groups differ in terms of odor perception. In 
turn, an aspect by which we do not consider phase 1 of SmellSpace 
a success is in the response rate to the initial run. Overall, we were 
at ~11% response rate. This reflects a very ineffective and expen-
sive path to data collection. That said, we have learned which dis-
tribution paths are effective and which are not: Booklets that were 
ordered by mail yielded effectively 100% response rate, booklets 
distributed at lectures on olfaction yielded ~20% response rate, yet 
booklets blindly distributed as attachments to a newspaper, etc., 
yielded ~1% response rate. In other words, only targeted distribu-
tion worked. This will guide our actions in the future development 
of SmellSpace in an aim to generate the largest possible data set for 
olfaction research. An additional limitation of SmellSpace is in the 
perceptual quality of the odorants. Although S&S technology seems 
to currently be the best way to distribute odorants at massive scale, it 
is not free of drawbacks. First, some odorants fail to encapsulate, as 
was likely the case with odorant ZB here. Moreover, we identified an 

olfactory undertone likely related to the microencapsulation printing 
process, which slightly contaminated all stimuli. This effect was not 
dramatic, as evident by the clearly distinct perception of the different 
odorants (Figure 4) and the high correlation in perception between 
groups of raters in SmellSpace and groups of raters who smelled 
nonencapsulated versions of the same odorants in lab (Figure 6). 
Nevertheless, the perceptual attributes attributed to the diluent 
(odorant NE) reflect the overall “odor of the booklet” (the paper, the 
odorant microencapsulation process, etc.) and reflect a limitation of 
the effort. This highlights that novel methods for odorant dispersion 
is a need, likely in industry, and clearly in science.

In addition to posting data for the community, we here also con-
ducted 2 analyses aimed at assessing data usability. In the first, we 
predicted odorant pleasantness from odorant structure alone. A par-
ticular strength of this result is that here we tested the model on 
both molecules and participants who were not part of the model 
building set. In the past, when we tested the model using novel odor-
ants but the same participants used to build the model, predictive 
performance was at r = ~0.75. In other words, variance is introduced 
by both molecules and individuals and here we captured both.

In the second analysis, we predicted odorant pairwise percep-
tual similarity from odorant structure alone using the approach 
from Snitz et al. 2013. The Snitz model was designed for odorant 
mixtures not monomolecules (the correlations for mixtures are 
r = ~0.7), yet it nevertheless originally provided for correlations of 
r  =  ~0.55 between predicted and actual monomolecular pairwise 
similarity. The Snitz model is applicable to equated intensity odor-
ants alone. Here, we had only 10 equated intensity odorants, pro-
viding for 45 pairwise similarity ratings. The correlation between 
predicted and actual derived similarity for this restricted set was 
r  =  0.38 (P  =  0.009). Although a significant result, the power of 
this link is underwhelming. We hypothesize that this poorer perfor-
mance than in the 2013 Snitz manuscript likely reflects the small 
number of odorants and the small number of descriptors available 

Table 3. The physicochemical features for predicting pairwise perceptual similarity

No. Abbreviation Description

1 nCIR Number of circuits (constitutional descriptors)
2 ZM1 First Zagreb index M1 (topological descriptors)
3 GNar Narumi geometric topological index (topological descriptors)
4 S1K 1-path Kier alpha-modified shape index (topological descriptors)
5 piPC08 Molecular multiple path count of order 08 (walk and path counts)
6 MATS1v Moran autocorrelation—lag 1/weighted by atomic van der Waals volumes (2D autocorrelations)
7 MATS7v Moran autocorrelation—lag 7/weighted by atomic van der Waals volumes (2D autocorrelations)
8 GATS1v Geary autocorrelation—lag 1/weighted by atomic van der Waals volumes (2D autocorrelations)
9 EEig05x Eigenvalue 05 from edge adj. matrix weighted by edge degrees (edge adjacency indices)

10 ESpm02x Spectral moment 02 from edge adj. matrix weighted by edge degrees (edge adjacency indices)
11 ESpm03d Spectral moment 03 from edge adj. matrix weighted by dipole moments (edge adjacency indices)
12 ESpm10d Spectral moment 10 from edge adj. matrix weighted by dipole moments (edge adjacency indices)
13 ESpm13d Spectral moment 13 from edge adj. matrix weighted by dipole moments (edge adjacency indices)
14 BELv3 Lowest eigenvalue n. 3 of Burden matrix/weighted by atomic van der Waals volumes (Burden eigenvalues)
15 RDF035v Radial distribution function—3.5/weighted by atomic van der Waals volumes (RDF descriptors)
16 G1m First component symmetry directional WHIM index/weighted by atomic masses (WHIM descriptors)
17 G1v First component symmetry directional WHIM index/weighted by atomic van der Waals volumes (WHIM descriptors)
18 G1e First component symmetry directional WHIM index/weighted by Sanderson electronegativities (WHIM descriptors)
19 G3s Third component symmetry directional WHIM index/weighted by atomic electropological states (WHIM descriptors)
20 R8u+ R maximal autocorrelation of lag 8/unweighted (GETAWAY descriptors)
21 nRCOSR Number of thioesters (aliphatic) (functional group counts)

WHIM=weighted holistic invariant molecular descriptors.
The 21 Dragon features that enable predicting perceptual similarity. This table is reproduced from (Snitz et al. 2013).
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for the current analysis. The latter impacts the quality of the derived 
similarity estimates. Considering this, an added conclusion from this 
first phase of SmellSpace is that we intend to increase the number 
of Fixed descriptors, even at the cost of increased participation time 
demand.

The results with both models highlight a critical weakness in the 
world of odor modeling and that is our inability to computationally 
deal with variation in odorant perceived intensity. Odorant inten-
sity interacts with odorant perception in complex ways (Distel et al. 
1999). Effectively modeling and predicting odorant intensity from 
odorant structure alone will boost performance of models for pleas-
antness, similarity, and beyond, and is therefore a key future goal in 
olfactory modeling efforts (Mainland et al. 2014a). Indeed, modeling 
intensity is one of our ultimate goals for SmellSpace data, but it can-
not be addressed at this stage due to the limited number of odorants. 
We look forward to addressing this once SmellSpace data provides 
for sufficient scope on this front.

In conclusion, we describe a novel approach to collecting olfac-
tory perceptual data. Analyses of data from SmellSpace provided for 
big-data replications of 2 previous models for predicting perception 
from structure: one for predicting odorant pleasantness and another 
for predicting odorant pairwise perceptual similarity. These replica-
tions were presented here primarily as a demonstration for the appli-
cability of the data. The primary contribution of this manuscript is 
in making the raw data publically available (the complete data set 
is posted online with this manuscript and at https://www.weizmann.
ac.il/neurobiology/worg/materials.html. We look forward to grow-
ing this public database over time and further look forward to its 
use by the community.

Supplementary material

Supplementary data are available at Chemical Senses online.
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