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Abstract: It is well known that Particulate Matter2.5 (PM2.5) has a major adverse effect on the
organism. However, the health hazards of livestock farm PM2.5 to humans and animals are not
yet known, and the role of miRNAs in the cellular damage induced by livestock farm PM2.5 is also
unclear. Therefore, our study used cowshed PM2.5 to stimulate rat alveolar macrophage NR8383
to construct an in vitro injury model to investigate the effect of miR–122–5p on PM2.5-induced
apoptosis in the NR8383. The level of apoptosis was quantified by flow cytometry and Hoechst
33342/PI double staining. Furthermore, the potential target gene Collagen type IV alpha (COL4A1)
of miR–122–5p was identified through the use of bioinformatics methods. The results demonstrated
a decline in cell viability and an increase in apoptosis with rising PM2.5 concentrations and exposure
durations. The transfection of miR–122–5p mimics resulted in an upregulation of the pro-apoptotic
protein Bcl–xL/Bcl–2 and activation of cleaved caspase–3 while inhibiting the anti-apoptotic protein
B–cell lymphoma–2. The experimental data indicate that miR–122–5p is involved in the apoptotic
process by targeting COL4A1. Furthermore, the overexpression of COL4A1 was observed to enhance
the PM2.5-activated PI3K/AKT/NF–κB signaling pathway, which contributed to the inhibition of
apoptosis. This finding offers a promising avenue for the development of therapeutic strategies
aimed at mitigating cellular damage induced by PM2.5 exposure.

Keywords: PM2.5; microRNA; ECM; PI3K/AKT; apoptosis

1. Introduction

Air pollution has emerged as a significant public health concern in recent years. PM2.5,
a particulate matter with a diameter of 2.5 microns or less, is a prevalent air pollutant
that poses irreversible harm to both humans and animals [1]. Extensive studies have
established that long-term exposure to PM2.5 can lead to the development of asthma,
cardiovascular diseases, and chronic obstructive pulmonary diseases, among others [2–4].
This pollutant is not only found in industrial and urban areas but also where animal
husbandry is conducted. The breeding industry is very important all over the world, and
the harm caused by cowsheds and breeding houses in environmental pollution has an
impact on the whole world [5,6]. In recent years, the rise of intensive farms in China has
prompted widespread concern over the presence of PM2.5 in these vicinities.

Other studies have indicated a close correlation between PM2.5 and respiratory ill-
nesses [7]. Alveolar macrophages are an integral component of the immune system and
are located along the sides of the lung cavity [8]. They constitute the first line of defense
for clearing pathogens and pollutants from the lungs and coordinating the initiation and
cessation of immune responses within the respiratory system. The continuous exposure to
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PM2.5 exacerbates damage to the alveolar macrophages, ultimately resulting in apoptosis.
Some reports suggest that the extracellular matrix (ECM) around the macrophages provides
structural support for cellular adhesion and the perception of physical stimuli [9]. Collagen,
the most abundant protein in the human body, may be involved in cellular damage [10].
Here, we discuss the role of the ECM in the apoptosis of alveolar macrophages.

Collagen type IV alpha is the primary component of the extracellular matrix basement
membrane. Collagen IV measures 400 nm in length and possesses three chains, which
are composed of two α I (IV) chains and one α II (IV) chain [11]. Recent studies have
demonstrated a correlation between COL4A1 and cardiovascular diseases, indicating that
it may alleviate cell damage [12,13]. Furthermore, collagen type IV has been reported
to impact the respiratory system and can be found in asthma and lung tumors [14,15].
To sum up, these findings suggest that COL4A1 has significant implications for both
cardiovascular and respiratory disorders. However, there is minimal research on the
precise mechanism linking COL4A1 and respiratory illnesses. Thus, it is crucial to conduct a
thorough investigation of the regulatory process between COL4A1 and alveolar macrophage
apoptosis and identify the gene targets for future disease prevention and clinical treatment.

MicroRNA is one of the many known regulators of COL4A1. MicroRNAs (miRNAs)
are short non-coding RNAs that modulate gene expression by interacting with mRNAs,
resulting in mRNA decay or suppression of translation [16]. Typically, miRNAs are endoge-
nously expressed at the cellular level, and they combine with mRNA for transcription and
translation while regulating multiple physiological functions, such as cell development,
proliferation, and apoptosis [17]. It was found that a variety of miRNAs are expressed
to varying degrees under PM2.5 exposure [18]. Extensive data demonstrate the ability of
miR–122–5p to regulate renal fibrosis in vivo and promote tumor and cancer cell prolif-
eration [19,20]. However, knowledge of miR–122–5p’s impact on respiratory diseases is
limited. As a result, we investigated the precise control mechanisms of miR–122–5p that
influence apoptosis initiated by PM2.5 in cowsheds.

Several cell functions are typically affected by the phosphatidylinositol 3kinase (PI3K)/
protein kinase B(AKT) signaling pathway, which is one of the classic pathways that govern
apoptosis in organisms [21–23]. It is usually mediated by the phosphorylation of serine or
threonine in the downstream stage. The PI3K/AKT signaling pathway is associated with
a large number of human diseases, such as cancer (tumors), lung injury, and so on [24].
Other studies have shown that lung injuries caused by other diseases can be alleviated by
interfering with the PI3K/AKT/NF–κB signaling pathway [25]. Therefore, we have put
forward the following hypothesis: apoptosis induced by cowshed PM2.5 is also associated
with the PI3K/AKT/ NF–κB signaling pathway.

Cowshed PM2.5 had the first effect on apoptosis in our study. The COL4A1 and
PI3K/AKT/NF–κB pathways were found to be the mechanisms by which miR–122–5p
could interfere with cells during apoptosis in this process. Our research provides a theoreti-
cal framework for studying the influence of the agricultural environment on cell functions
and lays a background for further research in this area.

2. Materials and Methods
2.1. PM2.5 Collection

We used cowshed PM2.5 collected by our research group in the early stage [26]. The
PM2.5 particles were crushed using ultrasound and fully mixed with normal saline to
prepare a suspension. The resultant samples were stored at −20◦C for further use.

2.2. Cell Culture and Treatments

Rat alveolar macrophages (NR8383) and human renal epithelial cells (HEK-293T) were
sourced from the Shanghai Cell Bank, Shanghai, China. The cultures were maintained
in a humidified incubator with a 5% CO2 atmosphere at a constant temperature of 37 ◦C.
The growth medium consisted of Dulbecco’s modified Eagle medium (DMEM; Gibco,
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Gaithersburg, MD, USA), supplemented with 10% fetal bovine serum (FBS; Gibco) and 1%
penicillin–streptomycin (Beyotime Biotechnology, Shanghai, China).

The experimental design included two distinct groups:

1. The cells were exposed to escalating concentrations of cowshed PM2.5, ranging from
0 µg/mL to 300 µg/mL in increments of 60 µg/mL.

2. A fixed concentration of PM2.5 (180 µg/mL) was used to treat cells for varying dura-
tions: 0, 12, 24, and 48 h.

2.3. Cell Viability (CCK-8)

Cell viability was assessed using the CCK-8 assay kit from Beyotime Biotechnology,
following the manufacturer’s protocol. Cells were seeded into 96-well plates and main-
tained at 37 ◦C in a humidified 5% CO2 atmosphere for 24 h. Absorbance measurements
were taken at 450 nm with a microplate reader.

2.4. Extraction and Real-Time Fluorescence Quantification of RNA

The total RNA was extracted from samples using the Trizol reagent (TaKaRa, Dalian,
China), and then converted into cDNA with the PrimeScriptTM RT kit (TaKaRa) for sub-
sequent applications. For miRNA analysis, cDNA synthesis was conducted using a stem-
loop-based miRNA 1st Strand cDNA Synthesis Kit (Vazyme, Nanjing, China), followed by
RT-qPCR with the miRNA Universal SYBR qPCR Master Mix (Vazyme, Nanjing, China).
The quantification of fluorescence was carried out using the Light Cycler 96 instrument
system (Roche, Basel, Switzerland). RT-qPCR primers were synthesized in Shanghai, China.
We have utilized GAPDH and U6snRNA as endogenous reference genes, and the relative
expression was calculated as the level of miRNA or mRNA using the 2−∆ ∆ CT method. The
primers used are listed in Table 1.

Table 1. The primers for RT-qPCR.

Gene Primers’ Sequence (5′-3′)

COL4A1 F: AGTTGGCTTTCCTGGTAGTC
R: AAGGCCTGCTTGTCCTTT

GAPDH F: CCTGCACCACCAACTGCTTA
R: CATCACGCCACAGCTTCCA

U6 F: CTCGCTTCGGCAGCACA
R: AACGCTTCACGAATTTGCGT

miR–122–5p F: CGCGTGGAGTGTGACAATGG
R: AGTGCAGGGTCCGAGGTATT

2.5. Plasmid Construction and Cell Transfection

For the dual-luciferase assay, COL4A1 wild (COL4A1–WT) and mutant (COL4A1–
MUT) strains were built according to the conjugation sites of COL4A1 and miR–122–5p,
and they were cloned into a pmir–GLO vector. Then, the pmir–GLO, COL4A1–WT, and
COL4A1–MUT vectors were transfected into the HEK–293T cells, respectively.

To study COL4A1 overexpression, full-length COL4A1 was amplified and digested
with Hind III and Xho I (Takara, Dalian, China). T4 ligase (TaKaRa, Dalian, China) was
used for the ligation of the pcDNA3.1+ vector. The plasmid overexpressing COL4A1 was
extracted from a bacterial medium containing 200 µg/mL ampicillin (Beyotime Biotechnol-
ogy, Shanghai, China). The miR–122–5p mimics, inhibitor, and negative control (mimics,
inhibitor, and NC) were synthesized by GenePharma (Shanghai, China). For cell trans-
fection, the NR8383 cells were seeded into 6-well plates and cultured at 37 ◦C in a 5%
CO2-humidified environment. Lipofectamine 3000 (Thermo Fisher, MA, USA) was used as
a transfection reagent according to the manufacturer’s instructions. The cells were collected
for analysis after 48 h.

Because HEK-293T cells have higher transfection stability and efficiency than NR8383
cells do, we used Lipofectamine 3000 (Thermo Fisher, MA, USA) to simultaneously transfect
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the miR–122–5p mimics (or mimics NC) and COL4A1–WT (or COL4A1–MUT) in the HEK-
293T cells in 6-well plates. Luciferase activity, 48 h post-transfection, was determined with
a dual-luciferase reporter assay.

2.6. Flow Cytometry

NR8383 cells were seeded into a 6-well plate and incubated at 37 ◦C in a humidified
5% CO2 atmosphere for 24 h. After incubation, cells were washed with phosphate-buffered
saline (PBS), trypsinized, and collected. Apoptosis was assessed using the Annexin V-
FITC/PI kit (556547, BD PharmingenTM, Franklin Lakes, NJ, USA), and flow cytometry
analysis was conducted on a BD LSRFortessa instrument (BD Biosciences, Franklin Lakes,
NJ, USA).

2.7. Hoechst 33342/PI Double Staining

We detected apoptosis by using Hoechst 33342/PI double staining (Beyotime Biotech-
nology, Shanghai, China). The NR8383 cells were plated in 12–well plates, and 5 µL of
Hoechst 33342 and PI staining solution was added to each well after challenge or transfec-
tion. The mixture was then evenly mixed, and fluorescence was detected at 4 ◦C with a
fluorescence microscope (Olympus, Tokyo, Japan). The normal cells exhibited weak blue
and red fluorescence under the microscope, whereas the apoptotic cells displayed weak
red and strong blue fluorescence following Hoechst 33342/PI staining.

2.8. Western Blotting

We have prepared pre-cooled RIPA lysate, containing 1% phosphatase inhibitor and
1% protease inhibitor, to lyse cells. Protein concentration was determined using the BCA
Protein Assay Kit from Beyotime Biotechnology, following the manufacturer’s protocol.
The protein samples were initially separated through SDS-PAGE. Afterward, the protein
was transferred onto a PVDF membrane via electrophoresis. The primary antibody was
then incubated overnight at 4 ◦C, followed by three washes with TBST for 10 min each time
and the secondary antibody at a concentration of 1:8000 was then added to the sample.
Finally, an ECL luminescent solution (Beyotime Biotechnology, Shanghai, China) was used
to develop the color. The captured image was analyzed using Image J 1.8.0 software (USA).

The antibodies used in this study, all at a dilution of 1:1000 unless stated otherwise,
were sourced from Proteintech (Philadelphia, PA, USA) for BCL-2, BAD, AKT, p-AKT, IκBα,
and GAPDH. PI3K was used at 1:5000, while β-actin was at 1:900. Antibodies sourced
from Abways (Shanghai, China) include p-PI3K (1:1000) and p-IκBα (1:500), along with
p-P65 (1:500) and p-P65 (1:500). Caspase-3 was obtained from Santa cruz Biotechnology
(Santa Cruz, CA, USA) at a dilution of 1:1000, and COL4A1 was obtained from Thermo
Fisher Scientific (Waltham, MA, USA), also at 1:1000. Secondary antibodies, anti-rabbit
IgG (1:8000), and horseradish peroxidase-labeled goat anti-mouse IgG (1:8000), were also
from Proteintech.

2.9. Statistical Analysis

Study data were analyzed using GraphPad Prism 8.0 (La Jolla, CA, USA), with t-tests
for two–group comparisons and one–way ANOVA for multiple groups. A p-value of <0.05
indicated statistical significance, confirmed by triplicate experiments.

3. Results
3.1. Cowshed PM2.5 Exposure Induces Apoptosis in NR8383 Cells

Initially, our research group analyzed PM2.5 components and community components
in cowsheds [27,28]. The cell viability decreased with an increasing concentration of
cowshed PM2.5 compared to the control group, as demonstrated by the use of the cell
Counting Kit–8 (CCK–8) results (Figure 1A,B). The cell viability was decreased to less than
50% at the exposure concentration of 300 µg/mL. Therefore, we chose 180 µg/mL for the
subsequent experiments. Figure 1C shows that the expression levels of apoptotic BAD and
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Caspase–3 proteins, and that of the anti-apoptotic BCL–2 proteins increased significantly
in the NR8383 cells stimulated with different concentrations of PM2.5. Figure 1D shows
that the changes in apoptosis protein levels in the NR8383 cells stimulated by cowshed
PM2.5 at different times are consistent with those of the proteins mentioned above. Using
flow cytometry (Figure 1E) and the Hoechst 33342/PI staining assay (Figure S1), we also
reached the same conclusion. The above experimental results show that cowshed PM2.5
can reduce cell viability and promote apoptosis.
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Figure 1. Apoptosis induced by cowshed PM2.5 exposure was assessed. (A,B) A CCK–8 assay was
used to evaluate cell viability under varying concentrations and durations of exposure. (C,D) The
alterations in apoptosis-associated proteins, including BAD and levels of Caspase–3 and BCL–2, were
evaluated using Western blotting across various concentrations and time intervals. (E) The detection
of apoptosis using flow cytometry. Asterisks denote the levels of significance as detailed below:
* p < 0.05; ** p < 0.01; and *** p < 0.001.
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3.2. Cowshed PM2.5-Stimulated Upregulation of miR–122–5p

Our group established a rat model in the early stage [29]. Through screening, we
found that there were differential expressions of the microRNAs (miRNAs). There were
significant differences in the expression of miR–122–5p (Table S1). We investigated this
based on its biological characteristics. miR–122–5p levels in NR8383 cells, following
stimulation with cowshed PM2.5 across varying concentrations and time points, were
confirmed through RT-qPCR analysis. (Figure 2A,B). The results show that the miR–122–
5p expression level was increased when different concentrations of cowshed PM2.5 were
applied. In addition, the expression of miR–122–5p was upregulated in cells stimulated at
the same concentration over different time periods. These findings suggest a link between
miR–122–5p expression and fluctuations in PM2.5 exposure, underscoring the necessity for
investigating the underlying molecular mechanisms.
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Figure 2. The expression of miR–122–5p stimulated by cowshed PM2.5. (A,B) The detection of
miR–122–5p using an RT-qPCR stimulated by cowshed PM2.5 at different time periods (0 h, 12 h,
24 h, and 48 h) and across a range of concentrations from 0 to 300 µg/mL. Asterisks mark statistical
significance: ns p > 0.05; * p < 0.05; ** p < 0.01; and *** p < 0.001.

3.3. Promotion of Apoptosis by miR–122–5p

This study found that miR–122–5p mimics upregulated the expression of apoptosis-
promoting proteins while downregulating the expression of the anti-apoptotic BCL–2
proteins (Figure 3A). Conversely, miR–122–5p inhibitor had a contrary result compared
to miR–122–5p mimics (Figure 3B). The flow cytometry results also support the aforemen-
tioned findings (Figure 3C,D). Similarly, Hoechst 33342/PI staining has reflected the same
trend (Figure S2). In the presence of cowshed PM2.5, the presence of miR–122–5p mimics
has led to an increase in apoptosis, as indicated by these results. Inversely, the incorpora-
tion of a miR–122–5p inhibitor has been shown to reverse apoptosis. This suggests that
miR–122–5p has the potential to promote apoptosis.
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Figure 3. Apoptosis promoted by miR–122–5p. (A) Effects of NC and miR–122–5p mimics transfection
on apoptosis proteins detected under PM2.5 challenge. (B) Changes in apoptotic proteins after trans-
fection with inhibitor NC, and miR–122–5p inhibitors examined under PM2.5 exposure. (C) Apoptosis
induced by NC and miR–122–5p mimics was assessed through flow cytometry. (D) Impact of in-
hibitor NC and miR–122–5p inhibitor on apoptosis was determined through flow cytometry. Asterisks
denote levels of significance as detailed below: ns p > 0.05; * p < 0.05; ** p < 0.01; and *** p < 0.001.
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3.4. COL4A1 Is a Predicted Target of miR–122–5p and Downregulated in Cowshed PM2.5-Induced
NR8383 Cells

Using miRDB microRNA target prediction database and Targetscan 7.2 (http://www.
targetscan.org/vert_80/) (accessed on 1 February 2023), the fraction that binds to miR–
122–5p was identified in the 3′UTR region for COL4A1 (Figure 4A). Molecular and protein
expression analyses were performed to evaluate COL4A1 levels post-PM2.5 stimulation.
These results indicated that the COL4A1 expression level was reduced in a concentration-
and time-dependent manner (Figure 4B,C).
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Figure 4. COL4A1, a putative target of miR–122–5p, exhibits downregulated expression when
exposed to PM2.5 from cowshed environments. (A) The target has predicted the combined position
between miR–122–5p and COL4A1. (B) Changes in COL4A1 were identified following the PM2.5

treatment, as determined by RT-qPCR. (C) The changes in COL4A1 were detected using Western
blotting under different concentrations and different time periods of PM2.5 exposure. Significance is
indicated by asterisks, as detailed below: ns p > 0.05; * p < 0.05; and *** p < 0.001.

3.5. miR–122–5p Targeted COL4A1 and Showed Negative Regulatory Relationship

The dual-luciferase assay results indicate that miR–122–5p mimics diminish luciferase
activity relative to controls, suggesting that miR–122–5p targets COL4A1 (Figure 5A). The
regulatory link between miR–122–5p and COL4A1 was confirmed, with results showing
COL4A1 downregulation upon miR–122–5p mimic introduction (Figure 5B). Moreover,
COL4A1 expression was elevated by the miR–122–5p inhibitor, as demonstrated by the
Western blot and RT-qPCR analyses (Figure 5C). In summary, miR–122–5p binds to COL4A1,
establishing a negative regulatory relationship, as evidenced by the data presented.

3.6. Overexpression of COL4A1 Enhances PI3K/AKT/NF–κB Signaling Pathway and Inhibits
Cowshed PM2.5-Induced Apoptosis

The overexpression of COL4A1 can enhance the PI3K/AKT pathway activated by
cowshed PM2.5. At the same time, the quantity of phosphorylated IKBα increased, and
phosphorylated P65 was activated, thereby activating the NF–κB pathway (Figure 6A).
Subsequently, we investigated the potential regulatory role of miR–122–5p within the
signaling pathway induced by cowshed PM2.5. Because the negative regulatory relationship
between miR–122–5p and COL4A1 was determined, we used a miR–122–5p inhibitor to
verify it. The results show that the miR–122–5p inhibitor had an effect on the pathway
under the action of cowshed PM2.5 (Figure 6B). Then, we detected changes in the apoptosis
proteins in this pathway. The results show that with the increase in the COL4A1 expression
level, the expression of the apoptosis proteins BAD and Caspase–3 were downregulated,
and the expression of BCL–2 was upregulated (Figure 6C). The flow cytometry trend

http://www.targetscan.org/vert_80/
http://www.targetscan.org/vert_80/
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was also consistent with these findings (Figure 6D). We also verified this using Hoechst
33342/PI (Figure S3). These results indicated that the overexpression of COL4A1 can
regulate apoptosis by activating the PI3K/AKT/NF–κB pathway.
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cowshed PM2.5. At the same time, the quantity of phosphorylated IKBα increased, and 
phosphorylated P65 was activated, thereby activating the NF−κΒ pathway (Figure 6A). 
Subsequently, we investigated the potential regulatory role of miR-122-5p within the sig-
naling pathway induced by cowshed PM2.5. Because the negative regulatory relationship 
between miR−122−5p and COL4A1 was determined, we used a miR−122−5p inhibitor to 
verify it. The results show that the miR−122−5p inhibitor had an effect on the pathway 
under the action of cowshed PM2.5 (Figure 6B). Then, we detected changes in the apoptosis 
proteins in this pathway. The results show that with the increase in the COL4A1 expres-
sion level, the expression of the apoptosis proteins BAD and Caspase−3 were downregu-
lated, and the expression of BCL−2 was upregulated (Figure 6C). The flow cytometry trend 
was also consistent with these findings (Figure 6D). We also verified this using Hoechst 
33342/PI (Figure S3). These results indicated that the overexpression of COL4A1 can reg-
ulate apoptosis by activating the PI3K/AKT/NF−κΒ pathway. 

Figure 5. Negative regulation of miR–122–5p and COL4A1. (A) Binding of miR–122–5p to COL4A1
was verified by dual-luciferase experiments using 293T cells. (B) Analysis of COL4A1 expression after
transfer of mimics NC, miR–122–5p mimics, inhibitor NC, and miR–122–5p inhibitor using RT–qPCR.
(C) Western blot detection of COL4A1 protein expression after transfection of NC, miR–122–5p mimics,
inhibitor NC, and miR–122–5p inhibitor. Asterisks denote levels of significance as detailed below:
ns p > 0.05; * p < 0.05; ** p < 0.01; and *** p < 0.001.
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Figure 6. Overexpression of COL4A1 activates the PI3K/AKT/NF–κB pathway and inhibits apoptosis
induced by cowshed PM2.5. (A) Effect of OE–COL4A1 on PI3K/AKT/NF–κB pathway proteins under
cowshed PM2.5 exposure. (B) Impact of miR–122–5p inhibitor against PI3K/AKT/NF–κB pathway
under cowshed PM2.5 exposure using Western blotting. (C) Effect of COL4A1 overexpression on
apoptotic proteins under cowshed PM2.5 exposure as determined using Western blot. (D) Apoptosis
levels in COL4A1–overexpressing cells were evaluated using flow cytometry. Asterisks denote
significance levels: * p < 0.05; ** p < 0.01; and *** p < 0.001.
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4. Discussion

In this study, cells treated with cowshed PM2.5 showed reduced viability with am-
plified apoptosis. The changes in cell viability and apoptosis occurred in a concentration-
and time-dependent manner and are consistent with Ming’s findings [30]. The level of
PM2.5 in livestock and poultry houses impacts economic development and indoor breeding
benefits. Hence, a comprehensive understanding of PM2.5 pathogenesis in animal breeding
environments is crucial. Consequently, this study has elucidated the apoptotic mechanism
triggered by PM2.5 exposure.

Exposure to PM2.5 can lead to alterations in the microRNA [31]. miR–122–5p is
associated with numerous human diseases, such as cancer and obesity. It can regulate the
cell epithelial–mesenchymal transition and oxidative damage [32–34]. Changes in miR–122–
5p due to cowshed PM2.5 are infrequently reported. Thus, a potential link between miR–
122–5p and cowshed PM2.5 exposure was hypothesized. In this research, we discovered that
the alterations in miR–122–5p under cowshed PM2.5 exposure are both concentration- and
time-dependent. Our findings show that miR–122–5p mimics enhance PM2.5-induced cell
death, while the miR–122–5p inhibitor blocks this effect, confirming the findings in earlier
studies [35]. Our speculation suggests a possible association between miR–122–5p and
apoptosis, which was the motivation for our investigation. To investigate the promotion of
apoptosis by miR–122–5p, we have predicted the target gene and discovered its possible
correlation with COL4A1. Subsequently, we have confirmed that a targeted negative
regulatory relationship exists between COL4A1 and miR–122–5p. miRNA targets the 3′

UTR of COL4A1 and regulates apoptosis by controlling its transcription and translation.
Additionally, it was reported that miR–124 inhibits the epithelial–mesenchymal transition
in gastric cancer cells via its target COL4A1 [36]. Megan Griffiths and colleagues have
discovered that the upregulation of miR–29c is associated with a reduction in COL4A1
expression [37]. These studies affect cell function by binding the microRNA and messenger
RNA. Nevertheless, the impact of miR–122–5p-targeted COL4A1 on cell function requires
further investigation.

A considerable amount of evidence has shown that there are many types of type I
collagen, and they are associated with respiratory diseases [38]. Other studies indicate
significant differences in the collagen type IV expression levels between people with pul-
monary fibrosis and chronic obstructive pulmonary disease (COPD) [39]. However, certain
studies have found a decreased expression of collagen type IV in people with pulmonary
fibrosis [40]. Our findings demonstrate that cowshed PM2.5 reduces the expression level
of COL4A1. It is hypothesized that cowshed PM2.5 may impact the changes in COL4A1
due to the reduced content of collagen type IV in cells resulting from external stimuli.
Furthermore, varying expression levels across different cells may be related to the changes
observed in COL4A1. Prior to assembly, collagen morphology is synthesized within the
cells and is subsequently involved in the extracellular matrix formation. Collagen type
IV, as the primary component of the ECM, interacts with the internal and external cell
environments through integrin [41]. The diminished expression of collagen type IV can
result in extracellular matrix degradation, which destabilizes the matrix structure. The
overabundance or degradation of the ECM will impact the cell structure; hence, we can
infer that the condition of the cells may be affected in this manner [42]. As a member of
the ECM family, the relationship between COL4A1 and the respiratory system changes in
real time. For different diseases, COL4A1 has a dynamic impact on them. The research to
date indicates a correlation between the production of type IV collagen and the severity
of pulmonary fibrosis. When there is an increase in collagen, this is a sign of fibrosis in
a sense. At the same time, collagen can also cause other proteins to affect other diseases;
for example, airway inflammation will be inhibited as collagen changes the MUC5AC pro-
tein [14]. MiR–122–5p and COL4A1 exhibited a targeted negative regulatory relationship,
indicating that COL4A1 regulation is influenced by multiple factors. These findings offer a
novel perspective on the miRNA targeting of collagen family-mediated apoptosis.



Toxics 2024, 12, 386 12 of 15

Based on our research, we have identified a miRNA that negatively regulates the
targeting of COL4A1. We then investigated the pathways that impact apoptosis and the
potential mechanism of COL4A1 in this process. Using bioinformatics analysis, we have
specifically located the PI3K/AKT/ NF–κB pathway. Excessive and suppressed PI3K/AKT
signaling has been linked to various pathologies. [43,44]. The activation of the PI3K/AKT
pathway has been reported to induce the epithelial–mesenchymal transition and the pro-
liferation of epithelial cells [45]. Another study has discovered that the peptide COL4A1
mitigates the development of eclampsia by affecting the TGF-β/PI3K/AKT pathway [46].
The PI3K/AKT pathway is a well-known apoptosis route that is closely associated with
apoptosis [47]. However, the effect of the NF-κB signaling pathway is complicated [48]. In
our study, it was discovered that the augmentation of COL4A1 expression initially triggers
the PI3K/AKT pathway, which subsequently activates the NF–κB pathway, resulting in
the inhibition of apoptosis. This may result from an NF–κB response element (KB site)
on the BCL–2 protein upon initiation of the NF-κB signaling pathway. This led to the
upregulation of the anti-apoptotic protein expression in BCL–2. Likewise, the impact of
NF-κB on apoptosis varied across the different cells. The Caspase family plays a crucial role
in apoptosis, with Caspase-3 serving as the primary executor. Our Western blot analysis
has revealed the downregulation in Caspase–3 gene expression, confirming our hypothesis
that COL4A1 overexpression hinders cowshed PM2.5-induced epithelial cell death with
the activation of the phosphatidylinositol–3–kinase (PI3K) and protein kinase B (AKT)
signaling cascade, culminating in the upregulation of the nuclear factor kappa B (NF–κB)
pathway. Furthermore, the miR–122–5p inhibitor can both regulate COL4A1 expression
and activate the aforementioned pathways through this modulation.

5. Conclusions

In summary, our research indicates that cowshed PM2.5 can trigger NR8383 apoptosis.
Additionally, our research indicates that miR–122–5p triggers the PI3K/AKT signaling
cascade, which in turn modulates the NF–κB pathway by binding to COL4A1, thereby
suppressing apoptosis. This discovery presents a fresh perspective and a novel therapeutic
target for PM2.5-induced lung injuries.
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used to detect the effect of miR–122–5p on cell apoptosis; Figure S3: Hoechst33342/PI was used to
detect the effect of OE-COL4A1 on cell apoptosis; Table S1: Differentially expressed miRNAs.
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