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D E V E L O P M E N T A L  B I O L O G Y

Dynamic instability of dendrite tips generates the 
highly branched morphologies of sensory neurons
Sonal Shree1†, Sabyasachi Sutradhar1†, Olivier Trottier1,2, Yuhai Tu3,  
Xin Liang4, Jonathon Howard1,2,5*

The highly ramified arbors of neuronal dendrites provide the substrate for the high connectivity and computa-
tional power of the brain. Altered dendritic morphology is associated with neuronal diseases. Many molecules have 
been shown to play crucial roles in shaping and maintaining dendrite morphology. However, the underlying prin-
ciples by which molecular interactions generate branched morphologies are not understood. To elucidate these 
principles, we visualized the growth of dendrites throughout larval development of Drosophila sensory neurons 
and found that the tips of dendrites undergo dynamic instability, transitioning rapidly and stochastically between 
growing, shrinking, and paused states. By incorporating these measured dynamics into an agent-based computational 
model, we showed that the complex and highly variable dendritic morphologies of these cells are a consequence 
of the stochastic dynamics of their dendrite tips. These principles may generalize to branching of other neuronal 
cell types, as well as to branching at the subcellular and tissue levels.

INTRODUCTION
Neurons are polarized cells (1) whose axons and dendrites are often 
highly branched. Branching provides the surface area necessary for 
dendrites to receive inputs from thousands of other cells or from the 
environment (2), and for axons to output signals to multiple cells. 
In these ways, branching facilitates the high connectivity of the brain 
(2). Thus, the morphology of the neurons, together with their syn-
aptic connections (3, 4), defines the structure of the nervous system, 
the connectome, which is viewed as a prerequisite for understanding 
brain function (5). Whereas much is known about the growth of axons, 
whose tips, the growth cones, are guided by extracellular signals and 
guidepost cells (6), the mechanisms underlying the growth and branch-
ing of dendrites are poorly understood. Elucidation of these mecha-
nisms is the goal of the present work.

While many molecules have been shown to play crucial roles in 
shaping dendrites, the underlying rules by which molecular inter-
actions generate branched morphologies are not understood. To 
investigate these rules, we have focused on dendrite morphogenesis 
in class IV dendritic arborization neurons in Drosophila, a model 
system for dendritogenesis (7, 8). These nociceptive neurons form a 
highly branched meshwork just under the cuticle that senses punc-
ture of the larva by the ovipositor barbs of parasitic wasps and initiates 
avoidance behaviors (9, 10). Class IV cells are ideal for studying branch-
ing morphogenesis because they grow rapidly over 5 days of larval 
development, their branches are noncrossing due to self-avoidance 
mediated by the Down’s syndrome cell adhesion molecule (11–13) 
and other molecules (14, 15), and they can be visualized using cell- 
specific labeling (7, 16). Many molecules that participate in den-
drite morphogenesis have been identified: transcription factors (17); 

extracellular matrix and integrins (18, 19); actin-associated proteins 
(20); microtubule motors such as dynein and kinesin (21, 22); 
microtubule regulators such as spastin (23), katanin (24), and 
-tubulin (25); and microRNAs such as bantam (14). A major diffi-
culty, however, is that it is currently not possible to predict quanti-
tatively how developmental processes occurring at the molecular 
and subcellular levels determine the morphology of the entire 
dendritic arbor.

While several theoretical and computational models can produce 
dendrite-like branched morphologies, they are not grounded in molecu-
lar or development data. Early models, designed to describe and classify 
neurons, reconstituted morphologies based on the statistical proper-
ties of the observed arbors themselves (26, 27). Optimization-based 
models that minimize wiring (i.e., the total lengths of the branches) 
capture key features of neuronal morphology (28, 29) but lack connec-
tion to the cellular processes, as do models based on more abstract 
processes such as diffusion-limited aggregation (30) and Turing- 
like pattern formation (31). More realistic models of Drosophila 
sensory cells, for example, capture important properties of the den-
drite morphologies but use hypothetical branching and growth 
parameters (32, 33). Models of branching morphogenesis in tissues 
are of limited applicability to dendrites: Models of branching in the 
lungs (34) and kidneys (35, 36) produce stereotyped morphologies 
that are distinct from the highly variable morphologies of neurons (37). 
Stochastic models developed for other tissues, such as the mammary 
glands, use properties that are specific to these systems, such as tip 
bifurcation (38). Thus, current computational models fall short in 
providing a mechanistic understanding of dendrite morphology.

To circumvent these limitations, we have formulated a com-
putational model that is based entirely on experimentally observed 
properties of dendrites measured over their development. The data- 
based model takes as input tip growth dynamics, branching rates, 
and self-avoidance measured using high-resolution, live-cell imaging 
in the developing animal. The model successfully recapitulates class 
IV dendrite morphogenesis and shows how the complex and variable 
morphology of dendritic arbors emerges from the microscopic dy-
namics of dendrite tips and provides insights into several mutant 
phenotypes.
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RESULTS
As Drosophila larvae grow (Fig. 1A), the arbors of their class IV den-
drites also grow (Fig. 1B). By the end of larval development, the 
meshwork of branches covers the larval surface like chain mail and 
the individual dendritic arbors fill the eight abdominal segments with 
widths up to 500 m. Each abdominal segment on the dorsal side, 
on which we focus, has two class IV neurons, one on either side of 
the dorsal midline (see Fig. 1C and fig. S1A for definitions of the 
larval axes), and each occupying an approximately rectangular hemi-
segment. When the first instar larva hatches at 24 hours after egg lay 
(AEL) (egg lay is defined as time zero), the widths of the dendritic 
arbors (green and blue points) are smaller than the hemisegments 
(solid lines), as shown in Fig. 1D (see Materials and Methods for 
how the sizes of the arbors and segments were calculated). Over the 
next 24 hours, the arbors grow faster than the segments and reach 
the edges of the adjacent hemisegments. By 72 hours, the arbor has 
densely filled the hemisegment (fig. S1B) and thereafter grows with 
the growing hemisegment in a process called scaling (14). The tiling 
of the larval surface (39), during which the dendrites do not cross 

into the adjacent hemisegments, is due to inhibitory interactions between 
neighboring class IV cells (13) and interactions with the adjacent epi-
thelial cells (14). We sought to understand how the dendrites grow and 
fill the hemisegments.

Dendrite growth is not due to elongation of all branches 
in the arbor
We first asked whether class IV arbors grow through the elongation 
of all their branches, both internal and terminal (Fig. 2A, top). In 
other words, the arbor expands uniformly as shown in Fig. 2A (middle), 
as proposed in (40). Such uniform expansion describes the growth 
of the overlying epithelial cells, whose number remains constant over 
larval development (14), and of class I cells, which expand con-
comitantly with the segments (33, 41). To test the role of branch 
elongation in arbor expansion, we reimaged the same neurons at 
discrete times over development, at 24 and 48 hours and at 48 and 
96 hours (Fig. 2B). As the arbors grow, there is continuous addition 
and removal of branches. Nevertheless, it was possible to identify shared 
structural features of internal branches in the proximal region 

Fig. 1. Growth of larvae and class IV neurons over development. (A) Whole-mount, living larvae imaged by spinning disk confocal microscopy at 24 to 120 hours (egg 
lay defined as time zero). Class IV neurons are marked with the transmembrane protein CD4 tagged with green fluorescent protein (GFP) (genotype ;;ppkCD4-tdGFP). 
(B) Individual class IV cells from the A3 or A4 segments. An A3 segment is outlined in (A) (120 hours). (C) Cartoon of larvae as viewed from the dorsal side. The dashed line 
is dorsal midline. Anterior (A) is up, and posterior (P) is down. Left (DL) and right (DR) are as viewed from the dorsal side (for the sake of simplicity, we will mention DL-DR 
as LR everywhere in the text and subsequent figures); the gray dashed arrow points at the ventral direction. (D) Growth of class IV arbors compared to their hemisegments. 
At 24 hours, the cell widths (solid circles with dashed lines through the averages) are smaller than the hemisegment widths (solid lines). In the next 24 hours, they touch 
the growing segment boundaries, and by 72 hours, they fill the hemisegment and then continue to grow with the hemisegment (light gray). The cell widths along each 
axis are defined as the sides of the rectangle that contain the same mass of branch skeleton distributed uniformly (see Materials and Methods).
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(Fig. 2, C and D, and Materials and Methods). The fractional increases 
in lengths of these identified internal branches were considerably less 
than the fractional increase in length of the hemisegments along the 
anterior-posterior (AP) and left-right (LR) axes (Fig. 2E), in agree-
ment with earlier measurements (28). Because elongation of internal 
branches contributes only 3% (24 to 48 hours) to 11% (48 to 96 hours) 
of the overall growth of the dendrites, other mechanisms must con-
tribute to the bulk of arbor growth. This finding implies that the 
proximal branches are not rigidly attached to the adjacent epithelium 
but must slowly slip as the hemisegments grow, an interesting issue 
that we will not explore further here.

Terminal dendrites grow from their tips and  
not from their bases
An alternative hypothesis to elongation of internal branches is that 
the growth of the arbor is due to branching and subsequent lengthening 
of the newly formed terminal branches (Fig. 2A, bottom). To test this 
hypothesis, the behavior of terminal dendrites was examined. Follow-
ing birth by lateral branching from existing branches (42), terminal 
dendrites can lengthen, shorten spontaneously or following contact with 
another branch, and pause (Fig. 3A). Time-lapse imaging (movies 
S1 to S5) suggests that lengthening is due primarily to the addition 
of material near the tip. For example, the distances between the base 

of a branch and new branch points or bends do not change, while 
the distal tips grow and shorten (Fig. 3A, top-left panel, and movies 
S6 to 10). These observations argue against growth at the base and 
against uniform elongation along the length of terminal dendrites. 
Because new branches can form as close as 2 m to an existing tip, 
we estimate that growth occurs within ~2 m of the distal ends. Thus, 
tip growth, which occurs on time scales of minutes, may contribute 
to the overall growth of the arbor.

High-resolution tracking shows that tips transition between 
periods of constant growth velocity
To determine whether tip growth can account for arbor expansion, 
we tracked the lengths of terminal dendrites over time with an accuracy 
of ~0.1 m (Materials and Methods and fig. S2, A to F). To ensure 
that mounting and imaging larvae did not interfere with growth, we 

Fig. 2. Branch dilation does not account for dendrite growth. (A) Top: Internal 
branches are branches that lie between two branch points, as distinct from terminal 
branches that end in a tip. Bottom two panels: Two models for dendrite growth. 
Middle: Elongation of existing branches and infilling with new branches. Bottom: 
Maintenance of internal branches and growth and infilling with new branches. 
(B) Maximum projection image of a GFP-labeled class IV neuron cell (genotype 
;;ppkCD4-tdGFP) at 24 hours (magenta color) and same cell imaged at 48 hours 
(green color). Twenty-four– and 48-hour images are combined with a leftward dis-
placement of the latter. The area in the gray boundary (inset) is enlarged in (C) and 
(D), where conserved internal branches are marked with the same color circle and 
number (see Materials and Methods). (E) The fractional length changes of the 
hemisegments along the AP and LR axes were calculated from 24 to 48 hours and 
from 48 to 96 hours, together with the fractional length changes of the internal 
branches. Each blue and green circle is a different larva; the red circles correspond 
to several branch measurements in each of six larvae.

Fig. 3. Dendrite tips transition between growing, shrinking, and paused states. 
(A) Class IV dendrites growing (green star), birthing (yellow star), colliding (white 
star), shrinking (magenta star), and pausing (orange star). Maximum projection 
spinning disk images of neurons were collected every 5 s for larval stage of 24 hours 
(genotype ;;ppkCD4-tdGFP). (B) Length of a dendrite as a function of time (see 
Materials and Methods). The black open circles represent the initial piecewise linear 
fit using N/6 segments, where N is the total number of frames. The gray dots show 
the fitting after the iterative merging process (see Materials and Methods). Green, 
orange, and magenta indicated periods of growth, pausing, and shrinkage, respectively. 
(C) The root mean square error (RMSE) before (black) and after (gray) merging for 
91 trajectories (24 hours). The average error is 50 nm. (D) The velocity distribution 
shows three distinct peaks representing the growing (G), paused (P), and shrinking 
(S) states. (E) Transition rates between the three states.
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restricted imaging to 20 to 30 min (fig. S1C). Typical trajectories show 
that dendrite growth is highly dynamic, with large fluctuations in velocity 
(Fig. 3B and fig. S2, G, I, and K). To analyze tip trajectories, we first 
considered tip growth as a diffusion-with-drift process, a common 
way to describe particles moving in a flow. However, we ruled out 
this description because there were extended times of near- constant 
velocity: The green, magenta, and orange lines in Fig. 3B (and fig. 
S2, G, I, and K) indicate periods of elongation, shortening, and station-
arity. We therefore fit the trajectories to a piecewise linear continuous 
function, for which fast algorithms exist (43). This initial segmentation 
into regions of constant velocity provided a good fit to the tracking 
data (Fig. 3, B and C, black circles), showing that tip trajectories can be 
decomposed into sequential periods of linear growth or shrinkage.

Dendrite tips undergo dynamic instability
We then asked the more difficult question of whether tips undergo 
dynamic transitions between growing (G), shrinking (S), and paused (P) 
states. In other words, can we classify the regions of constant growth 
into just three states such that transitions only occur between different 
states. Such a description is analogous to the dynamic instability of 
microtubules (44), which transition stochastically between two states: 
growing and shrinking.

To test whether a three-state dynamic model could account for 
tip growth, we assigned each region to be in a growing, shrinking, or 
paused state by fitting the histogram of velocities with a three-peaked 
distribution, such as shown in Fig. 3D, to define velocity thresholds 
between growth and pause and shrinkage and pause. We then merged 
adjacent regions that belonged to the same state. Through an itera-
tive procedure (see Materials and Methods), we segmented the tra-
jectories into growing, shrinking, and paused states, with transitions 
only between different states. The resulting trajectory (Fig. 3B, gray 
lines) was an excellent fit to the data: The root mean square error 
was, on average, ~0.05 m (Fig. 3C), accounting for 85 to 99% of the 
variance (fig. S2, H, J, and L). From these data, we calculated (i) the 
growing and shrinking speeds (Fig. 3D) and (ii) the rates of the tran-
sitions between the three states (Fig. 3E). At 24 hours, the growing 
and shrinking speeds were 1.61 and 1.52 m/min, respectively, and 
the transition rates ranged from 0.31 to 0.95/min, corresponding to 
average lifetimes of individual states between 0.6 and 1.5 min. The 
net speed of dendrite elongation, ~0.034 m/min (Table 1A), is much 
smaller than the average speed in the growing state because the dendrites 
spend roughly equal times in the growing and shrinking states.

This analysis shows that the growth trajectories accord with a 
three-state kinetic scheme, which provides a succinct yet compre-
hensive description of tip dynamics. This scheme is a generalization 
of the Dogterom and Leibler model of microtubule dynamic insta-
bility (45), with inclusion of a third paused state, and the growing 
and shrinking states having distributions of speeds.

Dendrite dynamics and branching rates change over 
development time
Throughout development, the growing and shrinking speeds were 
roughly unchanged (Table 1A). The main change over development 
was that the transition rates out of the paused state decreased two- 
to fourfold and the transition rates into the paused state increased 
by about 50%. As a result, the dendrites spend more time in the paused 
state: They become less dynamic.

Branching, which always occurs on the sides of existing branches, 
also slowed down over development. The branching rate per unit 

dendrite length decreased roughly 10-fold from 24 to 96 hours (Fig. 4A 
and table S1). This decrease is another manifestation of dendrites 
becoming less dynamic over time. The geometry of branching, how-
ever, remained constant over development: The mean angle of a new 
(daughter) branch was close to 90° at all developmental stages (Fig. 4B 
and table S1), and the spatial distribution of branching remained 
roughly uniform (Fig. 4, C and D). In summary, both growth and 
branching are highly stochastic throughout development, although 
the transition and branching rates slow down over time.

Dendrite tips retain memories: Their dynamics  
are not Markovian
We tested whether the transitions between growth states are Markovian, 
meaning that they depend only on their current state, i.e., they do 
not depend on the history and there is no memory of earlier states. 
Consistent with a Markov process, the lifetimes of the states were 
approximately exponential at long times (fig. S3, A to I), and the 
probability of a transition in the sequence of occupied states (e.g., 
GPGSPGPSG…) did not depend on the previous state. For example, 
we found that the likelihood of G→P did not depend on the prior 
state, that is, SG→P and PG→P were equally likely.

There were several violations of the Markov property, however. 
First, following contact of a tip with another branch, the growth dy-
namics change: The rates out of the growing state increase, so the 
dendrites spend less time growing (Table 1B). Therefore, in addition 
to contact-induced retraction, there is a long-lasting alteration of 
the dynamics: The average tip growth rate changes from positive to 
negative (Table 1), and the postcontact dendrites shrink on average. 
This alteration implies that there is a long-lasting memory of the 
collision. Second, we found that the lifetimes of newly born dendrites 
were longer than expected for a Markov process. Following birth into 
the growing state, the transition rates, which were measured for older 
dendrites (>5 min after birth), predict that there will be an initial 
linear decrease in surviving dendrites because of the chance that a 
growing dendrite stochastically switches into a shrinking state, which 
then shortens and disappears. Instead, we found that the survival curve 
was initially flat, consistent with an initial growing state of 0.3 min 
(fig. S4A). Such a survival curve is another violation of the Markov 
process and implies that a newborn dendrite retains a memory of birth. 
Third, growth and shrinkage events with higher absolute speeds tended 
to have shorter lifetimes (fig. S3, J and K). Thus, while growth is highly 
stochastic, it deviates from being Markovian, indicating memory and 
“hidden variables” that influence the dynamics. These hidden vari-
ables are likely to be long-lived biochemical states (e.g., phosphoryl-
ation) triggered by dendrite birth or tip contact with other dendrites, 
which influence the dynamics.

An agent-based model incorporates measured  
tip properties
To test whether the dynamical properties of the dendrites measured 
above can account for the observed morphology, we developed an 
agent-based computational model to predict morphologies based on 
tip dynamics. The elementary “particle” in the model is the dendrite 
tip, which serves as the agent (Fig. 5A).

Tips were simulated using rules that closely followed the experi-
mental measurements (see Fig. 5B and Materials and Methods). 
Terminal dendrites lengthen and shorten with speeds sampled from 
the growth and shrinkage distributions (e.g., Fig. 3D). They transi-
tion between growing, shrinking, and paused states according to the 
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measured transition rates (Table 1), which were linearly interpolated 
between different developmental stages. Tip birth occurred randomly 
in time and space along extant branches with the measured branching 
rates (Fig. 4A). The nascent daughter branch was assumed to start 
in a growing state (Fig. 5) with an initial length of 0.5 m (table S2) 
and included an initial lag of 0.3 min during which the transition 
out of the growing state was forbidden, in accordance with our ob-
servations. Dendrite death occurred when the last point disappeared 
during a shrinkage event. Contact, defined as a tip getting closer than 
0.15 m to another branch (roughly the radius of the terminal branch) 
(46), switched a growing tip to a shrinking one with the postcontact 
dynamics (Table 1B).

The initial larval morphology at 24 hours was established by (i) 
growing two to four branches from a point (the origin) using the 
embryonic growth parameters at 18 to 20 hours and (ii) allowing 
growth until the total branch length and number reached their values 
at 24 hours. To model the segment boundary, we assumed that con-
tact with neighboring dendrites induced shrinkage (14). Neighbor 
interaction was implemented using a periodic boundary condition 
such that one side of a growing neuron feels its opposite side as if 
growing on the topological equivalent of a torus. Over time, we gradually 
increased the size of the boundary according to the measured segment 
growth rates (Fig. 1D).

Simulated dendritic trees recapitulate coarse-grained 
features of dendrite morphology
We simulated dendritic trees using the parameters from Table 1 and 
tables S1 and S2, all of which were measured or tightly constrained 
by experiments. The simulations (Fig. 6A) recapitulated key proper-
ties of real arbors (Fig. 6B).

Arbor growth
In the absence of a boundary, the widths of simulated arbors initially 
grew at 10 m/hour and then, after 48 to 72 hours, they slowed down 
to 4 m/hour (fig. S5, Aii). Thus, the dendrite initially grew faster 
than the hemisegments (which grow at 4 m/hour), leading to complete 
infilling by 72 hours; after 72 hours, arbor growth was just sufficient to 
keep up with segment growth. Contact-based retraction with the adja-
cent cell kept the dendrite confined to the hemisegment (i.e., tiling).
Total branch length and number
The simulations predicted the observed increases in total branch 
length (Fig. 6C) and number (Fig. 6D), as well as the mean branch 
length (Fig. 6E). The branch length distributions were roughly ex-
ponential in the simulations and the data (fig. S6, A to E). An interesting 
feature of the branch number is the initial burst (24 to 36 hours) and 
subsequent plateau (36 to 72 hours). The burst is predicted by the 
model and arises from two features of tip growth: the high initial 
branching rate (Fig. 4A) and the perseverance of the initial growth 
of branches (i.e., a delay in transitioning out of the growing state). 
Without perseverance, which is a memory of birth, the plateau is 
less pronounced, showing that the initiation of branching is an 
important determinant of arbor morphology.

There were some discrepancies between the data and the model. 
For example, the branch number of the simulated arbors saturated 
at 120 hours, while that of the real arbors continued to increase with 
an associated late decrease in mean branch length of real arbors. These 
discrepancies may indicate that dynamical properties change after 
96 hours, the last time at which the dynamic parameters were mea-
sured (simulations beyond 96 hours are extrapolations). Another 
possible source of the discrepancy at 120 hours may be due to the 
high branch density at intersegment boundaries along the AP axis 

Table 1. Dynamical parameters of dendrite tips at different developmental stages. Errors are SE. 

A: Precontact tip dynamics parameters

Age (hours)

Tip velocity parameters Tip transition rates Corr. Average tip velocity

G,G 
(m/min)

P,P 
(m/min)

S,S 
(m/min)

kGP 
(min−1)

kGS 
(min−1)

kPG 
(min−1)

kPS 
(min−1)

kSG 
(min−1)

kSP 
(min−1) r and P   v d  Tracks    

(m/min)
  v d  TranMat   

(m/min)

18–20 (E) 0.37, 0.34 
VG = 1.53 0, 0.36 0.43, 0.37 

VS = 1.65 0.696 0.509 0.423 0.296 0.669 0.71 0.017
0.09

0.097 ± 
0.0158

0.100 ± 
0.0151

24 (L1) 0.41, 0.36 
VG = 1.61 0, 0.34 0.35, 0.37 

VS = 1.52 0.784 0.64 0.335 0.314 0.598 0.946 0.008
0.65

0.034 ± 
0.0196

0.038 ± 
0.0191

48 (L2) 0.40, 0.39 
VG = 1.61 0, 0.25

0.0, 
0.41 VS = 

1.1
0.933 0.435 0.155 0.235 0.282 1.251 0.045

0.24
0.020 ± 
0.1545

0.026 ± 
0.0177

96 (L3) 0.36, 0.52 
VG = 1.64 0, 0.25 0.19, 0.44 

VS = 1.33 0.923 0.799 0.116 0.117 0.575 1.276 0.002
0.9

0.008 ± 
0.0039

0.022 ± 
0.0177

B: Postcontact tip dynamics parameters

Age (hours)

Tip velocity parameters Tip transition rates Corr. Average tip velocity

   G  *  ,   G  *    
(m/min)

   P  *  ,   P  *    
(m/min)

   S  *  ,   S  *    
(m/min)

  k GP  *    
(min−1)

  k GS  *    
(min−1)

  k PG  *    
(min−1)

  k PS  *    
(min−1)

  k SG  *    
(min−1)

  k SP  *    
(min−1)

r and P   v d  Tracks   
(m/min)

  v d  TranMat   
(m/min)

18–20 (E) 0.53, 0.49   
V G  *   = 1.9 

0, 0.28 0.53, 0.54   
V S  *   = 1.9 

0.635 0.992 0.263 0.401 0.469 0.593 0.07
0.12

−0.42 ± 
0.07

−0.34 ± 
0.07

48 (L2) 0.40, 0.50   
V G  *   = 1.7 0, 0.25 0, 0.38   

V S  *   = 1.1 1.446 1.24 0.134 0.29 0.239 0.814 0.018
0.76

−0.23 ± 
0.05

−0.19 ± 
0.04
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(Fig. 6B, right) arising from close cell-cell interactions, which were 
not predicted by the model. Nevertheless, we believe that the model 
is in good agreement with the average properties of the arbors.

Simulated arbors capture the variability of dendrite 
morphology
In addition to predicting average branch properties, the model also 
predicted the variation of these features. For example, the measured 
branch numbers are highly variable, with coefficients of variation 
(CVs; SD/mean) ranging from 0.11 to 0.22 over development. This 
CV is even larger than that of a Poisson process, a prototypical random 
process whose CV equals the inverse square root of the branch number 
(expected range of 0.02 to 0.06). This comparison to a Poisson pro-
cess indicates that the branch number is highly variable from arbor 
to arbor, a manifestation of the stochasticity of the morphology. Total 
branch length and average branch length were also highly variable. 
The simulations recapitulated this variability (Fig. 6, C to E). Thus, 
the model predicted both the average properties and the stochasticity 
of the branch number and length.

Simulated arbors recapitulate fine-scale properties 
of dendrite morphology
The branches of both the simulated and real arbors formed dense 
meshworks (Fig. 7, A and B). We estimated the extent to which the 
branches cover the arbor using the box-counting method (47) in which 
the number of boxes that contain a branch is plotted against the size 

of the boxes (Fig. 7C). We found that the logarithm of box number 
was approximately proportional to the logarithm of box size, indi-
cating that the patterns have scale-free and fractal-like properties. 
The proportionality breaks down at box sizes below 5 m, the size 
of the “holes” in the pattern due to the average branch size. We defined 
the fractal dimension as the slope of the log-log plot (the power-law 
exponent) in the central region encompassing the middle 50% of 
the points (Fig. 7C, dashed lines). The fractal dimension increased 
from 1.4 to 1.8 from 24 to 120 hours for both the simulated and real 
arbors (Fig. 7D). Because a region containing a single line has a fractal 
dimension of 1, whereas a completely filled region has a fractal dimen-
sion of 2, the dendritic patterns are of intermediate dimension and, 
at 120 hours, nearly fill the plane (fractal dimension of 1.8). Although 
the fractal dimensions of real arbors were consistently lower by about 
0.1, we nevertheless conclude that the simulated arbors recapitulate 
the real arbors in this metric.

Simulations recapitulate the radial orientation of 
dendrite branches
We found that class IV cells have an unexpected long-range order: 
Branches are not randomly oriented but instead tended to be parallel 
to the radial orientation (Fig. 7, E and F, and fig. S6, F to J). The 
simulations also displayed radial orientation. Radial orientation is a 
consequence of contact-based retraction; if contact-based retraction 
is replaced by contact-based pausing, the radial orientation was greatly 
reduced (Fig. 7F, dotted curve).

Morphological predictions of the model
The agent-based model allowed us to explore which parameters are 
most important for arbor growth and mesh size (fig. S5) and pro-
vides hypothesis for the phenotypes of mutants. A surprising finding 
was that branching drives overall arbor growth: Increasing the branching 
rate not only increased the number and density of branches, as ex-
pected, but also increased arbor size (fig. S5B). Setting the average 
velocity of dendrite extension to zero still resulted in arbor growth, 
albeit slower (figs. S5E and S7), showing that branching without net 
tip growth can drive arbor expansion. This is not to imply that the 
average tip growth rate is unimportant: Doubling the net growth 

Fig. 4. Dendrite branching over development. (A) The rate of appearance of new 
branches normalized by the total branch length is plotted against developmental 
time. Each symbol represents a neuron from a different larva (except at 24 hours 
where three neurons in each of the three larvae were analyzed). The curve is an expo-
nential fit with an offset (dotted line). Inset: Total branching rate per cell. (B) Distri-
bution of branch angles between daughters at different developmental stages. The 
angle is zero when the new daughter grows parallel to the mother. Numbers of 
neurons are the following: six (24 hours), seven (36 hours), four (48 and 96 hours), 
and five (72 hours). (C) Spatial distribution of branching events at 24 hours (nine 
neurons from three larvae). (D) Spatial distribution of branching events in 96 hours 
(six neurons from six larvae). In both (C) and (D), the soma positions are centered at 
the origin. Different colors represent different cells.

Fig. 5. Schematic of the agent-based computational model. (A) A cartoon dia-
gram depicted the different components of the model: Tips are born by branching 
and transition between growing, shrinking, and paused states. Upon contact with 
another branch, the tips retract. (B) Diagram of the transitions. Parameters are listed 
in Table 1 and tables S1 and S2.
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rate doubled the dendrite area (fig. S5D), and halving the net growth 
rate halved the dendrite area (fig. S5D). The latter finding accounts 
for the reduced arbors in Katanin (Kat-60L1) mutants, which spend 
less time in the paused states and more time in the shrinking state 
(24): The mutant cells will therefore have a reduced net growth rate 
compared to controls, leading to smaller size (see table S3).

Another surprising finding was that fluctuations in branch length 
also lead to growth. When the fluctuations were increased (by reducing 
the tip transition rates), the growth rate increased, and vice versa 
(fig. S5C). This suggests an unexpected growth mechanism: Length 
fluctuations are locked in by the formation of new branches, as only 
terminal branches can shorten and disappear. This stresses the im-
portance of branching in growth.

The branching angle also affected arbor growth: If the branch 
angle was decreased to 45° (i.e., growth toward the direction of the 
mother branch), arbor growth increased, showing that outward- 
growing branches are more likely to survive. The persistence of branch 
growth after birth was also important.

Our model shows that dendrite density is set by the interplay 
between branching and self-avoidance. Branching is a form of posi-
tive feedback that increases branch density (fig. S5B). Therefore, 
branching is essential not only for expansion but also for infilling 
the hemi segment. Self-avoidance is negative feedback: Reducing self- 
avoidance in the model increases the branch density (table S3), 
which is observed in studies in which self-avoidance molecules are 
mutated (11–13, 15).

By performing this variational analysis (e.g., fig. S5), we could 
identify which of the 67 parameters (see Materials and Methods) are 
key to overall dendrite growth and morphology. The key parameters 

are the following: the net growth velocity and its variance together 
with the net shrinkage following contact (three parameters) and the 
branching rate (one parameter) and angle (two parameters). In the 
absence of the boundary, these determine the growth rate, branch 
number, and length, together with the fine structure (fractal dimension 
and radial orientation). While the detailed growth and morphology 
depend on the change of these six parameters over development 
(and the boundary), these parameters are the fundamental ones that 
specify growth and morphology.

DISCUSSION
We have found that the tips of Drosophila class IV dendrites transi-
tion stochastically between three states—growing, shrinking, and 
paused. This allows dendrites to explore extracellular space, analogous 
to the exploration of intracellular space by microtubules undergoing 
dynamic instability (48). Our modeling shows that these transitions, 
together with lateral branching and contact-mediated retraction, 
give rise to the complex and highly variable morphology of the den-
dritic arbors, allowing them to fulfill their biological functions. The 
dense, almost unbroken meshwork optimizes detection of the fine 
ovipositor barbs of parasite wasps (9, 10). In addition, the radial 
orientation of branches, a form of long-range order that emerges 
from local interactions (49, 50), in this case, contact-induced re-
traction, reduces the path distance to the cell body: This minimizes 
signaling delays and wiring costs (28). Thus, stochastic tip dynamics 
may partially solve the riddle of how “the morphological features 
displayed by neurons appear to obey precise rules that are accompa-
nied by useful consequences” (51).

Fig. 6. The agent-based model accords with overall neuronal growth. (A) Example of a simulated neuron using the parameters in Table 1 and tables S1 and S2 at 
different developmental stages. Same scale bar as in (B). (B) Example of the skeleton of a real neuron at 120 hours. (C) Total branch length over development for simulated 
and real neurons. (D) Total number of branches. (E) Mean branch length (total branch length/total number of branches).
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Model limitations
The agent-based model fails to account for some features of class IV 
cells. For example, the model does not extrapolate well to 120 hours, 
suggesting that important developmental changes may occur after 
96 hours. The model also fails to predict the asymmetry of real arbors, 
which form close contacts with class IV cells in the adjacent segment 
along the AP axis but not along the LR axis (Fig. 6, A and B); the 
model contains no asymmetries. Thus, the interactions between neigh-
bors is more than just the contact-based retractions assumed in the 
model. Another shortcoming is that many simulated branches have 
sharp angles, whereas real branches are smoother: This is because, 

when a mother branch shrinks back to a daughter in the model, the 
original branch angle is preserved (average of 90°), whereas in the 
real cells the bend smoothens over time (see an example of this in 
movie S7). Thus, there are important features of real class IV dendritic 
arbors that are not accounted for. Other important aspects of den-
drite morphology, such as branch diameters (46) and the three- 
dimensionality of class IV cells (18), have not been included in the 
model. Moreover, the model does not take into account the guidance 
of class IV dendrites by external cues such as the cuticular epithelium 
(14, 52) and other neurons (39), although theoretical tools have re-
cently been developed to incorporate these cues (14, 52). Last, the 
internal branches in our model are completely immobile, whereas 
we have observed internal branch movements with respect to the 
substrate. However, despite these limitations, our model provides a 
framework on which to build more complex interactions.

Dendrite tips: An intermediate organizational principle of 
dendrite morphology
Our results strongly support the concept that the dendrite tip is a 
“branching engine … that initiates, directs, and maintains branch 
outgrowth during development and regrowth” (53). The dendrite tip, 
with a diameter of only 0.2 m (46) and with dynamics on the time 
scale of ~1 min (the state lifetimes), generates structures up to 500 m 
in diameter (>1000 times larger sizes) over 5 days (>1000 times lon-
ger times). Tips, therefore, are intermediate in length scale and time 
scales between molecules (small size and short–time scale motions) 
and morphology (large size and long–time scale motions).

The concept of the dendrite tip as a branching machine has four 
important implications. First, if the molecular basis of tip growth and 
branching can be elucidated, our agent-based model will provide a 
full connection between genotype and phenotype, with the caveats 
that morphogenesis is stochastic and some features such as three- 
dimensionality are not included. Second, altered tip dynamics due 
to mutations and diseases may underlie altered dendrite morphologies 
(see Introduction and the “Morphological predictions of the model” 
section). Third, tip rules may specify neuronal identity, often de-
fined by dendrite morphology (54). Fourth, the stochastic nature of 
the tip rules may facilitate the evolution of neuronal cell types. This 
is because developmental stochasticity amplifies genetic variation by 
allowing a large class of morphologies to be sampled for each geno-
type. While some morphological outliers may function poorly, others 
might be beneficial, and genetic and/or epigenetic mechanisms could 
selectively stabilize these beneficial morphologies.

Potential molecular mechanisms underlying dendrite tip 
dynamics and branching
Neurite elongation by tip growth also occurs in axons (55) and in 
other dendrites, such as those in Caenorhabditis elegans PVD neu-
rons (56). An important difference between dendrite tips in class IV 
cells and the growth cones seen in these other cells is that the tips of 
class IV dendrites are much smaller. The diameter of class IV termi-
nal dendrites is only ~200 nm (46), as small as a single filopodium, 
the finest feature of growth cones observed under the light micro-
scope. Thus, tip growth mechanisms in class IV dendrites likely 
differ from growth cone–based growth. An important open question 
is how the cytoskeleton and membranes reach the dendrite tips: 
What are the relative contributions of diffusion, filament poly-
merization (17, 25, 57), motor-driven transport (58), and motor- 
driven sliding (59)?

Fig. 7. The agent-based model recapitulates the fine-scale patterns of real arbors. 
(A) Model arbor at 72 hours. Light green branches indicate the outer 5% of the 
arbors excluded from the analysis to mitigate against spurious boundary effects 
(see Materials and Methods). Boxes with two different sizes are shown in the back-
ground. (B) Skeletonized real arbor at 72 hours. Light gray branches were excluded 
from the analysis. (C) The number of boxes that contain a branch (y axis) is plotted 
against the box size (x axis). The slopes over the central 50% of the data (vertical 
dashed lines) define the fractal dimensions. (D) Fractal dimensions of real and simu-
lated arbors both increase over development. (E) Diagram defining the radial 
orientation. (F) Radial orientation of a simulated tree (green solid line) and a real 
arbor (black) at 72 hours. Green dotted curve: Simulated tree with pausing instead 
of retraction.
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General mechanisms of branching morphogenesis
Dendrite tips share features of branch tips in other systems. Tip cells 
drive branching in branched tissues such as the mammary glands (53). 
The growing ends of cytoskeletal filaments, with associated nucleation 
factors, drive branching of organelles such as the microtubule-based 
mitotic spindle (60, 61) and the actin-based lamellipodium (62). In 
all three cases (dendrites, tissues, and cytoskeleton), the tips operate 
at shorter length scales and time scales than those of the structures 
they produce. Furthermore, they all respond to external signals: contact- 
based retraction of dendrite tips, cortex-induced catastrophe of 
microtubule ends (63), and self-avoidance of mammary gland 
branches (53). Last, all three are stochastic and generate highly vari-
able morphologies. Given these commonalities, it is likely that the 
principles that we have elucidated for dendrites generalize to other 
branched systems.

Branching
Our observation that branching is an intensive property—the total 
rate of formation of branches is almost independent of arbor size 
(Fig. 4A, inset)—is evidence that there are only a limited number of 
“branching factors” being produced in the entire cell per unit time. 
The uniform distribution of new branches suggests that the branch-
ing factors are dispersed throughout the cells, perhaps by mole-
cular motors. Several phenotypes of molecular motor mutants in 
class IV cells support this hypothesis. The perturbation of molecu-
lar motors and their adapter proteins, including dynein (21, 22, 64) 
and kinesins (21, 65), results in nonuniform branch densities, as 
expected if the distribution of branching factors was disrupted (see 
table S3).

Generalization of the agent-based model to other neurons
To explore the generality of our model, we have simulated different 
neuronal cell types, such as Drosophila class I neurons, mamma-
lian retinal ganglion cells, Purkinje cells, and starburst amacrine 
cells. By modifying the input parameters, our model was able to 
successfully capture the key morphological features of these cells, 
as shown in fig. S8. In class I cells, contact-based tip retraction 
leads to secondary branches being orthogonal to the primary branch 
even when the initial branching angles are uniformly distributed 
(fig. S8A); this confirms the finding in (33) and is related to the 
radial orientation of class IV cells described above. Contact-based 
retraction also leads to the radial orientation of retinal ganglion 
cells (fig. S8B), although we found better agreement using a small 
branching angle (45° relative to the direction of the mother). To 
simulate Purkinje cells, we assumed slow tip growth of dendritic 
tips and complete retraction after contact to recapitulate the lo-
cally parallel branch orientations (fig. S8C). To simulate starburst 
amacrine cells, it was necessary to replace lateral branching with 
tip bifurcation (fig. S8D). Although our model can recapitulate 
certain aspects of the morphologies of these cells, these simula-
tions are just predictions based on hypothetical model parame-
ters and need to be tested experimentally. Nevertheless, these 
examples show that the model is versatile and has predictive 
potential beyond just Drosophila class IV sensory neurons. If the 
dendrite branching rules deduced for class IV cells do general-
ize to other neurons, then they may facilitate mapping connec-
tomes by providing anatomical constraint on connectivity, as 
well as giving insight into genetic disorders that affect morpholo-
gy (66–69).

MATERIALS AND METHODS
Fly stocks and maintenance
The fly line ;;ppk-cd4-tdGFP (homozygous) was used to image class 
IV dendritic arborization neurons and was a gift from C. Han (Cornell 
University). Fly crosses were maintained in fly chambers at 25°C, 
60% humidity in a Darwin chamber with 12-hour light/12-hour dark 
cycles. An apple agar plate was used to collect the fly embryos, and 
a big drop of yeast paste was put in the center of the agar plate to 
induce egg laying.

Apple agar plates were made by mixing 4× apple juice concen-
trate (355 ml), water (300 ml), dextrose (155 g), and sucrose (80 g). 
This solution was stirred and heated to dissolve the sugars, and agar 
(Bacto agar, Becton Dickinson; 60 g) and 1.25 N NaOH (70 ml) were 
added. The solution was covered loosely with foil and autoclaved in 
the liquid cycle for 30 min. The plating mixture contained 100 ml of 
this apple agar concentrate, 197 ml of water, and 3 ml of acid mix 
A—an equal mixture of propionic acid (100%; 83.6 ml; 16.4 ml of 
water) and phosphoric acid (100%; 8.3 ml; 91.7 ml of water). For 
neuron morphometrics, embryos were collected every 15 min and 
imaged when they reached the appropriate age AEL: 24, 48, 72, 96, 
and 120 hours.

Sample preparation
For imaging, embryos of appropriate age (18 to 22 hours AEL) were 
collected from apple agar plates and dechorionated by gently rolling 
them on a piece of double-sided tape stuck to a glass slide. The de-
chorionated embryos were then placed with their dorsal side down 
on a No. 1.5 coverslip, MatTex, with a small drop of halocarbon oil 
700. A piece of wet Kimwipes was placed near the embryos to main-
tain humidity during imaging. No anesthetics were used for embryo 
imaging. For larvae imaging, larvae of ages 24, 48, 72, 96, and 120 hours 
were washed with 20 and 5% sucrose solution, anesthetized using 
FlyNap (Carolina Biologicals, Burlington, NC, USA), and transferred 
to apple agar plates to recover for 1 to 5 min. After recovery, larvae 
were gently placed with their dorsal side up on a 1% agar bed adhered 
to a glass slide and imaged in a drop of 50% phosphate-buffered saline, 
50% Halocarbon oil 700 (Sigma-Aldrich). Larvae were further immo-
bilized by gently pressing them with a 22 mm–by–22 mm coverslip 
lined with Vaseline or vacuum grease.

Imaging
Samples were imaged on a spinning disk microscope: a Yokogawa 
CSU-W1 disk (pinhole size of 50 m) built on a fully automated Nikon TI 
inverted microscope with perfect focus, 488-nm laser illumination at 
18 to 21% laser power, either a 40× [1.25 numerical aperture (NA), 
0.1615-m pixel size] or a 60× (1.20 NA, 0.106-m pixel size) water 
immersion objective, an sCMOS (scientific Complementary Metal- 
Oxide-Semiconductor) camera (Zyla 4.2 plus), and Nikon Elements 
software. The temperature of the sample region was maintained using 
an objective space heater at 25°C (Okolab stage heater). Samples were 
manually focused to identify abdominal third and fourth segments 
(A3 or A4 neurons) before image acquisition. Full-frame movies 
(2048 pixels by 2048 pixels) containing 6 to 12 1-m sections were 
collected every 4 to 6 s. Static images for morphometric studies were ac-
quired using a 60× water immersion objective for 24 hours and 40× ob-
jective for later stages. Images were stitched using an in-house code 
(https://github.com/oliviertrottier/neuron-stitch). Movies were curated for 
subsequent offline analysis. Image analysis (segmentation, skeletonization, 
branching analysis, and angle measurements) was done using ImageJ.

https://github.com/oliviertrottier/neuron-stitch
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Controls for growth
Class IV neurons are susceptible to mechanical pressure, which, if 
too large, stops growth and causes degeneration. Therefore, embryos 
were imaged without an overlying coverslip. Larvae were immo-
bilized with minimal pressure under a coverslip and were placed on 
a 1% agar bed. As a control, we plotted the size of neurons through-
out imaging to confirm that they remain on the “standard” growth 
curve (fig. S1C).

Segment length determination
The Drosophila larval abdomen is divided into eight abdominal seg-
ments (Fig. 1C and fig. S1A). Each segment on the dorsal side has 
two neurons, each occupying a hemisegment (Fig. 1C). Each hemi-
segment is approximately rectangular with AP and LR axes. The width 
of the segment along the AP axis was measured as the distance be-
tween the cell bodies of the adjacent neurons along the AP axis. The 
LR width was measured as the distance between cell bodies in adja-
cent hemisegments across the dorsal midline corrected for the offset 
of the cell bodies, which are not in the centers of the cells but displaced 
away from the midline. These segment widths were measured abdomi-
nal segments A2 to A5 for three larvae for all the respective stages.

Arbor skeletonization and branch length measurements
Scanning confocal images were maximally projected, and individual 
dendrites were manually segmented from their neighbors. The seg-
mented neurons were binarized using a custom algorithm and 
skeletonized using MATLAB’s “bwmorph.” The individual branches 
were identified by subtracting the branch points identified by 
bwmorph from the skeleton. The pixel coordinates of the branches 
were smoothed using a spline before calculating the total length of 
all branches and their average length.

Dendrite arbor width
The arbors of class IV are approximately rectangular, with axes parallel 
to the AP and LR axes. If the mass of the dendrite skeleton is uni-
formly distributed in a rectangle, then the widths, DAP and DLR, are

   D  AP   =  √ 
_

 12    R g  AP  and  D  LR   =  √ 
_

 12    R g  LR , with  R  g   =  √ 
_____________

    1 ─ N    ∑ j=1  N     ( r  j   −   _ r  )   2     

where Rg is the radius of gyration, N is the total number of occupied 
pixels in the skeleton, rj is the projection onto the respective axis of 
the jth occupied pixel, and    _ r    is the mean projected position of all 
occupied pixels. Rg is the SD of the dendrite pixels, i.e., their spread 
from the center. We confirmed that the widths defined in this way 
were good approximations to the rectangles containing 95% of the 
skeletal mass.

Analysis of the elongation of internal branches
To study the possible role that the elongation of internal branches 
in arbor growth, we imaged the same dorsal neurons (A3, A4, and 
A5) every 24 hours. Larvae were mounted and imaged as described, 
but without the use of anesthetics. Their movement was minimized 
by imaging at 4°C for 2 to 5 min. They were then returned to the 
apple agar plate in the Darwin chamber. The larvae were imaged 
using 20× and 40× objectives. For image analysis, the same neurons 
at 24 and 48 hours and 48 and 96 hours were segmented and aligned 
using ImageJ to identify conserved nonterminal internal branches 
in the proximal region. The fractional increases in branches and seg-
ment lengths were defined as

  Fractional length change =   
Final length − Initial length

   ────────────────  Initial length    

Branching rate and branch angle
To determine branching events, time-lapse movies of duration 20 to 
30 min were analyzed manually using ImageJ. A new protrusion of 
length >0.25 m was scored as a new branch. The total branching 
rate (min−1) was calculated by dividing the total number of branching 
events by the total time. The specific branching rate (m−1 min−1) 
was calculated as the total branching rate divided by the total branch 
length. The spatial distribution of all branching events was plotted 
using MATLAB with the soma at the origin (x = 0, y = 0). The angle 
of new branches was measured using the angle tool of ImageJ 
(0° defined as in the direction of the mother). The angle distribution 
graph was plotted using Prism.

Fractal dimension
We used the box-counting method to calculate the fractal dimension. 
For each box width, W, we measured the number of boxes, N(W), 
needed to cover all the occupied pixels of the skeleton (Fig. 7, A and B). 
N(W) is approximately linear on a log-log plot (Fig. 7C), indicative 
of a power law. The middle 50% of points (between the dashed lines 
in Fig. 7C) was fit to N(W) = W−D

f to obtain the fractal dimension Df.

Tip-tracking algorithm
To quantify the dynamical properties of the tips, we developed an 
in-house algorithm to track dendritic tips and determine dendrite 
length-time curves. Time-lapse movies were stabilized and maximum- 
projected (ImageJ), and terminal dendrites were selected for analysis 
based on their separation from neighboring dendrites and the signal- 
to-background ratio. Terminal dendrites were selected throughout 
the arbor. Examples are shown in Fig. 3A. Extraneous objects were 
manually deleted.

To track the growing and shrinking tips, the algorithm determined 
the longitudinal centerline of the terminal dendrite and the location 
of its end for each frame. The central line was computed by fitting 
Gaussians to the cross-sectional intensity profiles at regular inter-
vals along the backbone of the dendrite using

  I(x) =  I  0    e    
− (x− x  c  )   2  _ 

2    2 
    + d  

(70), where x is the position along a normal to the dendrite, I0 is the 
peak intensity value, xc is the center of the Gaussian,  is the SD, and 
d is the measured camera offset (100) plus the background fluores-
cence. To compute the location of the tip, (xtip, ytip), we fit a two- 
dimensional Gaussian function convolved with an error function 
using (70)

   
 I(x, y ) =  I  0   exp [     

−  [(y −  y  tip   ) cos − (x −  x  tip   ) sin]   2 
   ───────────────────  

2     v     2 
   ]   

     
 ∙ erfc [     

(y −  y  tip   ) cos − (x −  x  tip   ) sin
   ─────────────────     p     ]   + d 

    

where I0 is the peak intensity,  is the angular direction of the tip, 
and v and p are the SDs along the orthogonal and parallel direc-
tions. The length of the dendrite in each frame was determined by 
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fitting the center line and the tip with a cubic spline. Length-time 
traces were smoothed with a median filter of size 3 to remove glitches.

To estimate the precision of our tracking algorithm, we used two 
different approaches. In the first approach, we tracked synthetic 
images of capped cylindrical tubes of known length and radius with 
fluorophores placed randomly on their surfaces (10% labeling density) 
and convolved with a point spread function (350 nm at full width at 
half maximum). To ensure that our algorithm could perform robustly 
under a wide range of signal-to-background ratios, we tested the track-
ing accuracy with decreasing signal-to-background ratios. The typical 
precision was ≪1 pixel (100 nm) even for low signal-to-background 
ratios (71). In the second approach, we tracked the position of in vivo 
dendritic tips that are in long-term paused states and found that the 
average SD of length was ~0.1 m (<1 pixel, 0.1615 m), as shown 
in fig. S2D. This accuracy is comparable to and, in some cases, better 
than available software, such as FIESTA (71), JFilament (72), and Simple 
Neurite Tracer (73). Using a parallelized method, several hundred 
tips can be tracked simultaneously. A caveat of our method is that it 
can only track filaments that are reasonably free of extraneous objects 
and excessive noise and have no breaks, discontinuities, or overlapping 
segments.

Calculating velocities and transition rates
Fitting piecewise linear functions to the data is an ill-posed problem 
(74) because a perfect fit can always be achieved with a large enough 
number of segments (equal to the number of data points minus one). 
To circumvent this problem, we defined a temporal resolution, T 
(in frames), that is necessary to distinguish a transition event from 
the noise in the data. Then, the maximum number of segments in 
each trajectory was calculated by dividing the total number of data 
points (total number of frames) by the temporal resolution. We used 
simulated data to estimate the temporal resolution that performs the 
best (T = 6, see end of section). We generated Markovian trajecto-
ries with known and realistic velocity distribution (±1.5 m/min) 
and transition rates (0.5 min−1), similar to those shown in Fig. 3. We 
then added Gaussian white noise of SD 0.25 m to the trajectories to 
mimic the experimental noise. To analyze the trajectories, we used 
the following steps as shown in fig. S9:

(i) We fit the trajectories with piecewise linear function consider-
ing Ndata/T as the initial number of segments (Nseg).

(ii) The velocity distribution (slope of the segments) was fitted to 
a lognormal-Gaussian-lognormal distribution

   

  v  T   =   1 −  C  G   −  C  S   ─ 
 √ 
_

 {2   P  2  }  
    e    {  −   (  v−   P   )     2  _ 

2  P  2  
   }    + (v > 0 )    C  G   ─ 

v  √ 
_

 {2   G  2  }  
    e    {  −   (  log (  v )  −   G   )     2  _ 

2  G  2  
   }   +

     
(v < 0 )    C  S   ─ 

∣v∣ √ 
_

 {2   S  2  }  
    e    {  −   (  log∣v∣−   S   )     2  _ 

2  S  2  
   }   

    

where the C’s are the normalization constants, the ’s are the means, the 
’s are the SDs, and the subscripts P, G, and S stand for paused, growth, 
and shrinkage states, respectively. The first term is a Gaussian and 
denotes the paused state, whereas the second and third terms are log- 
normal distributions representing the growth and shrinkage states.

After fitting the above velocity distribution, the intersections be-
tween the paused and growth distribution (IG) and the paused and 
shrinkage distribution (IS) were calculated, and the segments were 
labeled using these two velocity thresholds.

(iii) Consecutive segments with similar labels were then merged. 
This process decreased the number of segments (Nn

seg). The trajec-
tories were then refitted with the new number of segments. Steps 
(ii) and (iii) were repeated until Nn

seg stabilized.
(iv) Last, the transition rates were calculated by counting the to-

tal number of transitions from one state to another and then divid-
ing that number by the total time spent in that state. For example, if 
NGP is the total number of transitions from G to P state and TG is the 
total time spent in the G state, then the transition rate from G to P 
is   K  GP   =   N  GP   _  T  G     .

Figure S9 shows the working protocol along with the validation 
of our analysis method. To estimate the optimal frame resolution, 
we plotted the root mean square difference between the input and 
output transition rates as a function of the frame resolution. Our 
analysis shows that the temporal resolution of six frames generates 
the best results for rates of ~0.5/min and noise of ~0.25 m. We used 
this frame resolution for all our tip dynamics data analysis.

Average tip velocity and validation of segmentation
The segmentation yields a set of intervals, i, with associated distances, 
di, durations, ti, and velocities, vi = di/ti. The distribution of velocities 
is fit to a lognormal-Gaussian-lognormal model p(v) with parame-
ters PG, G, G, PP,0, P, PS, S, and S such that

  1 = ∫ p(v) dv =  P  G   +  P  P   +  P  S    (1)

and

  ∫  L     G  ,   G    (v ) dv = ∫  L     S  ,   S    (v ) dv = ∫  G  0,   P    (v ) dv = 1  (2)

where LG, G(v) and LS, S(v) are the log-normal distributions cor-
responding to growth and shrinkage and G0, P(v) is the Gaussian 
distribution of the paused state. Transitions can only occur between 
unlike states. This imposes an important structure on the data: There 
are two threshold velocities v+ and v− such that if the segment velocity 
vi > v+, then it is assigned to be a growing segment. Likewise, if vi < 
v−, then it is a shrinking segment. The ones in the middle are paused.

The average velocity is

   v  d   ≡   
 ∑ i    d  i    ─ 
 ∑ i    t  i   

   =   
 ∑ i      v  i    t  i   ─ 

 ∑ i    t  i   
   =   

n  _ v    
_
 t   + n  r  v,t      v      t    ─ n  

_
 t     =   _ v   +  r  v,t      v     

   t   ─   
_
 t      (3)

where    _ v    is the mean velocity,    
_
 t    is the mean time, and rv, t is the Pearson 

correlation coefficient. We used the definition of the Pearson’s cor-
relation coefficient rx, y = x, y/xy and cross-correlation      x,y   =  (     1 _ n  )    
∑ i      x  i    y  i   −   _ x    _ y     to calculate Eq. 3. The average velocity vd has two parts:    _ v   , 
calculated assuming that ti and vi are independent of each other, 
and a cross-correlation term,   r  v,t      v    

   t   _   
_
 t     .    

_ v    is given by

    _ v   =  P  G   ∙    
_

 V    G   +  P  s   ∙    
_

 V    S    (4)

where     
_

 V    G    and     
_

 V    S    are the first moments of the lognormal velocity 
distributions for growth and paused states, and PG and Ps can 
be calculated from the master equation associated with the transi-
tion matrix

     dP  G  (t) ─ dt   = − ( K  GP   +  K  GS   )  P  G  (t ) +  K  PG   P(t) +  K  SG    P  s  (t)  (5)

     dP  P  (t) ─ dt   =  K  GP    P  G  (t) − ( K  PG   +  K  PS  )  P  P  (t) +  K  SP    P  s  (t)  (6)
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     dP  s  (t) ─ dt   =  K  GS    P  G  (t) +  K  PS    P  P  (t) − ( K  SG   +  K  SP  )  P  s  (t)  (7)

where Kij, j ≠ i i, j = {G, P, S} are the transition rates. The steady-state 
solution, assuming   d  P  G  (t) _ dt   =  d  P  P  (t) _ dt   =  d  P  s  (t) _ dt   = 0  and using Eq. 1, is

   P  G   =     K  PG     *   K  SG   +   K  PG     *   K  SP   +   K  PS     *   K  SG     ──────────────────  D    (8)

   P  P   =     K  GP     *   K  SG   +   K  GP     *   K  SP   +   K  GS     *   K  SP     ──────────────────  D    (9)

   P  s   =     K  GS     *   K  PG   +   K  GP     *   K  PS   +   K  GS     *   K  PS     ──────────────────  D    (10)

where D = KGS ∙ KPG + KGP ∙ KPS + KGS ∙ KPS + KGP ∙ KSG + KGP ∙ KSP + 
KGS ∙ KSP + KPG ∙ KSG + KPG ∙ KSP + KPS ∙ KSG.

Last, the average velocity is

   v  d   =  P  G   ∙    
_

 V    G   +  P  P   .    
_

 V    P   +  P  s   ∙    
_

 V    S   +  r  v,t      v     
   t   ─   

_
 t      (11)

The average velocity is a key parameter, which controls the growth 
of the simulated arbor (fig. S5, D and E). The average velocity calcu-
lated in this way from the transition matrix agreed with that calculated 
directly from the raw traces at all developmental stages (Table 1), 
noting that the Pearson correlation coefficient rv,t = 0 (fig. S3L). This 
validates of our segmentation scheme.

Computational model
The agent-based two-dimensional computational model of dendritic 
growth incorporated the fundamental processes that govern the morpho-
genesis of class IV neurons: (i) branching, (ii) tip dynamics, and (iii) 
contact-based retraction (nonoverlapping). We started our simulation 
with randomly oriented two to four branches emanating from the origin 
(cell body). Each branch is a filament, and points (x, y) are added at 0.1 m 
(∆l) intervals as the branch grows. The simulation is divided into 0.1-min 
time steps (t). The details of individual processes are as follows.
Branching
Assuming that the branching is a random process, we visit all the 
branches randomly and calculated the branching probability Pb = 
1 − e−Lbb∆t, where Lb is the length of the branch and b is the branch-
ing rate per unit time per unit length (Fig. 4A). Then, a uniformly 
distributed unit random number R(0,1) is compared to Pb to spawn 
a nascent branch from a random point on the mother branch. The 
branching angle is chosen randomly from the measured branch angle 
distribution, which is distributed normally with a mean of ~90° and SD 
of ~26°, as shown in Fig. 4B and table S1. Each newly spawned branch 
is assumed to start in the growing phase with an initial length of 0.5 m.
Tip dynamics
Each branch with a free end (tip) follows a Markov process (after an 
initial lag, see below), transitioning between growing (G), paused 
(P), and shrinking (S) states with measured transition rates (Kij,j≠i i, 
j = {G, P, S}) and velocities (V{G, P, S}) for free tips (Fig. 3, D and E, 
and Table 1). The transition dynamics is implemented using a stan-
dard “Monte Carlo” method. At each time step, the total probability 
of transition is calculated using Pi = 1 − e−K

tot 
∆t, where Ktot is the sum 

of the transition rates from one particular state:   K  tot   =  ∑ j={G,P,S}  j≠i     K  ij   . 
For example, the total transition rate from the growth state is Ktot = 
KGP + KGS. Subsequently, Pi is compared with a uniform random 
number R(0,1) to implement the transition. If there is a transition, 

it happens maintaining the ratio Kij/Ktot. After the transition, the tip 
is assigned with corresponding state velocity, the magnitude of which 
is randomly chosen from their respective velocity distributions (log 
normal for growth and shrinkage and normal for paused) (Fig. 3D). 
The growth process is implemented by adding new points to the exist-
ing branch tip at each time step, t, as follows

   l  G   =  V  G  t  

   x  k+n   =  x  k+n−1   + ∆l cos  φ  k+n−1  ; n = 1…   l  G   ─ ∆ l    

   y  k+n   =  y  k+n−1   + ∆l sin  φ  k+n−1  ; n = 1…   l  G   ─ ∆ l    

   φ k  n  =  φ k−1  n   +  √ 
_

   2∆l ─  l  p         

where k is the index of the last point in the previous time step and lp 
is the persistence length of the branches (set to 150 m; table S2). In 
addition, the ∆l value of the last point is adjusted if lG is not an integer 
multiple of ∆l.  is a unit Gaussian variable centered at zero. While 
shrinking, points from the branches are removed until the shrinking 
length lS = VSt is reached.
Contact-based retraction
It has been shown by several studies that Dscam molecules play an 
important role in the self-avoidance of dendritic tips in class IV 
neurons (12, 13). To investigate the phenomenon, we measured the 
dynamics of the dendritic tips after a collision/contact event has 
occurred. We observed that the transition rates are altered after con-
tact, as shown in Table 1B, and leads to an overall shrinkage of the 
dendritic tips. To implement this observation in the model, we as-
sumed that the contact is achieved whenever a tip comes very close 
(<0.15 m, ~average radius of branches; table S2) to a nearby branch. 
Furthermore, we used the altered tip dynamical parameters after a 
tip makes a contact (postcontact). Because it is difficult to measure 
how long the tips remain in their postcontact dynamics, we added this 
as a free parameter in the model (table S2). It was chosen to be longer 
than the expected lifetimes of postcontact dendrites (10 to 15 min).
Boundary condition
Individual class IV neurons grow within the hemisegments (39). We 
have experimentally measured the segment sizes in the AP and LR 
directions at different developmental stages, as shown in Fig. 1D. Linearly 
fits to the growing region (24 to 96 hours) defined the growth rates 
of the boundary used in our model. Because there is self-avoidance 
interaction between the neighboring neurons, we used a periodic 
boundary condition.
Initial condition
To avoid any ambiguity in the initial time point in the simulation, 
we divided the simulation process into two halves. We started our 
simulation at 14 hours with two to four randomly oriented branches 
of length ~15 m and allowed them to grow with the 18-hour tip 
dynamics data (Table 1A) and the 24-hour branching rate. When 
the dendritic tree reached the measured value of total branch num-
ber at 24 hours, we reassigned this time as 24 hours. In this way, we 
simulated larval morphogenesis.
Initial lag
There is an unexpected paucity of dendrite deaths at short times. To 
analyze this, we calculated the survival probability of the branches 
in the following way:
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Suppose dendritic tips are born and die throughout the observa-
tion period T. Divide T into small equal intervals dt. Let,

f(0) = Number{die in time [0, dt)}/Number{alive at time 0}
f(dt) = Number{die in time [dt,2dt)}/Number{alive at time dt}
f(2dt) = Number{die in time [2dt,3dt)}/Number{alive at time 

2dt} …etc.
Then, we can write the survival probability as

  D(t ) =   ∏ 
i=0

  
t/dt

   [ 1 − f(i ) ]  

The survival probability of the experimentally observed dendritic 
tips was measured manually and then calculated by using the above 
formula. This is shown by the solid black line in fig. S4A. The sur-
vival curve does not decay exponentially, which led us to conclude 
that the tips have some initial period of sustained growth that we 
termed as initial lag lag. To estimate the amount of initial lag, we 
simulated 1000 free tips with 48 hours of tip dynamics data (because 
it is in the middle of the developmental time) and implemented an 
initial lag (lag) during which the tips did not switch into the paused 
or shrinking states (KGP = KGS = 0; t ≤ lag). We calculated the sur-
vival probability by dividing the number of alive branches by the 
total number of branches. The survival probability increases with 
the initial lag lag, as shown by the dotted lines in fig. S4A. The dark 
blue is the best fit to the real data (lag = 0.3 min; table S2), and we 
used this value in our model.

Markovian tests of the tip trajectories
The tip dynamics is not a “Markovian process.” The non-Markovian 
traits are shown by the presence of initial lag during nascent branch 
formation (lag) and the change of dynamics after contact (table S2). 
However, the dynamics is a first-order process as shown by the single 
exponential decay of phase durations, as shown in fig. S3 (A to I), 
which points toward the fact that the dynamics do not have any long- 
term memory. To confirm this, we calculated the state-state auto-
correlation function. The average autocorrelation function quickly 
becomes uncorrelated, showing the absence of any long-term memory 
in the states.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abn0080

View/request a protocol for this paper from Bio-protocol.
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